
A Nonself Space Approach to Network Anomaly Detection

Marek Ostaszewski1, Franciszek Seredynski1,2,3, and Pascal Bouvry4

1University of Podlasie 2Polish-Japanese Institute
Institute of Computer Science of Information Technology

Sienkiewicza 51, 08-110 Siedlce, Poland Koszykowa 86,02-008 Warsaw, Poland
marekostaszewski@o2.pl sered@ipipan.waw.pl

3Polish Academy of Sciences 4Luxembourg University
Institute of Computer Science Faculty of Sciences,

Ordona 21,01-237 Warsaw, Poland Technology and Communication
sered@ipipan.waw.pl 6 rue Coudenhove Kalergi,

L-1359 Luxembourg-Kirchberg, Luxembourg
pascal.bouvry@uni.lu

Abstract

The paper presents an approach for the anomaly de-
tection problem based on principles of immune systems.
Flexibility and efficiency of the anomaly detection sys-
tem are achieved by building a model of network behav-
ior based on self-nonself space paradigm. Covering both
self and nonself spaces by hyperrectangular structures
is proposed. Structures corresponding to self-space are
built using a training set from this space. Hyperrec-
tangular detectors covering nonself space are created
using niching genetic algorithm. Coevolutionary algo-
rithm is proposed to enhance this process. Results of
conducted experiments show a high quality of intrusion
detection which outperforms the quality of recently pro-
posed approach based on hypersphere representation of
self-space.

1 Introduction

Security of information channels is crucial in times,
when so much depends on data exchange. Value of in-
formation is high and this means, that there will be
someone, who will try to get hold on important data
without permission. Internet is an environment, where
fluent data exchange takes place, and where systems
and information are vulnerable to attacks and exploits.

Indicating activities, that may pose a possible threat
is an important task, which applications dealing with
security problems must face. A common approach to
detection of unwanted activity is based on signatures of
various attacks [9]. An application observes several pa-
rameters of network traffic, and raises an alarm, when
values match with those in a signature, dealing with
threats in reactive way. Only known intrusions can be
detected, modified patterns of attack, if they are not
in database of signatures, will be treated like normal
traffic.

A solution that can be applied to overcome these
problems is an artificial immune system (AIS) [3,4,10]
- a set of methods adapted from natural immune sys-
tems of various species. One of recently proposed
approaches to a network anomaly detection is based
on a description of self behavior using hypersphere
structures [2].We propose a hyperrectangle structure as
more precise definition of a legitimate traffic, alon with
coevolutionary-based mechanisms, which can be used
to enhance the process of anomaly detection, similarly
to vaccines used widely in medicine to boost efficiency
of a human immune system.

The structure of the paper is the following. The next
section contains short definition of an artificial immune
system along with a description of mechanisms useful
to solve stated problems. Principles of construction
of an effective model of network behavior, called self

1-4244-0054-6/06/$20.00 ©2006 IEEE

space, are presented in section 3. Genetic algorithm
used to generate detectors of nonself space, along with
niching and coevolutionary techniques are described in
section 4. Section 5 contains results of experiments
which were carried out using sets of network data col-
lected at MIT. Finally, last section brings forward con-
clusions and further possibilities of development of the
presented approach in the network anomaly detection
domain.

2 Immunological approach to anomaly
detection problem

Mechanisms developed to protect organisms against
variety of threats are highly effective in detecting ab-
normalities and have interesting computational fea-
tures. Artificial immune systems (AIS) are attempt
to adapt mechanisms and techniques of natural im-
mune systems, and obvious conclusion is applying them
into security domain. Features such as distributed and
threshold detection, simplicity and uniqueness [4, 10]
are very attractive from security point of view. Es-
pecially mechanisms of generalization and detection
based only on self structures seem to be a good so-
lution to problem of detecting various abnormalities
without patterns of possible attacks. An immune sys-
tem utilizes space of its own cells (self space) to gen-
erate detectors of space complementary to it. Detec-
tors are matched against cells from organism during
their generation, and those detectors matching are de-
stroyed. This process has been adopted in the field of
computer science and is called the negative selection
algorithm [2,3].

3 Proposed self space construction

A description of a regular network traffic for the
anomaly detection system is crucial to effectiveness of
detection capabilities. More accurate model of a traf-
fic behavior assures that anomalies are indicated with
greater precision. A normal traffic can be characterized
by a set of monitored parameters, and their values can
be recorded to describe a regular behavior. Gathered
data is used to construct self space, which contains all
normal states and allows to begin a process of genera-
tion of detectors. For further analysis of this problem
some definitions have to be assumed [2]:

• Normalized space: values of monitored para-
meters can have different ranges, therefore they
are normalized to [0.0, 1.0] range, and the set of n
monitored parameters gives n-dimensional space
[0.0, 1.0]n (S).

• State of system: a vector containing normalized
values of monitored parameters, describing system
in a given moment. A state of the system is defined
as �x = (x1, . . . , xn) ∈ S.

• Self - Nonself classification: Self space,
henceforth called Self ∈ S represents a space con-
taining all recorded regular states is used to con-
struct nonself space, henceforth called and defined
Nonself = S − Self .The classification process is
defined as :

classify(�x)

{
Self, if µ(�x) > st
Nonself, if µ(�x) ≤ st .

,

where function µ : �x → [0.0, 1.0], describes a cer-
tain level of similarity to states to Self, and st de-
fines required level of similarity.

• Anomaly detection: it is based on assessing, if
given state belongs to Nonself, with detectors con-
structed to cover all space excluding Self. Affinity
can be adjusted by changing a value of threshold
in borders of interval [0.0, 1.0].

Self space construction is a process where a regu-
lar traffic, required for a generation process, influences
the quality of a detector set. Every state recorded be-
comes automatically an element of Self. To implement
threshold affinity and apply “similarity threshold” de-
scribed above, a definition of variability parameter is
needed. An assumption that certain states are simi-
lar to recorded normal states allows to define a level
of deviation from given data. Figure 1 illustrates pro-

(a) (b) (c)

Figure 1. Self space and detector sets for (a)
low and (b) high value of v , and (c) detection
levels in summary

posed in the paper hyperdimensional space construc-
tion, where a dimension (in this case 2D) depends on a
number of parameters taken under consideration. Vari-
ability parameter (henceforth called v) describes the
similarity degree, therefore Self can be defined as a

subspace that contains all states with some level of re-
semblance to recorded normal states. For a given state
of the system �x = (x1, . . . , xn) and variability parame-
ter v the structure of self space for this vector takes
form of two vectors, low = (x1 − v , . . . , xn − v) and
high = (x1 + v , . . . , xn + v), where a pair lowj and
highj describes interval for the parameter j considered
as normal. A state of the system fitting in all inter-
vals belongs to normal space. An analysis of genera-
tion process for low and high vectors allows to indicate
that values of v may be different and dependant on
a parameter they are applied to. Henceforth v is de-
fined as a vector of values, v = (v1, . . . , vn), and Self
structures are constructed [7] using this vector, low =
(x1−v1, . . . , xn−vn) and high = (x1+v1, . . . , xn+vn).

Figure 1(a) shows Self constructed for relatively
small value of v , and effects in large volume of Nonself.
A small number of states similar to normal effects in
greater possibility of false alarm, but also guarantees
less risk of classifying an anomaly as a self state. Figure
1(b), on the other hand, illustrates Self offering grater
both tolerance and risk of misjudging anomaly as a reg-
ular traffic element. Figure 1(c) presents a comparison
of Self constructed for two v values, and shows, that
detector sets are different, so as Nonself classification
process. Therefore v allows to construct more than one
model of security by applying different detector sets for
different circumstances, including cases of many users
or cycles in network traffic.

Applying multiple detector sets to achieve levels of
security is done by assessing every state of the sys-
tem with all generated sets and defining, which one
of them raises an alarm [2, 7]. Levels of security have
to be sorted by growing value of v used to construct
Self. A level with highest number defines a set with
largest volume of Self used to generation of detectors,
thus most tolerant to abnormalities. With more than
one set Nonself classification process is changed and
range of values returned is widened with classify(�x) =
max({level(DSets)} ∪ {0}), where level(DSets) re-
turns highest index of detector sets that raise an alarm.

System states used for Self construction are
recorded once in defined period of time and create time
series. The anomaly detection process is highly depen-
dant on frequency of recordings as well as on processing
of monitored values. Therefore, to improve the pre-
cision of Self construction process, sliding window
method [2,7] is applied. Time series of recorded values
R = r1, r2, . . . , rn for monitored parameters with a cer-
tain frequency are transformed to window series W =
{(r1, . . . , rw), (r2, . . . , rw+1), . . . , (rn−w+1, . . . , rn)},
and may also take the form W =
{rw1, rw2, . . . , (rwm)}, where rwi = ri + ri+1 + ···+ ri+w

w

and m = n − w + 1 with w as a parameter describing
a window size. Applying sliding window method
allows to define notation of the system state as
�x = (rw1, rw2, . . . , rwn

i).
The values of parameters are measured every period

of time and during the process two subsets of states
are built, training set and testing set. The parameter
v is calculated from the standard deviation taken from
distances between states belonging to training set, and
testing set is used to adjust Self. It is achieved by
checking, if any of created structures intercepts states
from testing set. If no, a new structure based on un-
caught state is created, and the process is started from
the beginning.

4 Detector set generation

An anomaly detection is a process of monitoring
Nonself with detectors of hyperrectangular structure.
Self elements are created from recorded states with v
and their number is potentially large, when long pe-
riod of time is used to model Self. Therefore, it is
desirable to develop a set of structures (detectors) effi-
ciently covering Nonself, with volume as large as pos-
sible and small overall number. The detector set is
described by conditions [2] and takes form DSet =
{D1, . . . , Dk}, where Di : if Condition then Nonself,
and Condition = x1 ∈ [low1

i , high
1
i] ∧ . . . ∧ xn ∈

[lown
i , highn

i]. A single detector classifies if a given state
is captured by covered space, defined in conditional
part by two vectors, high and low. The construction of
a space from junction of intervals in every dimension
is the same as in the case of Self elements (see section
3).

4.1 Niching genetic algorithm

Creating a detector set is a multimodal problem
with many objectives, and to efficiently deal with it
genetic algorithm (GA) was used [2, 7]. The goal is
to cover the space as large as possible with detectors
that avoid Self elements and cover unique space,
without overlaying the same Nonself. A population
of GA consists of individuals constructed from pair of
vectors, reflecting high and low values of conditional
part of detector. Therefore, real-coded GA [6] have to
be applied to this problem, as long as vectors of real
values (from [0.0, 1.0] interval) are used. GA schema
goes as follows [2, 7]:

DetectorSet ds=null ; numAtt=0; numDet=0;
while numDet < maxDet and numAtt < maxAtt

runGA(W, v);

D ← best evolved detector;
fit = calculateFitness(D);
if fit > minFit

ds.addDetector(D);
numAtt = 0;

else
numAtt = numAtt + 1;

end while
return ds,

where W is learning set consisting of Self states, v is
variability parameter used for Self structures construc-
tion, minFit is minimal value of fitness expected from
evolved detector, maxAtt and numAtt are, respec-
tively, maximal and the current number of attempts
to evolve single detector and maxDet and numDet are,
respectively, maximal and the current number of de-
tectors in the detector set.

GA have to deal with multiobjective problem and
for that reason sequential niching algorithm [1] has
been applied to provide GA with ability to cover
different subspaces of Nonself with largest possible
volume. Sequential niching GA goes as follows:

SolutionSet solSet = null;
while not solSet.satisfied()
Population = runGA();
for each Individual → ind from Population

Individual.calculateFitness();
for each Individual → sol from solSet

sim = calculateSimilarity(ind, sol);
Individual.decreaseFitness(sim);

if ind.fitness() > minFitness
solSet.add(ind);

end while
return solSet.

According to the schema presented above, with
every run of niching genetic algorithm (NGA) a fitness
function is modified, to focus process of searching for
new detectors on subspaces not covered by detectors
already evolved. The fitness is calculated by taking
under consideration three factors, as shown below:

• Volume calculation: a volume of a given detec-
tor is calculated as follows

V olume(D) =
n∏

i=1

(highi − lowi),

where high and low are elements of vectors on po-
sitions corresponding to parameters used.

• Overlaying with Self structures: a volume
of the space overlayed with Self is calculated as

follows

SelfOverlay(D) =
m∑

i=1

(D ∩ xsi),

where xsi is a structure created from a state taken
from the learning set W and variability parameter
v , as described in Section 3.

• Overlaying with already developed detec-
tors: a volume of the space overlayed with already
developed detectors is calculated as follows

DetectorOverlay(D) =
k∑

i=1

(D ∩ Dk).

The fitness of a single detector is calculated from the
equation

Fitness(D) = V olume(D) − (SelfOverlay(D) +
DetectorOverlay(D)) .

4.2 Coevolution in detector generation
process

Coevolutionary algorithms are relatively new re-
search area in the field of evolutionary computation.
The basic idea is taken from the world of Nature, where
two or more coexisting species are constraining one
other to evolve better features. Among many coevo-
lution models one seems to be useful to the detector
generation problem. Predator - prey paradigm [8] de-
scribes a model, where individuals of one type (preda-
tors) are trying to catch another (preys). The popu-
lation of the first species develops features that allow
it to catch its prey easily, and attributes of the second
one evolves to make escape from a predator possible.
Some definitions [8] have to be assumed to apply coevo-
lutionary algorithm to detector generation problem:

• Constraint Satisfaction Problem (CSP): a
class of problems effectively solvable by coevolu-
tionary algorithms. The first of two coevolving
populations is a population of solutions (hence-
forth called Solutions), and the other one is a
population of constraints (henceforth called Con-
straints) that Solutions have to fit. Because of
their static nature, Constraints cannot evolve but
their fitness can be also evaluated.

• Encounter: a confrontation between individuals
from Solutions and Constraints results in the vic-
tory of one and the loss of the other. A Solution
wins if it fits given Constraint, and loses if Con-
straint cannot be satisfied by a given solution.

• LifeTime Fitness Evaluation (LTFE): in op-
posite to the classic GA, every individual is tested
multiple times and has a list of his encounters
that changes, as it might be said, through its life-
time. A fitness is calculated on the basis of con-
frontations with individuals from coevolving pop-
ulation. LTFE regulates a number of confronta-
tions, and thus, affects calculated fitness. Prob-
ability of choice to encounter depends on fitness,
therefore, even if Constraints cannot evolve, win-
ning ones are tested more frequently against Solu-
tions.

To apply the coevolutionary algorithm to the detec-
tor generation problem, the second (coevolving) popu-
lation has to be assumed. To define proper constraints
for detectors, a set of anomalies have to be constructed.
Similarity to predator - prey model resolves to treating
detectors as individuals trying to intercept individuals
from a set of anomalies. An anomaly (individual) is
defined as a certain state from Nonself space in the
form of a vector a = (a1, ..., an), where ai is a value
for corresponding parameter. Encounter between de-
tector and anomaly resolves to assessment, if anomaly
lays inside subspace covered by a detector. The detec-
tor wins the encounter if it intercepts a given anomaly,
otherwise constraining state is the winner. A fitness
of given detector is finally calculated after running the
coevolutionary algorithm as follows:

Fitness(D) = Fitness(D) +
EncounterHistory(D) ∗ Fitness(D) ,

where EncounterHistory(D) is a function returning
summarized effect of all encounters for given detector.

5 Experimental results

A number of experiments have been performed to
find out the effectiveness of nonself approach to the
anomaly detection problem, based on hyperrectangular
Self structures and involving the coevolutionary algo-
rithm. Self space for this experiment was constructed
using data gathered at MIT [5]. The first week of the
collected network traffic using tcpdump were unaffected
by anomalies, and for one of chosen computers with
IP 172.16.114.50 (marx) states of network parameters
was collected and used for Self structures development.
Network traffic parameters used for the experiments
are a number of bytes per second (P1), a number of
packets per second (P2) and a number of ICMP pack-
ets per second (P3), and a state of the system takes
form of the vector state = {P1, P2, P3} involving
values measured for given IP address. Self structures

for GA were created from the first week data ina pro-
portion of 70:30 of trining to testing sets.

5.1 Experiment #1 - Generation of detec-
tor set for different v values

The first experiment concerned running GA to de-
velop self space and detector sets for different v levels.
NGA was run with max. num. of runs equal to 20,
max. num. of attempts to evolve rule equal to 15, a
number of generations equal to 750 and a population
size equal to 100. Following GA operators have been
used [6]:tournament selection with tournament size 2,
vector crossover, gaussian mutation with probability
0.1 and border mutation with border values 0 and 1,
and probability 0.01.

(a)

(b) (c)

Figure 2. Fitness evaluation for (a) 1st, (b) 3rd
and (c) 6th run of niching genetic algorithm

NGA characterizes itself with multiple runs and con-
sequently modifies the range of values of the fitness
function. Figure 2 shows changes of the fitness func-
tion during evolving single rules in 3 runs of GA. Figure
2(a) shows evolving a rule in the first run, Figure 2(b)
in the third and Figure 2(c) in the sixth run. In each
next run of NGA the space to be covered is smaller and
individuals not overlaying already developed detectors
are harder to find. One can notice (see Figure 2), that
the range of fitness function corresponding to a volume
of Nonself detector decreases in each run. Self was cre-
ated for different values of v to compare space covered
by detector sets generated using NGA. Figure 3 shows
comparison between covered Nonself space by detec-
tors developed in the case of two values of v . Figures
3(a) and 3(b) show only a part of generated detectors,
the total size of detector set in both cases is 15.

(a)

(b)

Figure 3. Self space and detector sets for (a)
0.3v and (b) 1.0v

5.2 Experiment #2 - Anomaly detection
process for different v and w values

Detector sets generated by NGA have been used to
anomaly detection process on MIT data [5]. The sec-
ond week contains five simulated attacks, one for every
day of the network traffic, as shown in Table 1.

Table 1. MIT Second week attacks
Day Name Type Start Duration

1 Back DoS 9:39:16 00:59
2 Portsweep Probe 8:44:17 26:56
3 Satan Probe 12:02:13 02:29
4 Portsweep Probe 10:50:11 17:29
5 Neptune DoS 11:20:15 4:00

Effects of monitoring the anomaly detection process
are presented in Figures 4 and 5. Figure 4(a) presents
anomalies detected by the set of detectors for 0.3v and
w=1, and Figure 4(b) for w=3. Figure 5 presents de-
tection effects for the set with 1.0v and w=1 (Figure

(a) (b)

Figure 4. Attacks detected using 0.3v and w
equal to (a) one and (b) three

5(a)), and w=3 (Figure 5(b)). The analysis of this
Figure indicates greater sensitivity of detectors con-
structed for Self with w=3, what can be explained, if
temporal patterns are taken under consideration. The
window size greater than one can intercept time depen-
dencies between preceding and succeeding states, what
is impossible for detectors based on w=1.

(a) (b)

Figure 5. Attacks detected using 1.0v and w
equal to (a) one and (b) three

The tolerance of detectors depends on v level and
higher values of it cause less number of raised alarms.
On one hand, low level offers precise anomaly detec-
tion, but on the other hand, it causes false alarms and
constructs inflexible model of the system. A high level
of v assures more tolerant detector set, with loss of pre-
cision in the detection process. Nevertheless, Figure 5
indicates that both detector sets together found all of
five attacks, though relatively high level of v . As one
may notice, some of peaks in these Figures (1485 and
4491 minutes in Figure 4(a), 4498 in Figure 5(a) and
1487 in Figure 5(b)) are groups of multiple lines. Af-
ter the analysis of Table 1 it is possible to notice, that
duration of attacks 2 and 4 was relatively long and the
system raised more than one alarm during monitoring
process. Those attacks on Figures 4(b) and 5(b) are
displayed as groups of lines with alarm number equal to
or more than 10, in effect they look like bold lines. An
interesting fact can be observed after the comparison of
alarms raised for each attack - obviously probe attacks
are indicated stronger than DoS attacks. Additionally,
a window size seems to have optimal values for every
attacks, as it may be observed in Figure 5, where w=1
manages to capture the first attack, but misses the last
one, and for w=3 the first attack remains unreported,

but last one is signalized. Interesting case is the at-
tack number three, indicated with a great strength in
every parameter configuration, though relatively short
duration time. It may be explained with dependencies
between an attack type and the structure and parame-
ters used in Self construction.

5.3 Experiment #3 - Anomaly detection
process for spherical construction of
Self

(a) (b)

Figure 6. Sphere detectors efficiency for 0.5v
and w equal to (a) one and (b) three

The approach presented in [2] is based on detector
sets developed for Self constructed from hyperspheres,
which are created using a given state of the system
as a center and single value of v as a hyperradius.
Experimental results presented in [2] show, that hy-
perspherical design of Self was sufficient to catch four
attacks at most, with a window size equal to 3, and
three with a window size equal to 1. Experiments car-
ried out for this paper include also Self construction
with hyperspheres, and the detector generation for this
purpose. Figure 6 presents detected anomalies for 0.5v
with w=1 (Figure 6(a)) and w=3 (Figure 6(b)). Due
to the different process of v calculation results differ
from those presented in [2], nevertheless in both cases
with hyperspherical Self construction system was un-
able to discover all five attacks. The comparison with
detector sets based on hyperrectangular structure indi-
cates, that the approach presented in this paper is more
precise and offers better performance in the anomaly
detection.

5.4 Experiment #4 - Coevolution effec-
tiveness for randomly generated set of
anomalies

Mechanism of coevolution has been tested to check,
if there is a possibility of applying it to enhance the
detector generation process. A set of 1000 randomly
generated vectors from Nonself has been assumed as
the second population coevolving with the population
of generated detectors. After generation of a detector

set using both coevolutionary and classic NGA, it has
been tested against the set of anomalies, to check how
many of them have been caught.

Table 2. Performance of detector sets for ran-
domly generated set of anomalies

Generations LTFE Anomalies caught

100

5 866
10 899
20 928
— 895

300

5 981
10 962
20 982
— 972

500

5 963
10 961
20 973
— 987

Table 2 presents the results of performed experi-
ment, and the best of them has been highlighted with
bold font. Detector sets have been developed for three
different number of generations and for three different
values of LTFE parameter. There has been generated
additionally one detector set with standard NGA, with-
out coevolution mechanism, marked with “ — ” symbol
in LTFE column. A number of anomalies that have
been caught differ, but an advantage of coevolutionary
NGA is insignificant, and for 500 generations classic
NGA surpasses one with coevolution. These results
are possible to explain by the way of random genera-
tion of anomaly set. Distribution of states in Nonself
for this case is regular, and classic NGA, while trying
to cover largest space possible, intercepts also states
generated without any specialization.

5.5 Experiment #5 - Coevolution effec-
tiveness for specialized set of anom-
alies

For the detector set developed with classical NGA
there has been generated an alternative set of anom-
alies, which were specialized by generating them in
Nonself space and beyond subspace covered by this
given detector set. The distribution of anomalies from
the second set is irregular and elements from it are in
areas, where detectors are harder to develop, for exam-
ple, in small subspaces between Self structures. Re-
sults of conducted experiments are presented in Fig-

Figure 7. Copmarison of coevolution effi-
ciency with classic NGA approach

ure 7. The second experiment including coevolution
shows significant advantage of coevolutionary NGA
and proves that the detector generation process can
be stimulated by the additional population. Even rel-
atively small number (100) of generations allowed the
coevolutionary NGA to obtain better results than clas-
sic NGA with 750 generations and, consequently with
less computational cost. Futhermore, one can notice,
that the efficiency of coevolution is LTFE dependent,
but also depends on number of generations, and results
for more than 300 generations are worth further study.
Another concern is a tradeoff between coevolution ef-
ficiency and detector fitness, calculated on the basis of
various factors (see Section 4), which may cause worse
performance of coevolutionary detectors development.

6 Conclusion

Results of conducted experiments indicate, that de-
tectors generated with NGA proved to be effective, and
hyperrectangular Self structures construction made
precise detection process possible. Presented approach
is efficient and allows to capture all five simulated at-
tacks in MIT data. Hyperspherical design of Self, as
presented in [2] made possible to catch four of five at-
tacks, and applied for Self development and NGA pre-
sented in this paper, three of five. It also has been
shown that coevolutionary mechanism can enhance the
detectors generation process and in the result can make
detection process more effective against given patterns
of attack. Gathering data about some of those pat-
terns in the form of coevolving sets can give in ef-
fect detector sets containing knowledge about attack
subspaces. This mechanism can be compared to vac-

cine, that makes natural immune system more effective
against certain illnesses.

Variability parameter v has been proven to be im-
portant factor in the detector development process by
influencing on Self volume. This parameter is respon-
sible for tolerance and false alarms levels. Therefore,
an algorithm of calculating v from learning is very im-
portant in the attempt to improve the detection ability
of a system.

Further research may involve different parameter
types and greater number of them. Analysis of the de-
tection process data shows, that the system performs
very effective in the case of Satan attack in a relatively
short duration time, and has more problems with at-
tacks like Portsweep or Neptune, although their dura-
tion last several times longer (see Table 1). Depen-
dencies between parameters and attack types are also
promising field of research.

References

[1] D. Beasley, D. R. Bull, and R. R. Martin. A sequential
niche technique for multimodal function optimization.
Evolutionary Computation, 2(1):101–125, 1993.

[2] D. Dasgupta and F. González. An immunity-based
technique to characterize intrusions in computer net-
works. IEEE Transactions On Evolutionary Compu-
tation, 6(3):281–291, 2002.

[3] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. In Proceed-
ings of the 1994 IEEE Symposium on Research in Se-
curity and Privacy, pages 202–212, 1994.

[4] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B.
Lamont. An artificial immune system architecture for
computer security applications. IEEE Transactions
On Evolutionary Computation, 6(3):252–280, 2002.

[5] http://www.ll.mit.edu/IST/ideval/index.html.
[6] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolution Programs. Springer, 1992.
[7] M. Ostaszewski. Anomaly detection in computer net-

works based on artificial immune systems (in pol-
ish). Master’s thesis, University of Podlasie, Siedlce,
Poland, 2005.

[8] J. Paredis. Constraint satisfaction with oevolution. In
New Ideas in Optimization, pages 361–366. 1999.

[9] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th Systems Admin-
istration Conference, pages 361–366, 1999.

[10] S. T. Wierzchon. Artificial immune systems. Theory
and application (in polish). Exit, Warsaw, Poland,
2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

