
Abstract 

In this work we present a system for implementing the 
placement and routing stages in the FPGA cycle of 
design, into the physical design stage. We start with the 
ISCAS benchmarks, on EDIF format, of Boolean 
functions to be implemented. They are processed by a 
parser in order to obtain an internal representation which 
is able to be processed by a Genetic Algorithm (GA) tool. 
This tool develops the Placement and Routing tasks, 
considering possible restricted area into the FPGA. In 
order to help to the GA to make the Routing stage we 
have added a local search procedure. That local search 
gets a path between two points without considering 
neither their placement nor the restricted areas among 
them. The GA is fully customizable, featuring the ability 
to work with one or several islands. The experiments have 
verified that using distributing execution improves the 
costs and speeds up the convergence towards better 
results in smaller slots of time. 

1. Introduction 

FPGA [1] are integrated devices used to implement 
Boolean Functions or logic circuits. Some FPGA 
manufacturers are [2][3][4][5]. 

In this work we use the FPGA island model [6]. (Figure 
1). This FPGA model consists of three main kind of 
elements: Configurable Logic Blocks (CLB), with carries 
with the logic of the circuits, Input/Output Blocks (IOB), 
with joins the FPGA with external devices and the 
Interconnection Resources (IR): interconnection wires 
(programmable nets) and interconnection switchs (SW), 
for connecting the CLBs between them and with the 
IOBs. 

In order to obtain an FPGA that operates according to a 
logic of certain complexity it is necessary to fulfil all the 
stages of the cycle of design of FPGA. Briefly, this cycle 
consists on seven stages: 1.Specification: A definition of 
the main characteristics together with the economical 
viability of the system is obtained. 2. Functional design.

The functional units and the interconnection requirements 
are obtained. 3. Logical design. The inner logic of the 
system is defined. 4. Electrical design. An electrical 
representation of the circuit is obtained, considering the 
results of previous stages. 5. Physical design. The logic of 
the circuit is geometrically and physically written on the 
FPGA. That stage it’s one of the most complex of all. 6. 

Fabrication. Considering the physical design the silicon 
wafers are obtained. 7. Encapsulation and verification.

All chips obtained are encapsulated and a final 
verification is made in order to check all specifications 
are fulfilled. A more detailed description of this cycle can 
be found on [7]. 

The physical design is divided into partitioning, 
placement and routing. This works deals with placement 
and routing. In the placement stage the partitioned 
modules are organized in the FPGA in order to minimize 
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Fig.1. Island FPGA structure. 
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the occupied area and the nets length. In the routing stage 
the module terminals are joined according to the circuit 
structure, wire density and multi-FPGA design. 

The problems described in that stage can be considered 
a multiobjective problem of hard resolution. These 
problems are strongly related and may be solved together 
with the goal of finding a good balance between area 
occupation and wire density factors derived by the two 
mentioned stages. 

GAs are a good problem resolution model for this kind 
of NP issues. This is because GAs finds good solutions to 
complex optimization problems [8][9]. For this reason, in 
this work we propose a methodology that uses distributed 
GA for solving the above mentioned problems, keeping a 
good balance between area occupation and wire density 
according to the requirements of each situation. 

The FPGA model in we are based to is the XC4VLX80 
model of the Virtex 4 family by Xilinx [10]. 

The circuit structure corresponding to a Boolean 
function is given by an schematic file in EDIF [11] 
format. EDIF stands for “Electronic Design Interchange 
Format” and its format is designed to ease the interchange 
of designs and projects between CAD tools and designers.  

In order to read and process EDIF files we’ve 
developed a parser to convert the .edf (EDIF extension) 
file to an internal representation used by the GA. We have 
written the parser using the Flex [12] and Bison [13] 
tools, and the grammar in BNF [14] of the EDIF 2 0 0 
specification [15]. The developed GA is based on 
DGA2K tool [16]. DGA2K is a set of libraries to build 
tools using GAs. In order to do that it is necessary to 
define some basic components such as the chromosome 
representation, the fitness function and other parameters 
to obtain the desired GA based tool. A very important 
feature is the number of islands to work with the 
distributed GA. Each island will represent an entire 
population. The communications among islands are 
managed by the designed tool, according to an specified 
migration interval and migration rate [17]. 

Previous works in this field are [7], with a parallel GA 
using the MPI tool, and supports area and density 
constraints. Its main lack is short fault tolerance and direct 
management of communication directives. Also it 
presents short flexibility on the definition and use of 
restricted areas. Other work is [18], with pin assignment, 
and fully integrated in the design cycle managed by the 
Xilinx toolset. This work uses only one population and 
does not allow constraint definition. The work in [6] 
approaches the problems of placement, routing and pin 
assignment by using Genetic Programming (GP) [19] 
instead of GAs. 

This work is structured as follow. In section 2 the data 
managed by the GA are described. In section 3 we explain 
the chromosome structure and how the fitness function 
make the evaluation. In section 4 our local search 
algorithm for the routing stage is explained. In section 5 
we explain with more detail the DGA2K tool. Section 6 
explains the experiments made to probe the tool, and 
section 7 shows the obtained results. Finally, sections 8 
and 9 show the conclusions and future line-work, 
respectively. 

2. Data description. 

The system data input is given by EDIF files obtained 
from ISCAS [20]. The EDIF format has been developed 
to reach easy parsing by any CAD tool, so it is strongly 
structured and modularized. EDIF syntax is based on 
LISP syntax, and the main elements of this syntax can be 
seen on Figure 2. 

The first line specifies the EDIF version and the 
representation level. Next section is dedicated to the 
module: the scheme, and the interface, on which the input 
and output ports are defined. Next the instances are 
declared. Each instance represents a partitioned CLB, so 
each instance will be placed by the tool. Finally all the 
nets, specifying the start and the end, of the circuit that is 
being described are shown. These nets will be routed in 
the routing stage. 

The Figure 2 is an extract of a complete EDIF file; we 
only have shown the necessary parts to get the internal 

(edif ... (edif version) (edif level) 
 (cell...) 
 (view...) 
 (interface 
   (port ... (direction ...)) 
   (port ... (direction ...))
   (port ... (direction ...))
)
 (contents (instance ...) 
           (instance ...) 
           (instance ...) 
           (net ... (joined ..)) 
           (net ... (joined ..)) 
           (net ... (joined ..)) 
 ) 

)

Fig 2 Main structure of an EDIF file

Fig.3. Schematic described by the above 



representation for the GA.  
As an example, the following code describes the 

schematic on Figure 3. 

(edif simple (edifVersion 2 0 0 ) (edifLevel 0)  
 (cell s3p (cellType GENERIC) 
  (view Netlist_representation (viewType NETLIST) 
  (interface 
   (port I0 (direction INPUT )) 
   (port I1 (direction INPUT )) 
   (port I2 (direction INPUT )) 
   (port O1 (direction OUTPUT))       
  ) 
  (content (instance B0)(instance B1) (instance B2 ) 
    (net I0 (joined  
      (portRef I0) 
      (portRef I1 (instanceRef B0)) ) ) 
    (net I1 (joined  
      (portRef I1) 
      (portRef I3 (instanceRef B1)) ) ) 
    (net I2 (joined  
      (portRef I2) 
      (portRef I2 (instanceRef B2)) ) ) 
    (net N1 (joined  
      (portRef O1 (instanceRef B0)) 
      (portRef I1 (instanceRef B1)) 
      (portRef I2 (instanceRef B1)) ) ) 
    (net N2 (joined 
      (portRef O1 (instanceRef B1)) 
      (portRef I1 (instanceRef B2)) ) ) 
    (net O1 (joined 
      (portRef O1) 
      (portRef O1 (instanceRef B2)) ) )  

    ) ) ) ) 

 The developed parser processes the EDIF file in 
order to transform it into an internal representation 
compatible with our GA. After the process a list of CLBs 
and other of nets are obtained and inserted on a data 
structure with the following form. (See figure 4) 

The parser has been written according to the BNF 
grammar of EDIF 2 0 0 specification. That grammar has 
been rewritten by adding semantic actions to the parser, 
according to the format of BISON tool. (BISON is a 
parser generator). The semantic actions have been added 
only to the necessary grammars rules needed to process 
the ISCAS files; that are the rules mentioned on Figure 2. 

The semantic actions insert in the data structure the 
module interface, the instances (CLB) and the nets of the 
file. When all semantic actions are made, the internal 
representation to the AG is generated. 

3. Chromosome and fitness function design. 

As it was mentioned in the Introduction section, the 
user must customize the DGA2K tool to solve a specific 
problem. So it is necessary to define the chromosome 
structure and the fitness function, setting some criteria in 
order to decide the adaptability of all chromosomes. Some 
genetic operators, such as crossover, mutation, encoding, 
decoding, migration, etc. are predefined by the DGA2K 

tool. 
The encoded structure of the chromosomes consists of 

a bit string, with a length proportional to the problem size. 
(Number of CLB and Nets, size of FPGA, etc.) The 
decoded chromosome consist of a set of coordinates (Xn, 
Yn), which represents each CLB position on the FPGA. 
So each gene corresponds to one CLB. Each Xn, Yn pair 
is codified with 20 binary digits. 

Because of this problem nature non valid chromosomes 
can arise with some frequency after some specific 
operations as random generation of the population, 
crossover and mutation operation and a replacement due 
to an area constraint. A chromosome is non valid if any of 
these three conditions are true: 1. The same position is 
assigned to two or more CLBs. 2. A CLB it is located 
outside of FPGA limits. 3. A CLB it is located into an 
area defined by an area constraint.  

For that reason we must assure any gene position is 
repeated, it is outside the limits or inside constraints. For 
each non valid gene we change its position of 
pseudorandom form, in order to guarantee the correct 
form of the chromosome [21]. 

One of the main objectives of the fitness function it is 
to harness the proximity of the CLBs. To accomplish that 
premise we consider the Euclidean distance among each 
coordinate pair, taken from contiguous form in the 
chromosome; and considering also contiguous the first 
and last genes. If a chromosome presents the following 
structure: 

(x0,y0) (x1,y1)(x2,y2)

Their CLB proximity it is evaluated by calculating the 
formula (1) . 

2)20(2)20(

2)12(2)12(2)01(2)01(

YYXX

YYXXYYXX

−+−

+−+−+−+−=
     (1) 

Seeing the formula becomes patent the necessity of 
avoiding gene position repetitions. In the opposite case 
the proximity value would be erroneous. 

The second main objective of the fitness function is to 
maintain relatively constant the density of the 

  s3p B0 B1 B2 
  s3p B0 
  s3p B1 
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Fig.4. Internal representation example.



interconnection channels among the FPGA CLBs. For 
that reason we add to the fitness function a second term 
(additional to the proximity term). That term considers the 
wire density. In order to calculate it we use a memory 
structure which represents the FPGA. That structure is a 
matrix, with an associated density value. That value is 
obtained as follows: An internal connection is drown 
between each CLB source and destination pair. That 
connection joins both CLBs considering area and density 
constraints. To define the path of the connection we have 
designed a local search algorithm. (See section 4 for more 
details). When this connection crosses an SW (that is, 
interconnection switch), a weight associated to that SW is 
increased. To guarantee constant and homogeneous 
density we add a penalization when a SW is crossed by 
many connections. That penalization grows up not 
lineally with the number of connection over the SW; 
instead, an exponential calculation based on that number 
is made to obtain the penalization value. 

Finally, the value of the second term (density term, 
represented asβ) it is equivalent to the sum of all weights 
of all SW. 

The final value of the chromosome is obtained with this 
formula (2): 

dendisf ⋅+⋅= βα  (2) 

α and β are the values corresponding to the placement 
and routing sub-stages, respectively. dis and den are 
weights added to customize the importance of both terms, 
so we can give more relevance to proximity than density, 
modifying a penalization factor associated to each term. 

4. Local search routing.

Our algorithm it is inspired in the first stage of the Lee 
Maze Router Algorithm [22]: the wave propagation. With 
a modification to this stage, we find a routing between 

two points. The algorithm works as follows: 

- Knowing source and destination points a 4-point 
wave it is expanded from source point.  

- One of the 4 points it is chosen to be an 
intermediate point, considering, in this order, the 
following factors (See Figure 5 and 6): 

o Area constraints. 
o Density constraints. 
o Destination nearby. 

The intermediate point is inserted in a list. 
Suppose the example of figure 6. The point at 
east of the Source now cannot be chosen because 
it’s into the area constraint. (First factor). 
Supposing no density constraints (second factor) 
the point is now chosen attending to third factor, 
destination nearby. The south point it’s now the 
nearest to the destination, so that it’s the new 
intermediate. 

- The last chosen intermediate point it’s now the 
source point, and the algorithm is restarted, until 
the destination is reached. 

To avoid area constraints, these areas must be drawn to 
our memory structure (matrix).  All area constraints are 
defined in a file read to the beginning of the GA. For each 
area we have all points forming its perimeter. The area 
inside perimeter it’s filled with an established value using 
the seed algorithm. For each candidate point to be an 
intermediate point we check their coordinates. If the point 
of that coordinates already have the established value for 
the area that point cannot be an intermediate point and we 
chose any of the other candidate point. (Figure 6). Using 
this checking in conjunction with the nearby to 
destination factor our algorithm is able to find the shortest 
path between two points avoiding area constraints. At the 
ending of the process we have the complete list with the 
coordinates defining the path. 

Fig.5. Wave propagation and selection of 
candidate point considering proximity. 

Fig.6. Wave propagation and selection of 
candidate point considering area 
constraint and proximity.  



5. DGA2K main features.

As it was mentioned in the Introduction, DGA2K is a 
set of libraries which can be used to build a GA by 
customizing the chromosome structure and the fitness 
function.  (This is explained in previous section). The file 
built it’s an executable which accepts the following 
parameters: 

• Population size.  
• Initial population generation. 
• Max generations. 
• Crossover rate. 
• Mutation rate. 
• Selection method. 

If we are using a distributed algorithm we must also 
specify: 

• Nº of islands. 
• Nº chromosomes per island. 
• Migration rate. 
• Migration interval. 

The distributed algorithm can be run a multiprocessors 
environment, using MPI and in a Grid [23] environment. 
This is one of our future line work.  

6. Experiments. 

For the experiments we have used a simplified circuit 
to ease the obtaining of results. This circuit consists of 13 
CLBs and 27 nets. Its schematic can be seen on figure 7.  

The results have been calculated from the average of 15 
executions for each parameter set proved. 

Firstly, we have made a fitness evolution test with 3 
experiments.  Secondly, we have made a study to see the 
number of generations that each one of the experiments 
has needed to reach the values of reference of 100, 50 and 
30. (Some previous experiments determined we may 
consider reference fitness values of 50 and 30 as good 
solutions.) 

The fitness evolution test has been made as follows. 
First we use one population with 10 chromosomes, 
varying the number of generation from 50 to 1000 (1000 
generations are enough to get good solutions).  We can 
see this experiment on Figure 8. The next experiment is 
made with 5 islands of 10 chromosomes each one. The 
result of this experiment can be seen on Figure 9. The 
third experiment uses 5 islands of 25 chromosomes each 

one. We can see it on Figure 10. 
The study of the necessary generation number to reach 

reference values of 100, 50 and 30 with one island and 10 
chromosomes can be seen on Figure 11. In case of 5 
islands with 10 chromosomes the generation number can 
be seen on Figure 12 and the case of 5 islands with 25 
chromosomes it is reflected on Figure 13. 

The migration topology is a ring topology. A new ring 
is generated after each migration. On all experiments the 
crossover probability is 0, 5 and the mutation probability 
is calculated as the inverse of the length of the 
chromosome. The migration rate is each 5 generations. 

7. Results. 

On Figure 8 fitness value starts over 300. On Figure 9 
this same value it is slightly smaller, and on Figure 10 the 
reduction it is more significant (160 approximately). 

That shows us up that with only few generations the 
use of many islands benefits the global fitness. That 
benefit grows up when more generations are launched. 

However when the generation number reach higher 
values, the fitness value of our three first experiments 
tends to converge. (In 400 generations Figures 8, 9 and 10 
have the fitness value on range 25-55). The more 
generations executed the more convergence of the 
graphics it is produced. In 1000 generations all fitness 
values oscillate on range 25-30. That would make us to 
conclude that using some islands does not have effect 
over the final result, since on after 1000 generations all 
fitness values are similar. 

Because of this, we have made our study of the 
necessary generations needed to reach some reference 
values. With this study the multiple island effects become 
patent. We can see this study on Figures 11, 12 and 13. 
On Figure 11, using one population with 10 
chromosomes, 200 generations have been needed to reach 

Fig.7. Circuit schematic used in the 
experiments. 



the reference value of 100. On Figure 12 the value it is 
similar to reach the value of 100. The third experiment 
(Figure 13) shows us the benefits of using distributed 
populations: only 40 generations have been needed for 
100 level.

The more reduced it is our reference value of fitness, 
the more significant are the differences between the 
generations needed on each case. So to reach the value of 
50 we have needed 400, 200 and 80 respectively on each 
experiment. On the lower reference value, 30, the needed 
generations has been 1600, 70 and 80 respectively, for 
each experiment. Seeing that, we can verify the following: 
Although all experiments have reached low fitness value 
(30-50), those experiments with many islands and many 
chromosomes per island reached those values with a 
much smaller number of generations than the experiment 
with one island, saving computation time and resources. 
[24][25]. 

8. Conclusions. 

We have presented on this work a system to 
implement a root stage on the FPGA design cycle. That is 
the physical design, concretely placement and routing. 
We work with real benchmark coming from ISCAS. To 
read and process the benchmarks we have also developed 

an EDIF parser, used to produce the input to our Genetic 
Algorithm, starting with the EDIF file representing the 
circuit. 

The GA has been developed using the DGA2K Genetic 
Algorithms libraries, customizing it to our problem. 

Therefore we have a Distributed GA tool which is able 
to solve the placement and routing problem. This tool it is 
ready to be adapted to a Grid environment.  

We have also probed the working of the tool using 
some experiments. Those experiments have been useful to 
demonstrate that our Distributed GA gets reaching good 
solutions in a very shorter time when using some 
populations than the time needed then using only one 
population.  

Fig.8. Fitness Evolution over one Island. 

Fig.9. Fitness evolution over 5 islands with 10
chromosomes per island.

Fig.10. Fitness evolution over 5 islands with 
10 chromosomes per island. 

Fig.11. Generations needed study over one 
island with 10 chromosomes. 

Fig.12. Generations needed study over 5
islands with 10 chromosomes per island. 



9. Future work. 

We want to use the Distributed GA on a Grid 
environment [26], using some PCs geographically spread. 
To realise this we are going to use the facilities of the 
NetSolve / GridSolve tool [27], which is fully compatible 
with DGA2K. One population is launched on each PC. 
Doing this we hope saving an important amount of time to 
solve the problem, and we will have a great computing 
infrastructure without geographical barriers. 

Other of our future line work it is to include the 
partitioning substage into our Distributed GA.  

On the other hand, we will develop a graphical 
interface to manage all parameters needed by the tool, 
with the ability to show graphical solutions. 

Finally we want to compare the results obtained with 
our tool with those results obtained from typical CAD 
FPGA tools.  
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