
Iterators in Chapel∗

Mackale Joyner1, Bradford L. Chamberlain2, and Steven J. Deitz2

1Rice University 2Cray Inc.
Dept. of Computer Science Seattle, WA 98104 USA
Houston, TX 77005 USA {bradc, deitz}cray.com

mjoyner@cs.rice.edu

Abstract

A long-held tenet of software engineering is that al-
gorithms and data structures should be specified orthog-
onally in order to minimize the impact that changes
to one will have on the other. Unfortunately, this
principle is often not well-supported in scientific and
parallel codes due to the lack of abstractions for fac-
toring iteration away from computation in traditional
scientific languages. The result is a fragile situation
in which complex loop nests are used to express par-
allelism and maximize performance, yet must be main-
tained individually as the algorithm and data structures
evolve. In this paper, we introduce the iterator concept
in the Chapel parallel programming language, designed
to address this problem and provide a means for factor-
ing iteration away from computation. The paper illus-
trates iterators using several examples, compares our
approach with those taken in other languages, and de-
scribes our implementation in the Chapel compiler.

1. Introduction

Novice programmers are taught that they should
separate the specification of their algorithms from the
data structures used to implement them, in order to
create code that is more robust in the face of changes
to either. Unfortunately, scientific computing has a
history of mixing the specification of algorithms with
their implementations, due in part to the need for per-
formance and in part to the languages that are tradi-
tionally used for such applications.

Scientific programmers targeting uni-processors take
great care to iterate over their data structures in a

∗This work was funded in part by the Defense Advanced Re-
search Projects Agency under its Contract No. NBCH3039003.

manner that will maximize performance by generating
loops that will walk through memory in a beneficial or-
der, take advantage of the cache, enable vectorization,
and so forth. Since C and Fortran are the most preva-
lent languages used in this domain, iterations are typ-
ically expressed using carefully-architected scalar loop
nests. As an example, programmers who wish to iterate
over their array elements in a tiled manner will typi-
cally need to intersperse all the details associated with
tiling (extra loops, bounds calculations, etc.) in with
their computation, even though the algorithm proba-
bly does not care about these implementation details.

As a scientific code evolves or is ported to new ma-
chines, each of these loop nests may need to be rewrit-
ten to match the new parameters. One typical scenario
involves porting a multidimensional array code from C
to Fortran and changing all of its loops to deal with
the conversion between arrays allocated in row-major
and column-major order. Other porting efforts may
require the loops to change due to new cache parame-
ters or vectorization opportunities. In the worst case,
every loop nest that contributes to the code’s perfor-
mance may need to be considered and rewritten during
this porting process.

When coding for a parallel environment, the prob-
lem tends to be even more difficult due to the fact
that data structures are potentially distributed be-
tween multiple processors. As a result, loops tend to
be cluttered by additional details, such as the specifica-
tion of each processor’s local bounds, in addition to the
traditional uni-processor concerns described above. By
embedding such details within every loop that accesses
a distributed data structure, a huge effort is typically
required to change the distribution or implementation
of the data structure, resulting in code that is brittle
and difficult to experiment with. In short, our commu-
nity has failed to separate algorithms from data struc-
tures as intended.

1-4244-0054-6/06/$20.00 ©2006 IEEE

This paper describes our attempts to address this
fragility within scientific codes by introducing an iter-
ator abstraction within the Chapel parallel program-
ming language [3]. An iterator is a software unit that
encapsulates general computation, defining the traver-
sal of a possibly multidimensional iteration space. It-
erators are used to control loops simply by invoking
them within the loop header. Moreover, multiple iter-
ators may be invoked within a single loop using either
cross-product or zippered semantics. Just as functions
allow repeated subcomputations to be factored out of a
program and replaced with function calls, iterators sup-
port a similar ability to factor common looping struc-
tures away from the computations contained within the
bodies of those loops. Changes to an iterator’s defini-
tion will be reflected in all uses of the iterator, and
loops can alter their iteration method either by modi-
fying the arguments passed to the iterator or by invok-
ing a different iterator. The result is that users (and in
some cases the compiler) can switch between different
iteration methods without cluttering the expression of
the algorithm or requiring changes to every loop nest.

The contributions of this paper are as follows:

• It provides the first published description of iter-
ators in Chapel and compares them to iteration
techniques supported by other languages.

• It describes two implementations of iterators done
within the prototype Chapel compiler.

• It provides examples of using iterators that suggest
their utility within larger scientific codes.

• It describes different implementation strategies for
zippered iteration.

The rest of this paper is organized as follows: Sec-
tion 2 provides an overview of Chapel with emphasis
on Chapel iterators. Sections 3.1 and 3.2 describe im-
plementation approaches that we have implemented in
the Chapel compiler, using sequences and nested func-
tions, respectively. Section 4 explores implementation
strategies for zippered iteration, an iteration method
that combines the yielded values provided by multiple
iterators. The final three sections contain related work,
future work, and conclusions, respectively.

2. Overview of Chapel

Chapel is an object-oriented language that, along
with Fortress [1] and X10 [5], is being developed as part
of DARPA’s High-Productivity Computing Systems
(HPCS) program, challenging supercomputer vendors

to increase productivity in high-performance comput-
ing. The design of Chapel is guided by four key areas
of programming language technology: multithreading,
locality-awareness, object-orientation, and generic pro-
gramming. The Object-oriented programming area,
which includes Chapel’s iterators, helps in managing
complexity by separating common function from spe-
cific implementation to facilitate reuse. The common
function or specification in scientific loops is how to
specify the traversal of the iteration space for the data
structures referenced inside loops in a way that maxi-
mizes reuse and minimizes clutter within the algorithm.
This specification can be reused if it is factored away
from the implementation of the algorithm. The ben-
efit comes from saving programmers from having to
rewrite the specification alongside their computations
each time the code traverses those data structures. The
separation also allows the programmer to focus on the
iteration and computation separately. Chapel iterators
provide a framework to achieve this goal effectively.

2.1. Chapel Iterators

Chapel iterators are semantically similar to itera-
tors in CLU [9]. Chapel implements iterators using a
function-like syntax, although the semantic behavior
of an iterator differs from that of a function in some
important ways. Unlike functions, instead of returning
a value, Chapel iterators typically return a sequence of
values. The yield statement, legal only within itera-
tor bodies, returns a value and temporarily suspends
the execution of the code within the iterator. As an
example, the following Chapel code defines a trivial it-
erator that yields the first n values from the Fibonacci
sequence:

iterator fibonacci(n): integer {
var i1 = 0, i2 = 1;
var i = 0;
while i <= n {

yield i1;
var i3 = i1 + i2;
i1 = i2;
i2 = i3;
i += 1;

}
}

Chapel invokes iterators using a syntax similar to
function calls. Chapel iterator calls commonly appear
in loop headers to model the idea of executing the loop
body’s computation once for each element in a data
structure’s iteration space. In Chapel, the ordering of
a loop’s iterations is specified by the iterator call lo-
cated in the loop header. As a result, all the developer
has to do to change the iteration space ordering is to
modify the iterator invocation. As an example, the fol-
lowing loop invokes our Fibonacci iterator to generate

iterator rmo(d1,d2): 2* integer do
for i in 1..d1 do

for j in 1..d2 do
yield (i,j);

iterator cmo(d1,d2): 2* integer do
for j in 1..d2 do

for i in 1..d1 do
yield (i,j);

iterator tiledcmo(d1,d2): 2* integer {
var (b1,b2) = computeTileSizes ();
for j in 1..d2 by b2 do

for i in 1..d1 by b1 do
for jj in j..min(d2,j+(b2 -1)) do

for ii in i..min(d1,i+(b1 -1)) do
yield (ii,jj);

}

function evolve(d1,d2) do
for (i,j) in {rmo|cmo|tiledcmo}(d1,d2) {

u0(i,j) = u0(i,j)* twiddle(i,j);
u1(i,j) = u0(i,j);

}

Figure 1. A basic iterator example showing
how Chapel iterators separate the specifica-
tion of an iteration from the actual computa-
tion.

10 values, printing them out as they are yielded:
for val in fib (10) do

write(val);

Conceptually, control of execution switches between
the iterator and the loop body. Semantically, the loop
body executes each time a yield statement inside the
iterator executes. Upon completion, the loop body
transfers control back to the statement following the
yield. However, control of execution does not switch to
the loop body when a return statement inside the iter-
ator executes. Figure 1 provides a more detailed view
of how iterators in Chapel may be utilized, using an
example based on the NAS parallel benchmark FT [2],
where we use the simplicity of our iterators to exper-
iment with tiling. This example shows three iterators
that might be used to traverse a 2D index space, and
shows that the evolve client code can switch between
them simply by invoking a different iterator.

Chapel’s iterators may be invoked using either se-
quential for loops, as shown above, or parallel forall
loops. The iterator’s body may also be written to uti-
lize parallelism, potentially yielding values using mul-
tiple threads of execution. In such cases, the ordered
keyword may be used when invoking the iterator in
order to respect any sequential constraints within the
iterator’s body. Figure 2 illustrates this utilizing two
Chapel iterators for the Smith-Waterman algorithm, a
well-known dynamic programming algorithm in scien-
tific computing that performs DNA sequence compar-

iterator NWBorder(n: integer): 2* integer {
foral l i in 0..n do

yield (i, 0);
foral l j in 0..n do

yield (0, j);
}

iterator Diags(n: integer): 2* integer {
for i in 1..n do

foral l j in 1..i do
yield (i-j+1, j);

for i in 2..n do
foral l j in i..n do

yield (n-j+i, j);
}

var D: domain(2) = [0..n, 0..n],
Table: [D] integer;

foral l i,j in NWBorder(n) do
Table(i,j) = initialize(i,j);

ordered forall i,j in Diags(n) do
Table(i,j) = compute(Table(i-1,j),

Table(i-1,j-1),
Table(i,j-1));

Figure 2. A parallel excerpt from the Smith-
Waterman algorithm written in Chapel utiliz-
ing iterators.

isons. For more details, the reader is referred to the
Chapel language specification [4]. This paper focuses
primarily on the implementation of sequential itera-
tors, which represent a crucial building block for effi-
ciently supporting parallel iterators and iteration.

2.2. Invoking Multiple Iterators

Chapel supports two types of simultaneous iteration
by adding additional iterator invocations in the loop
header. Developers can express cross-product iteration
in Chapel by using the following notation:

for (i,j) in [iter1(),iter2 ()] do ...

which is equivalent to the nested for loop:
for i in iter1() do

for j in iter2() do
...

Zipper-product iteration is the second type of simulta-
neous iteration supported by Chapel, and is specified
using the following notation:

for (i,j) in (iter1(),iter2 ()) do ...

which, assuming that both iterators yield k values, is
equivalent to the following pseudocode:

for p in 1..k {
var i = iter1 (). getNextValue ();
var j = iter2 (). getNextValue ();
...

}

In this case, the body of the loop will execute each
time both iterators yield a value. However, recall that
the semantics of the Chapel iterators, differing from
normal functions, require that once program execution
reaches the last statement in the loop body, control
resumes inside the iterator body on the statement im-
mediately following the yield statement for each iter-
ator. Zippered iteration would be implemented natu-
rally using coroutines [8], which allow for execution to
begin anywhere inside of a function, unlike functions in
most current languages. However, without coroutines,
zipper-product iteration may still be implemented us-
ing techniques we describe in Section 4.

2.3. Arrays and Domains

A domain [4] describes a collection of indices for
data. The type of a domain’s indices may be one of
several types including primitive types and class refer-
ences. Domains are used to represent multidimensional
iteration spaces and arrays. Domains are important
in Chapel because they enable a high-level distribu-
tion of data collections at the collection level rather
than at the object level. Conceptually, arrays [4] in
Chapel are functions that map the domain indices to
variables. Domains and arrays are both first class enti-
ties in Chapel. Users may control the distribution of an
array by defining the array over a particular domain.

3. Implementation Techniques

Chapel has two iterator implementation techniques,
an iterator approach using sequences and an alternate
approach using nested functions. We implemented the
sequence-based approach first. The motivation for im-
plementing the second technique was to overcome the
disadvantages of the first. These two iterator imple-
mentation techniques will be described in detail in the
next sections.

3.1. Sequence Implementation

Our Chapel compiler’s first implementation ap-
proach for iterators uses sequences to store the itera-
tion space of the data structures traversed by the loop.
Subsequently, the loop body is executed once for each
element in the sequence.

Sequences in Chapel are homogeneous lists which
support iteration via a built-in iterator. Chapel sup-
ports declarations of sequence variables and iterations
over them using the following syntax:

var aseq: seq(integer) = (/ 1, 2, 4 /);
for myInt in aseq do ...

// Illustration of compiler transform
function tiledcmo(d1,d2): seq(2* integer) {

var resultSeq: seq(2* integer);
var (b1,b2) = computeTileSizes ();
for j in 1..d2 by b2 do

for i in 1..d1 by b1 do
for jj in j..min(d2,j+(b2 -1)) do

for ii in i..min(d1,i+(b1 -1)) do
resultSeq.append(ii,jj);

return resultSeq;
}

function evolve(d1,d2) {
var resultSeq = tiledcmo(d1,d2);
for (i,j) in resultSeq {

u0(i,j) = u0(i,j)* twiddle(i,j);
u1(i,j) = u0(i,j);

}
}

Figure 3. An implementation of tiled iteration
using the sequence-based approach.

where integer in this example can be replaced by any
type.

In our sequence-based implementation, Chapel first
evaluates the iterator call and builds up the sequence
of yielded values before executing the loop body. Each
time the iterator yields a value, instead of executing
the loop body, Chapel appends the value to a sequence.
When execution reaches either the end of the iterator
or a return statement, the iterator returns the con-
structed sequence of yielded values. Once the iterator
returns its sequence of values, Chapel begins executing
the loop body once for each element in the sequence re-
turned from the iterator. Figure 3 illustrates the com-
piler rewrite that would take place using the sequence-
based iteration approach for the tiled iterator of Fig-
ure 1.

The advantage to using this implementation ap-
proach is its simplicity—the Chapel compiler can use
the language’s built-in support for sequences to cap-
ture the iteration space and to control how many times
the loop body executes. Another advantage is that the
iterator function only needs to be called once. As a
result, this approach saves the cost of transferring con-
trol back and forth between the iterator and the loop
body.

The chief disadvantage to this approach is that it
is not general—it can only be applied when the com-
piler can ensure that no side effects exist between the
iterator and loop body. Chapel must impose the side
effect restriction because the sequence gathers the iter-
ation space before loop body execution begins. If there
was a side effect inside the loop body, such as changing
the bounds of the iteration space, incorrect code could
be produced. A second disadvantage to this approach

// Illustration of compiler transform
function evolve(d1,d2) {

function tiledcmo(d1,d2) {
function loopbody(i,j) {

u0(i,j) = u0(i,j)* twiddle(i,j);
u1(i,j) = u0(i,j);

}
var (b1,b2) = computeTileSizes ();
for j in 1..d2 by b2 do

for i in 1..d1 by b1 do
for jj in j..min(d2,j+(b2 -1)) do

for ii in i..min(d1,i+(b1 -1)) do
loopbody(ii,jj);

}
tiledcmo(d1,d2);

}

Figure 4. An implementation of tiled iteration
using the nested function-based approach.

is the space overhead required to store the sequence.
The next section details our second implementation ap-
proach, which addresses these limitations.

3.2. Nested Function Implementation

Our Chapel compiler’s second iterator implementa-
tion approach uses nested functions. Currently, this
approach works well on a for loop containing one it-
erator call in its loop header. We provide insight on
extending this approach to handle zipper-product iter-
ation in Section 4.

There are two steps to implementing Chapel itera-
tors with nested functions. The first step involves cre-
ating a nested function within the iterator’s scope that
implements the for loop’s body and takes the loop in-
dices as its arguments. The second step creates a copy
of the iterator, converting it to a function and replac-
ing each yield statement in the body with a call to
the nested function created during the first step. The
transformation passes the value of each yield statement
as arguments to the nested function. Once the trans-
formation completes this process, it replaces the orig-
inal for loop with the cloned iterator call, previously
located in its loop header. Figure 4 demonstrates how
the Chapel compiler implements iterators using nested
functions for the tiling example.

Since the body of the nested function inside the it-
erator is small, it is often beneficial to inline it. Chapel
inlines the nested function calls appearing inside the
iterator to eliminate the costs of invoking the nested
function every time the iterator yields a value.

The advantage of using the nested function approach
for iterators is generality: side effects between the iter-
ator and the for loop’s body do not have to be identi-
fied in fear of producing incorrect code. The execution

iterator fibonacci(n): integer {
var i1 = 0, i2 = 1;
var i = 0;
while i <= n {

yield i1;
var i3 = i1 + i2;
i1 = i2;
i2 = i3;
i += 1;

}
}

iterator squares(n): integer {
var i = 0;
while i <= n {

yield i * i;
i += 1;

}
}

for i, j in fibonacci (12), squares (12) do
writeln(i, ", ", j);

Figure 5. An example of zippered iteration in
Chapel.

behavior of this approach is closer to that of CLU [10]
and Sather [11] iterators. Another advantage over the
sequence-based approach is that Chapel does not need
to use storage for the iteration space. The chief disad-
vantage is that this approach doesn’t apply to zipper
iteration in the general case.

4. Zippered Iteration

Zipper-product iteration is the process of traversing
through multiple iterators simultaneously where each
iterator must yield a value once before execution of the
loop body can begin. Figure 5 shows an example of zip-
pered iteration in Chapel. This section describes possi-
ble zipper-product implementation approaches that we
are exploring as we go forward. Chapel’s semantics de-
fine that zippered iteration is performed by requiring
the iterators involved in the loop to each yield values
before the loop body is executed. Recall that seman-
tically, when an iterator yields a value, execution sus-
pends from inside the iterator until the loop body has
completed once. When execution resumes inside the it-
erator, Chapel will execute the statement immediately
following the yield statement.

In modern languages, the only point of entry for
functions is at the top. Coroutines are functions that
can have multiple entry points and properly simu-
late the producer/consumer relationship that simulta-
neous iteration between two iterators introduces. How-
ever, because most modern languages do not support
coroutines, programmers must utilize other methods
to properly simulate the producer/consumer relation-

ship. Here we consider two techniques, one that uses
state variables and one that uses multiple threads via
synchronization variables.

Figure 6 shows one technique for implementing
zipper-product iteration. The example implements the
zippered iteration using state variables. Both iterators
use Chapel’s select statement with goto statements to
enable simulation of a coroutine, similar to checkpoint-
ing in the porch compiler [14]. The state is preserved
via the class that is passed into the function. The se-
mantic execution behavior of the iterators is preserved
by ensuring that the statement immediately following
the yield is executed when the iterators are invoked on
subsequent calls. Once the last yield is executed, the it-
erator will not be called again. The advantage of using
this approach is that it eliminates the synchronization
costs that are associated with our second approach.
Also, by having the compiler simulate the coroutine,
dead variables do not need to have their state saved.
For example, an optimization could be performed to
eliminate i3 from the state class for the Fibonacci it-
erator. The disadvantage of this approach is the over-
head associated with entering and exiting the routine.
This could be especially significant in recursive itera-
tors where the stack would result in a large saved state
class.

Our second implementation approach for zippered
iteration uses multiple threads and synchronization
(sync) variables. A sync variable[4] transitions to an
undefined state when read. When a sync variable is
undefined and a computation tries to read from it, the
computation will stall until the sync variable is de-
fined. As a result, sync variables allow us to model
the producer/consumer relationship of coroutines that
is needed to support zippered iteration. Note that the
multi-threaded solution requires analysis which deter-
mines whether the iterators are parallel-safe or seman-
tics which imply that iterators in a zippered context
are executed in parallel.

In figure 7, the sync variables are initially undefined.
Each sync variable can transition to the defined state
inside an iterator. Chapel utilizes the cobegin state-
ment to indicate that both iterators should be executed
in parallel. The while loop inside the cobegin statement
will stall until each iterator defines its sync variables.
A sync variable is created for each iterator and a sync
variable assignment replaces each yield statement in-
side the iterator. The chief disadvantage to using this
approach lies in the synchronization costs associated
with the sync variables. Both approaches enable the
support of zippered iteration in Chapel.

// Illustration of compiler transform
class ss_fibonacci_state {

var i1, i2, i3, i: integer;
var jump = 1;

}
function ss_fibonacci(n, ss): integer {

select ss.jump {
when 1 do goto label1;
when 2 do goto label2;

}
label label1 ss.i1 = 0;
ss.i2 = 1;
ss.i = 0;
while ss.i <= n {

ss.jump = 2;
return ss.i1;
label label2 ss.i3 = ss.i1 + ss.i2;
ss.i1 = ss.i2;
ss.i2 = ss.i3;
ss.i += 1;

}
ss.jump = 0;
return 0;

}

class ss_squares_state {
var i: integer;
var jump = 1;

}
function ss_squares(n, ss): integer {

select ss.jump {
when 1 do goto label1;
when 2 do goto label2;

}
label label1 ss.i = 0;
while ss.i <= n {

ss.jump = 2;
return ss.i * ss.i;
label label2 ss.i += 1;

}
ss.jump = 0;
return 0;

}

var ss1 = ss_fibonacci_state ();
var ss2 = ss_squares_state ();
while ss1.jump and ss2.jump do {

var i = ss_fibonacci (12, ss1);
var j = ss_squares (12, ss2);
writeln(i, ", ", j);

}
i f ss1.jump or ss2.jump then

halt("non -equal zippering");

Figure 6. An implementation of zippered iter-
ation using state variables.

// Illustration of compiler transform
class mt_fibonacci_state {

sync var flag : boolean;
sync var result : integer;

}
function mt_fibonacci(n, mt) {

var i1 = 0, i2 = 1;
var i = 0;
while i <= n {

mt.flag = false;
mt.result = i1;
var i3 = i1 + i2;
i1 = i2;
i2 = i3;
i += 1;

}
mt.flag = true;

}

class mt_squares_state {
sync var flag : boolean;
sync var result : integer;

}
function mt_squares(n, mt) {

var i = 0;
while i <= n {

mt.flag = false;
mt.result = i * i;
i += 1;

}
mt.flag = true;

}

var mt1 = mt_fibonacci_state ();
var mt2 = mt_squares_state ();
cobegin {

mt_fibonacci (12);
mt_squares (12);
while not mt1.flag and not mt2.flag do

writeln(mt1.result , ", ", mt2.result);
}

Figure 7. A multi-threaded implementation of
zippered iteration using sync variables.

5. Related Work

CLU iterators are semantically similar to those in
Chapel. Unlike Chapel, CLU iterators [9, 10] can only
be invoked inside a loop header. Both Chapel and CLU
support nested iteration. In CLU, only one iterator can
be called in the loop header. As a result, CLU does not
provide support for zippered iteration.

In contrast to CLU iterators, Sather iterators [11]
can be invoked from anywhere inside the loop body. As
a result, Sather iterators can support zippered iteration
by invoking multiple iterator calls inside the loop body.
Since Sather iterators may appear inside the loop body,
iterator arguments may be reevaluated for each loop
iteration. The semantics of Sather iterators are similar
to both Chapel and CLU iterators. Sather iterators
support zippered iteration as well as nested iterator
calls. However, Chapel’s focus on effective iteration in
a parallel environment separates itself from Sather.

A coroutine [8] is a routine that yields or produces
values for another routine to consume. Unlike func-
tions in most modern languages, coroutines have mul-
tiple points of entry. When encountering the yield in a
coroutine, execution of the routine is suspended. The
routine saves the return value, program counter, and
local static variables in some place other than a stack.
When the routine invocation occurs again, the execu-
tion resumes after the yield.

Java [7], Python [12], and C++ [13] STL provide
iterators that are not tightly coupled to loops like
Chapel, CLU, and Sather iterators. These iterators
are normally associated with a container class. These
languages support simultaneous iteration on contain-
ers. Within these languages, only Python provides
built-in support to perform iteration using special for
loops that implicitly grab each element in the con-
tainer, thereby separating the specification of the al-
gorithm from its implementation. However, Python’s
special for loops do not support zippered iteration since
they may call only one iterator in the loop header.

Sisal [6] and Titanium [15] also provide some sup-
port for iterators using loops. Titanium has a foreach
loop that performs iteration over arrays when given
their domains. Sisal supports 3 basic types of itera-
tors using a for loop. The first type iterates over a
range specified by an lower and upper bound. The sec-
ond type of iterator returns the elements of an array or
stream (a stream is a data structure that is similar to
an array). The third type of iterator returns tuples of
a dot- or cross-product constructed from two range it-
erators. Sisal and Titanium iterators are limited when
compared to Chapel iterators.

6. Future Work

Currently, our two Chapel iterator implementa-
tion approaches support sequential applications well.
We will extend and combine these iterators with dis-
tributed domains to support parallel iteration over dis-
tributed arrays and index sets. We will also add Chapel
iterator support for parallel zippered iteration to our
implementation using the strategies outlined in this pa-
per.

7. Conclusion

We showed that Chapel iterators can effectively sep-
arate the specification of an algorithm from its im-
plementation, thereby enabling programmers to easily
switch between different specifications while also allow-
ing them to focus on the algorithm’s implementation.
Using iterators to handle specifications such as itera-
tion space ordering allows programmers to reuse spec-
ifications instead of having to write a specification for
an algorithm each time the programmer implements an
algorithm. This paper describes two different strate-
gies that we have implemented in the Chapel compiler
to support Chapel iterators. The first approach was
to implement Chapel iterators with sequences. This
approach was satisfactory under imposed restrictions.
The second approach was to implement Chapel iter-
ators with nested functions. This strategy eliminates
some of its imposed restrictions and spatial overhead.

We also gave two different techniques that Chapel
could employ to support zippered iteration. The first
technique used static variables. The advantage of using
this technique was the savings in synchronization costs
over alternative methods. The second technique took
advantage of Chapel sync variables and may be more
feasible to implement than the first approach, but relies
on support for multithreading.

References

[1] E. Allen, D. Chase, V. Luchangco, J. Maessen, S. Ryu,
G. Steele, and S. Tobin-Hochstadt. The Fortress Lan-
guage Specification (version 0.785). Sun Microsystems
Inc., Nov. 2005.

[2] D. Bailey, T. Harris, W. Saphir, R. F. Van der Wi-
jngaart, A. Woo, and M. Yarrow. The NAS Paral-
lel Benchmarks 2.0. Technical Report RNR-95-020,
NASA Ames Research Center, Moffett Field, CA, Dec.
1995.

[3] D. Callahan, B. Chamberlain, and H. Zima. The Cas-
cade High Productivity Language. 9th International

Workshop on High-Level Parallel Programming Mod-
els and Supportive Environments, pages 52–60, Apr.
2004.

[4] Cray Inc., Seattle, WA. Chapel Specification (version
0.4), Feb. 2005. http://chapel.cs.washington.edu.

[5] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10:
Programming for Hierarchical Parallelism and Non-
Uniform Data Access. 3rd International Workshop on
Language Runtimes, Oct. 2004.

[6] J. Feo, D. Cann, and R. Oldehoeft. A Report on the
Sisal Language Project. Journal of Parallel and Dis-
tributed Computing, 10(4):349–366, 1990.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification (3rd Edition). Addison-Wesley,
2005.

[8] D. Grune. A View of Coroutines. ACM SIGPLAN,
12(7):75–81, July 1977.

[9] B. Liskov. A History of CLU. ACM SIGPLAN
Conference on History of Programming Languages,
28(3):133–147, 1993.

[10] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert.
Abstraction Mechanisms in CLU. Communications of
the ACM, 20(8):564–576, 1977.

[11] S. Murer, S. Omohundro, D. Stoutamire, and
C. Szyperski. Iteration Abstraction in Sather. ACM
TOPLAS, 18(1):1–15, Jan. 1996.

[12] G. Rossum. Python Reference Manual.
Technical Report CS-R9525, CWI, 1995.
http://www.python.org/doc/ref/ref.html.

[13] B. Stroustrup. The C++ Programming Language
(Special Edition). Addison-Wesley, 2000.

[14] V. Strumpen. Compiler Technology for Portable
Checkpoints. Technical report, Massachusetts Insti-
tute of Technology, 1998. Submitted for publication.

[15] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A High-
Performance Java Dialect. Concurrency: Practice and
Experience, 10(11), Sept. 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

