
Abstract

In this work we present a system for implementing the
placement and routing stages in the FPGA cycle of
design, into the physical design stage. We start with the
ISCAS benchmarks, on EDIF format, of Boolean
functions to be implemented. They are processed by a
parser in order to obtain an internal representation which
is able to be processed by a Genetic Algorithm (GA) tool.
This tool develops the Placement and Routing tasks,
considering possible restricted area into the FPGA. In
order to help to the GA to make the Routing stage we
have added a local search procedure. That local search
gets a path between two points without considering
neither their placement nor the restricted areas among
them. The GA is fully customizable, featuring the ability
to work with one or several islands. The experiments have
verified that using distributing execution improves the
costs and speeds up the convergence towards better
results in smaller slots of time.

1. Introduction

FPGA [1] are integrated devices used to implement
Boolean Functions or logic circuits. Some FPGA
manufacturers are [2][3][4][5].

In this work we use the FPGA island model [6]. (Figure
1). This FPGA model consists of three main kind of
elements: Configurable Logic Blocks (CLB), with carries
with the logic of the circuits, Input/Output Blocks (IOB),
with joins the FPGA with external devices and the
Interconnection Resources (IR): interconnection wires
(programmable nets) and interconnection switchs (SW),
for connecting the CLBs between them and with the
IOBs.

In order to obtain an FPGA that operates according to a
logic of certain complexity it is necessary to fulfil all the
stages of the cycle of design of FPGA. Briefly, this cycle
consists on seven stages: 1.Specification: A definition of
the main characteristics together with the economical
viability of the system is obtained. 2. Functional design.

The functional units and the interconnection requirements
are obtained. 3. Logical design. The inner logic of the
system is defined. 4. Electrical design. An electrical
representation of the circuit is obtained, considering the
results of previous stages. 5. Physical design. The logic of
the circuit is geometrically and physically written on the
FPGA. That stage it’s one of the most complex of all. 6.

Fabrication. Considering the physical design the silicon
wafers are obtained. 7. Encapsulation and verification.

All chips obtained are encapsulated and a final
verification is made in order to check all specifications
are fulfilled. A more detailed description of this cycle can
be found on [7].

The physical design is divided into partitioning,
placement and routing. This works deals with placement
and routing. In the placement stage the partitioned
modules are organized in the FPGA in order to minimize

Placement and Routing of Boolean Functions in constrained FPGAs using a
Distributed Genetic Algorithm and Local Search.

Manuel Rubio del Solar1, Juan Manuel Sánchez Pérez1, Member, IEEE, Juan Antonio Gómez
Pulido1, Miguel Ángel Vega Rodríguez1

1Dep. de Informática.
Escuela Politécnica,

Avda de la Universidad S/N 10071 Cáceres, Spain.
{mrubio | sanperez | jangomez | mavega}@unex.es

Fig.1. Island FPGA structure.

1-4244-0054-6/06/$20.00 ©2006 IEEE

the occupied area and the nets length. In the routing stage
the module terminals are joined according to the circuit
structure, wire density and multi-FPGA design.

The problems described in that stage can be considered
a multiobjective problem of hard resolution. These
problems are strongly related and may be solved together
with the goal of finding a good balance between area
occupation and wire density factors derived by the two
mentioned stages.

GAs are a good problem resolution model for this kind
of NP issues. This is because GAs finds good solutions to
complex optimization problems [8][9]. For this reason, in
this work we propose a methodology that uses distributed
GA for solving the above mentioned problems, keeping a
good balance between area occupation and wire density
according to the requirements of each situation.

The FPGA model in we are based to is the XC4VLX80
model of the Virtex 4 family by Xilinx [10].

The circuit structure corresponding to a Boolean
function is given by an schematic file in EDIF [11]
format. EDIF stands for “Electronic Design Interchange
Format” and its format is designed to ease the interchange
of designs and projects between CAD tools and designers.

In order to read and process EDIF files we’ve
developed a parser to convert the .edf (EDIF extension)
file to an internal representation used by the GA. We have
written the parser using the Flex [12] and Bison [13]
tools, and the grammar in BNF [14] of the EDIF 2 0 0
specification [15]. The developed GA is based on
DGA2K tool [16]. DGA2K is a set of libraries to build
tools using GAs. In order to do that it is necessary to
define some basic components such as the chromosome
representation, the fitness function and other parameters
to obtain the desired GA based tool. A very important
feature is the number of islands to work with the
distributed GA. Each island will represent an entire
population. The communications among islands are
managed by the designed tool, according to an specified
migration interval and migration rate [17].

Previous works in this field are [7], with a parallel GA
using the MPI tool, and supports area and density
constraints. Its main lack is short fault tolerance and direct
management of communication directives. Also it
presents short flexibility on the definition and use of
restricted areas. Other work is [18], with pin assignment,
and fully integrated in the design cycle managed by the
Xilinx toolset. This work uses only one population and
does not allow constraint definition. The work in [6]
approaches the problems of placement, routing and pin
assignment by using Genetic Programming (GP) [19]
instead of GAs.

This work is structured as follow. In section 2 the data
managed by the GA are described. In section 3 we explain
the chromosome structure and how the fitness function
make the evaluation. In section 4 our local search
algorithm for the routing stage is explained. In section 5
we explain with more detail the DGA2K tool. Section 6
explains the experiments made to probe the tool, and
section 7 shows the obtained results. Finally, sections 8
and 9 show the conclusions and future line-work,
respectively.

2. Data description.

The system data input is given by EDIF files obtained
from ISCAS [20]. The EDIF format has been developed
to reach easy parsing by any CAD tool, so it is strongly
structured and modularized. EDIF syntax is based on
LISP syntax, and the main elements of this syntax can be
seen on Figure 2.

The first line specifies the EDIF version and the
representation level. Next section is dedicated to the
module: the scheme, and the interface, on which the input
and output ports are defined. Next the instances are
declared. Each instance represents a partitioned CLB, so
each instance will be placed by the tool. Finally all the
nets, specifying the start and the end, of the circuit that is
being described are shown. These nets will be routed in
the routing stage.

The Figure 2 is an extract of a complete EDIF file; we
only have shown the necessary parts to get the internal

(edif ... (edif version) (edif level)
 (cell...)
 (view...)
 (interface
 (port ... (direction ...))
 (port ... (direction ...))
 (port ... (direction ...))
)
 (contents (instance ...)
 (instance ...)
 (instance ...)
 (net ... (joined ..))
 (net ... (joined ..))
 (net ... (joined ..))
)

)

Fig 2 Main structure of an EDIF file

Fig.3. Schematic described by the above

representation for the GA.
As an example, the following code describes the

schematic on Figure 3.

(edif simple (edifVersion 2 0 0) (edifLevel 0)
 (cell s3p (cellType GENERIC)
 (view Netlist_representation (viewType NETLIST)
 (interface
 (port I0 (direction INPUT))
 (port I1 (direction INPUT))
 (port I2 (direction INPUT))
 (port O1 (direction OUTPUT))
)
 (content (instance B0)(instance B1) (instance B2)
 (net I0 (joined
 (portRef I0)
 (portRef I1 (instanceRef B0))))
 (net I1 (joined
 (portRef I1)
 (portRef I3 (instanceRef B1))))
 (net I2 (joined
 (portRef I2)
 (portRef I2 (instanceRef B2))))
 (net N1 (joined
 (portRef O1 (instanceRef B0))
 (portRef I1 (instanceRef B1))
 (portRef I2 (instanceRef B1))))
 (net N2 (joined
 (portRef O1 (instanceRef B1))
 (portRef I1 (instanceRef B2))))
 (net O1 (joined
 (portRef O1)
 (portRef O1 (instanceRef B2))))

))))

 The developed parser processes the EDIF file in
order to transform it into an internal representation
compatible with our GA. After the process a list of CLBs
and other of nets are obtained and inserted on a data
structure with the following form. (See figure 4)

The parser has been written according to the BNF
grammar of EDIF 2 0 0 specification. That grammar has
been rewritten by adding semantic actions to the parser,
according to the format of BISON tool. (BISON is a
parser generator). The semantic actions have been added
only to the necessary grammars rules needed to process
the ISCAS files; that are the rules mentioned on Figure 2.

The semantic actions insert in the data structure the
module interface, the instances (CLB) and the nets of the
file. When all semantic actions are made, the internal
representation to the AG is generated.

3. Chromosome and fitness function design.

As it was mentioned in the Introduction section, the
user must customize the DGA2K tool to solve a specific
problem. So it is necessary to define the chromosome
structure and the fitness function, setting some criteria in
order to decide the adaptability of all chromosomes. Some
genetic operators, such as crossover, mutation, encoding,
decoding, migration, etc. are predefined by the DGA2K

tool.
The encoded structure of the chromosomes consists of

a bit string, with a length proportional to the problem size.
(Number of CLB and Nets, size of FPGA, etc.) The
decoded chromosome consist of a set of coordinates (Xn,
Yn), which represents each CLB position on the FPGA.
So each gene corresponds to one CLB. Each Xn, Yn pair
is codified with 20 binary digits.

Because of this problem nature non valid chromosomes
can arise with some frequency after some specific
operations as random generation of the population,
crossover and mutation operation and a replacement due
to an area constraint. A chromosome is non valid if any of
these three conditions are true: 1. The same position is
assigned to two or more CLBs. 2. A CLB it is located
outside of FPGA limits. 3. A CLB it is located into an
area defined by an area constraint.

For that reason we must assure any gene position is
repeated, it is outside the limits or inside constraints. For
each non valid gene we change its position of
pseudorandom form, in order to guarantee the correct
form of the chromosome [21].

One of the main objectives of the fitness function it is
to harness the proximity of the CLBs. To accomplish that
premise we consider the Euclidean distance among each
coordinate pair, taken from contiguous form in the
chromosome; and considering also contiguous the first
and last genes. If a chromosome presents the following
structure:

(x0,y0) (x1,y1)(x2,y2)

Their CLB proximity it is evaluated by calculating the
formula (1) .

2)20(2)20(

2)12(2)12(2)01(2)01(

YYXX

YYXXYYXX

−+−

+−+−+−+−=
 (1)

Seeing the formula becomes patent the necessity of
avoiding gene position repetitions. In the opposite case
the proximity value would be erroneous.

The second main objective of the fitness function is to
maintain relatively constant the density of the

 s3p B0 B1 B2
 s3p B0
 s3p B1
 s3p B2
 s3p B2
 B0 B1
 B0 B1
 B1 B2

Fig.4. Internal representation example.

interconnection channels among the FPGA CLBs. For
that reason we add to the fitness function a second term
(additional to the proximity term). That term considers the
wire density. In order to calculate it we use a memory
structure which represents the FPGA. That structure is a
matrix, with an associated density value. That value is
obtained as follows: An internal connection is drown
between each CLB source and destination pair. That
connection joins both CLBs considering area and density
constraints. To define the path of the connection we have
designed a local search algorithm. (See section 4 for more
details). When this connection crosses an SW (that is,
interconnection switch), a weight associated to that SW is
increased. To guarantee constant and homogeneous
density we add a penalization when a SW is crossed by
many connections. That penalization grows up not
lineally with the number of connection over the SW;
instead, an exponential calculation based on that number
is made to obtain the penalization value.

Finally, the value of the second term (density term,
represented asβ) it is equivalent to the sum of all weights
of all SW.

The final value of the chromosome is obtained with this
formula (2):

dendisf ⋅+⋅= βα (2)

α and β are the values corresponding to the placement
and routing sub-stages, respectively. dis and den are
weights added to customize the importance of both terms,
so we can give more relevance to proximity than density,
modifying a penalization factor associated to each term.

4. Local search routing.

Our algorithm it is inspired in the first stage of the Lee
Maze Router Algorithm [22]: the wave propagation. With
a modification to this stage, we find a routing between

two points. The algorithm works as follows:

- Knowing source and destination points a 4-point
wave it is expanded from source point.

- One of the 4 points it is chosen to be an
intermediate point, considering, in this order, the
following factors (See Figure 5 and 6):

o Area constraints.
o Density constraints.
o Destination nearby.

The intermediate point is inserted in a list.
Suppose the example of figure 6. The point at
east of the Source now cannot be chosen because
it’s into the area constraint. (First factor).
Supposing no density constraints (second factor)
the point is now chosen attending to third factor,
destination nearby. The south point it’s now the
nearest to the destination, so that it’s the new
intermediate.

- The last chosen intermediate point it’s now the
source point, and the algorithm is restarted, until
the destination is reached.

To avoid area constraints, these areas must be drawn to
our memory structure (matrix). All area constraints are
defined in a file read to the beginning of the GA. For each
area we have all points forming its perimeter. The area
inside perimeter it’s filled with an established value using
the seed algorithm. For each candidate point to be an
intermediate point we check their coordinates. If the point
of that coordinates already have the established value for
the area that point cannot be an intermediate point and we
chose any of the other candidate point. (Figure 6). Using
this checking in conjunction with the nearby to
destination factor our algorithm is able to find the shortest
path between two points avoiding area constraints. At the
ending of the process we have the complete list with the
coordinates defining the path.

Fig.5. Wave propagation and selection of
candidate point considering proximity.

Fig.6. Wave propagation and selection of
candidate point considering area
constraint and proximity.

5. DGA2K main features.

As it was mentioned in the Introduction, DGA2K is a
set of libraries which can be used to build a GA by
customizing the chromosome structure and the fitness
function. (This is explained in previous section). The file
built it’s an executable which accepts the following
parameters:

• Population size.
• Initial population generation.
• Max generations.
• Crossover rate.
• Mutation rate.
• Selection method.

If we are using a distributed algorithm we must also
specify:

• Nº of islands.
• Nº chromosomes per island.
• Migration rate.
• Migration interval.

The distributed algorithm can be run a multiprocessors
environment, using MPI and in a Grid [23] environment.
This is one of our future line work.

6. Experiments.

For the experiments we have used a simplified circuit
to ease the obtaining of results. This circuit consists of 13
CLBs and 27 nets. Its schematic can be seen on figure 7.

The results have been calculated from the average of 15
executions for each parameter set proved.

Firstly, we have made a fitness evolution test with 3
experiments. Secondly, we have made a study to see the
number of generations that each one of the experiments
has needed to reach the values of reference of 100, 50 and
30. (Some previous experiments determined we may
consider reference fitness values of 50 and 30 as good
solutions.)

The fitness evolution test has been made as follows.
First we use one population with 10 chromosomes,
varying the number of generation from 50 to 1000 (1000
generations are enough to get good solutions). We can
see this experiment on Figure 8. The next experiment is
made with 5 islands of 10 chromosomes each one. The
result of this experiment can be seen on Figure 9. The
third experiment uses 5 islands of 25 chromosomes each

one. We can see it on Figure 10.
The study of the necessary generation number to reach

reference values of 100, 50 and 30 with one island and 10
chromosomes can be seen on Figure 11. In case of 5
islands with 10 chromosomes the generation number can
be seen on Figure 12 and the case of 5 islands with 25
chromosomes it is reflected on Figure 13.

The migration topology is a ring topology. A new ring
is generated after each migration. On all experiments the
crossover probability is 0, 5 and the mutation probability
is calculated as the inverse of the length of the
chromosome. The migration rate is each 5 generations.

7. Results.

On Figure 8 fitness value starts over 300. On Figure 9
this same value it is slightly smaller, and on Figure 10 the
reduction it is more significant (160 approximately).

That shows us up that with only few generations the
use of many islands benefits the global fitness. That
benefit grows up when more generations are launched.

However when the generation number reach higher
values, the fitness value of our three first experiments
tends to converge. (In 400 generations Figures 8, 9 and 10
have the fitness value on range 25-55). The more
generations executed the more convergence of the
graphics it is produced. In 1000 generations all fitness
values oscillate on range 25-30. That would make us to
conclude that using some islands does not have effect
over the final result, since on after 1000 generations all
fitness values are similar.

Because of this, we have made our study of the
necessary generations needed to reach some reference
values. With this study the multiple island effects become
patent. We can see this study on Figures 11, 12 and 13.
On Figure 11, using one population with 10
chromosomes, 200 generations have been needed to reach

Fig.7. Circuit schematic used in the
experiments.

the reference value of 100. On Figure 12 the value it is
similar to reach the value of 100. The third experiment
(Figure 13) shows us the benefits of using distributed
populations: only 40 generations have been needed for
100 level.

The more reduced it is our reference value of fitness,
the more significant are the differences between the
generations needed on each case. So to reach the value of
50 we have needed 400, 200 and 80 respectively on each
experiment. On the lower reference value, 30, the needed
generations has been 1600, 70 and 80 respectively, for
each experiment. Seeing that, we can verify the following:
Although all experiments have reached low fitness value
(30-50), those experiments with many islands and many
chromosomes per island reached those values with a
much smaller number of generations than the experiment
with one island, saving computation time and resources.
[24][25].

8. Conclusions.

We have presented on this work a system to
implement a root stage on the FPGA design cycle. That is
the physical design, concretely placement and routing.
We work with real benchmark coming from ISCAS. To
read and process the benchmarks we have also developed

an EDIF parser, used to produce the input to our Genetic
Algorithm, starting with the EDIF file representing the
circuit.

The GA has been developed using the DGA2K Genetic
Algorithms libraries, customizing it to our problem.

Therefore we have a Distributed GA tool which is able
to solve the placement and routing problem. This tool it is
ready to be adapted to a Grid environment.

We have also probed the working of the tool using
some experiments. Those experiments have been useful to
demonstrate that our Distributed GA gets reaching good
solutions in a very shorter time when using some
populations than the time needed then using only one
population.

Fig.8. Fitness Evolution over one Island.

Fig.9. Fitness evolution over 5 islands with 10
chromosomes per island.

Fig.10. Fitness evolution over 5 islands with
10 chromosomes per island.

Fig.11. Generations needed study over one
island with 10 chromosomes.

Fig.12. Generations needed study over 5
islands with 10 chromosomes per island.

9. Future work.

We want to use the Distributed GA on a Grid
environment [26], using some PCs geographically spread.
To realise this we are going to use the facilities of the
NetSolve / GridSolve tool [27], which is fully compatible
with DGA2K. One population is launched on each PC.
Doing this we hope saving an important amount of time to
solve the problem, and we will have a great computing
infrastructure without geographical barriers.

Other of our future line work it is to include the
partitioning substage into our Distributed GA.

On the other hand, we will develop a graphical
interface to manage all parameters needed by the tool,
with the ability to show graphical solutions.

Finally we want to compare the results obtained with
our tool with those results obtained from typical CAD
FPGA tools.

10. Acknowledgements.

This work has been partially financed by the following
coordinated project: OPLINK TIN2005-08818-C04-03.

References

[1] http://www.acm.org/crossroads/espanol/xrds5-3/ntu.html
[2] www.xilinx.com
[3] www.altera.com
[4] www.actel.com
[5] www.latticesemi.com
[6] F.Fernández, “Modelos de programación genética

distribuida con aplicación a la síntesis lógica de FPGAs.
Universidad de Extremadura. 2000”

[7] M. Rubio “Una metodología basada en algoritmos
genéticos para la ubicación y conexionado de FPGAs”.
PFC 2003.

[8] Z. Michalewicz “Genetic Algorithms + Data Structures =
Evolution Programs” Springer Verlag, Heidelberg 1996

[9] David E.Goldberg “Genetic Algorithms in search,
optimization and machine learning” Addison-Wesley 1989

[10] http://www.xilinx.com/xlnx/xweb/xil_publications_display.
jsp?category=Publications/FPGA+Device+Families/Virtex-
4&iLanguageID=1

[11] www.edif.org http://edif-tc.cs.man.ac.uk/
[12] http://www.hispafuentes.com/hf-

doc/temas/herramientas/flex/index.html
[13] C. Donnelly, R.M. Stallman; Paperback “Bison: The Yacc-

Compatible Parser Generator, September 2003, Bison
Version 1.875”

[14] http://cui.unige.ch/db-
research/Enseignement/analyseinfo/AboutBNF.html

[15] Electronic Industries Association, EDIF Steering
Committee “Electronic Design Interchange Format (EDIF).
Version 2 0 0 REFERENCE”

[16] http://mikilab.doshisha.ac.jp/dia/research/pdga
[17] http://neo.lcc.uma.es/TutorialGA/semEC/cap04/cap-4.html
[18] W.Falcón, J.Altuna-Iraola “La Optimización de Rutado en

FPGAs con Algoritmos Genéticos"
[19] J.R.Koza. “Genetic Programming. On the programming of

computers by means of natural Selection”. The MIT Press,
2000.

[20] Internacional Symposium on Circuits and Systems.
www.iscas05.org, www.iscas2004.org,
www.iscas2002.com, etc.
BENCHMARKS:http://www.fm.vslib.cz/~kes/asic/iscas/

[21] M. Rubio, J.M. Sánchez, J.A. Gómez, M.A.Vega “Genetic
Algorithms for solving the placement and routing problem
of an FPGA with Area constraints” ISDA 04. Proceedings
pg 31-35

[22] An Introduction to VLSI Design. M. Sarrafzadeh, and
C.K.Wong. MC Graw Hill, 1996

[23] http://www.gridcomputing.com/
[24] T.C. Belding. “The distributed Algorithm Revisited”.

Proceedings of the 6th ICGA. Morgan Kaufmann 114-121.
[25] E.Cantú-Paz. “A Survey of Parallel Genetic Algorithms”
[26] http://icl.cs.utk.edu/netsolvedev/applications/ga.html
[27] http://icl.cs.utk.edu/netsolve/

Fig.13 Generations needed study over 5
islands with 25 chromosomes per island.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

