
A metaheuristic based on fusion and fission for partitioning problems

Charles-Edmond Bichot
Laboratoire d’Optimisation Globale (LOG)

DSNA-DTI — ENAC
8, avenue Edouard Belin 31 000 Toulouse, FRANCE

bichot@recherche.enac.fr

Abstract

Metaheuristics are very useful methods because they
can find (approximate) solutions of a great variety of
problems. One of them, which interests us, is graph
partitioning. We present a new metaheuristic based on
nuclear fusion and fission of atoms. This metaheuris-
tic, called fusion fission, is compared to other classical
algorithms. First, we present spectral and multilevel al-
gorithms which are used to solve partitioning problems.
Secondly, we present two metaheuristics applied to par-
titioning problems : simulated annealing and ant colony
algorithms. We will show that fusion fission gives good
results, compared to the other algorithms. We demon-
strate on a problem of Air Traffic Control that meta-
heuristics methods can give better results than specific
methods.

1 The partitioning problem

Graph partitioning is a fundamental problem for
many scientists. This problem arises in many graphs
applications and consists in dividing the vertices into
several sets of roughly equal “size” in such a way that
the weight of edges between sets is as small as possible.
A classical application of graph partitioning is parallel
computing, to reduce the communication between pro-
cessors. But applications of graph partitioning include
also VLSI design, data clustering, image segmentation,
and mesh partitioning of a 2D surface of an airfoil. A
new partitioning problem consists of a new organiza-
tion of the European airspace. This is the Functional
Airspace Block Optimized Process (FABOP) project.
We will see more precisely this subject in section 5.

It is known that finding an optimal partition of
a graph is NP-complete [11]. This problem inspired
a great number of methods and heuristics. Some
metaheuristics have already been used to partition

graphs, like genetic algorithms [28, 12] or ant-like
agents [22, 23]. Therefore, for all of these tools, we
are looking for a near optimal partition in reasonable
time. Because minimum cut algorithms were well stud-
ied [20, 9, 7, 3, 27], most partitioning methods use re-
cursive bisections. But these methods often provide
a partition which is far from optimal [26], regarding
the minimization of the sum of the weight of edge
cuts. Conversely, spectral graph partitioning meth-
ods [24, 13] and multilevel partitioning algorithms [17]
produce good partitions.

We will now describe more formally the problem of
graph partitioning. Given a graph G = (V,E) with
vertex set V and edge set E, and a weight function
w on edges (this function can represent the number of
edges crossing two vertices), ∀ e ∈ E,w(e) ≥ 0. Let
Pk(G) be a partition of G into k non-empty subgraphs
V1, . . . , Vk with ∀ i, j = 1 . . . k, i �= j, Vi ∩ Vj = ∅ and⋃

k
i=1Vi = V . Let A ∈ Pk(G), V − A = {u ∈ V, u /∈

A}, we define cut(A, V − A) =
∑

u∈A,v∈V −A w(u, v)
and W (A) =

∑
u∈A,v∈A w(u, v).

Depending on the partitioning instance of the prob-
lem, there are different objective functions. The first
and simplest is the cut function, which corresponds to
the minimum-cut problem, ie. minimizing the sum of
weight of edges across sets :

Cut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A)

The optimal k-partition of the graph, regarding the
minimum-cut problem, is the one minimizing this cut
function. An other weight function is the normalized
cut [25]. The goal of this criterion is to minimize cuts
between sets, and to maximize for each set, the sum of
the weight of edges which have at least one vertex in
this set :

Ncut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A)
assoc(A, V)

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

where assoc(A, V) = cut(A, V −A)+W (A). At last we
introduce the min-max cut function or Mcut [4], which
aims to minimize cut between sets and to maximize for
each set the sum of the weight of edges for which the
two vertices are in this set :

Mcut(Pk(G)) =
∑

A∈Pk(G)

cut(A, V − A)
W (A)

As we can see, graph partitioning has been stud-
ied for various criteria, with distinct methods. Cer-
tainly, the most adaptive method is metaheuristic.
This method can easily change of goals, ie. criteria.
On the opposite side, spectral, multilevel or heuristics
methods are designed for one criterion precisely. But
it is interesting to compare for each method, with its
criterion, the results with metaheuristic’s results. We
rapidly introduce in section 2 the spectral and mul-
tilevel graph partitioning methods. Next, we intro-
duce, in section 3, classical metaheuristics which are
simulated annealing and ants colony. In section 4, we
present a new heuristic based on nuclear fusion and
fission. We then present a new application of graph-
partitioning, based on a problem of air traffic control,
in section 5. And finally, we present in section 6 the
results of our tests applied to air traffic control for the
different methods used.

2 Spectral and multilevel graph parti-
tioning methods

In this section, we present spectral and multilevel
graph partitioning methods. These algorithms have
been implemented and integrated into tools. The most
populars of these tools are the Chaco software, devel-
oped by Hendrickson and Leland [16], and the Metis
software, developed by Karypis and Kumar [18].

2.1 Spectral graph partitioning method

Spectral methods use eigenvectors of a matrix con-
structed from the graph to decide how to partition
the graph. The most widely known methods use the
Fielder linear order [5, 10, 24]. Other methods ex-
ist [29], but their use is marginal.

We first explain this method for a bisection of G =
(V,E) into two sets A and B. Let W be the ma-
trix of edge’s weights. ∀u ∈ A, we define d(u) =∑

v∈V w(u, v). D is the diagonal matrix with d on its
diagonal. If we use a vector x of indicator variables
xu = {−1, 1} depending on u ∈ A or B, we have :

Cut(A,B) =
∑

(u,v)∈E

(xu − xv)2

2
w(u, v) = xT (D−W)x

If we relax each xu from {−1, 1} to continuous value
in [−1, 1], minimizing Cut(A,B) is equivalent to solve
the eigensystem (D−W)x = λx. We are interested by
the eigenvectors of the Laplacian matrix L = D − W .
The first and trivial eigenvector x1 = (1, . . . , 1)T is as-
sociated with λ1 = 0. The second eigenvector, called
the Fielder vector, is the solution. For the Ncut cri-
terium, we must solve the generalized eigenvalue sys-
tem (D − W)x = λDx. And for the Mcut criterium,
(D − W)x = λWx. The new problem is to solve the
eigenvector system. The Lanczos method is probably
the most known method to solve it. It is efficient for
graphs no larger than 10,000 vertices. But there exist
also the RQI/Symmlq method [16].

To simultaneously cut the graph into 2n sets, we can
use the n top eigenvectors in the Fielder order (after
removing the first eigenvector). We use its as n in-
dicator vectors for the 2n partitions. As we say, the
first eigenvector gives a bisection of the graph. The
second eigenvector gives a bisection of the graph too.
If we keep the bisection given by the first eigenvector,
we have now a quadrisection of the graph. The third
eigenvector gives an octasection of the graph and so on.
Like recursive bisections, this method is not appropri-
ated for partitioning into k �= 2n sets. For further
details of this method, see [15, 25].

2.2 Multilevel graph partitioning method

There are different multilevel graph partitioning
methods. But the scheme of these methods is to con-
struct a coarse graph, then to partition this graph into
k partitions, and to uncoarsen the graph with local re-
finement. A multilevel method, due to Karypis and
Kumar, is explained in [19] and used in the Metis soft-
ware. We are explain next the method of Hendrickson
and Leland [17], which is used in the Chaco software.

As we have explained above, there are three steps in
the multilevel method.

• Constructing a coarse graph. The aim is to make a
contraction of a large number of edges that are well
dispersed throughout the graph. In this step two
vertices (a and b) joined by an edge are merged.
The new vertex (c) wheigth value is the sum of the
weights of a and b. Each edge of adjacent vertices
of a and/or b, have a new weight which is the sum
of the weight between the adjacent vertex and the
two vertices a and/or b.

• Partitioning the graph. In this step, different par-
titioning algorithms can be used. Hendrickson
and Leland used a spectral method which uses the
eigenvectors of the Laplacian matrix.

• Uncoarsening the graph. Because each vertex in a
coarse graph is simply the union of vertices from
a larger graph, this step is trivial. But the best
partition of the coarse graph may not be optimal
for its uncoarsen counterpart. Therefore a local
refinement to the uncoarsened partition can be ap-
plied.

2.3 Local refinement methods

Because spectral and multilevel methods are not lo-
cally optimal, a local refinement algorithm can be in-
corporated in this method. Local refinement methods
are usually generalizations of the bisection algorithm
of Kernighan and Lin [20] with the linear time imple-
mentation of Fiduccia and Mattheyeses [9]. With local
refinement, results are generally 10 to 30% better [16].

3 Two classical metaheuristic methods

3.1 Simulated annealing

Simulated annealing is the oldest of all metaheuris-
tics. The origins of the method are in statistical me-
chanics (Metropolis algorithm). The algorithm was
first presented in [21]. The fundamental idea is to al-
low moves resulting in solutions of worse quality than
the current solution (uphill moves) in order to escape
from local minima. The probability of doing such a
move decreases during the search. Annealing is a term
from metallurgy. If a metal is heated at a very high
temperature, atoms are misplaced and moved quickly.
If they are cooled very slowly, they settle into patterns
and structures, making the metal much stronger than
before.

The algorithm starts with an initial solution (con-
structed randomly or by an heuristic) corresponding
to a very high temperature T . Let e be the objective
function, also called“energy” function, and D the func-
tion which decreases the temperature (cooling sched-
ule). Until a termination condition is satisfied, the al-
gorithm repeats:

Let s be the current solution. A solution s′ in the
neighborhood of s, is chosen by the perturbation func-
tion. This solution is accepted if e(s′) ≤ e(s) and,

also if the Boltzmann probability exp
e(s)−e(s′)

T is larger
than a random number in [0, 1]. Then, if the algorithm
reaches the equilibrium condition, the temperature T is
decreased to D(T). When the freezing point is reached
(stopping criterion), the best solution is returned.

Simulated annealing converge under certain condi-
tions to the optimum solution of the problem, but in

infinite time. A great advantage of simulated anneal-
ing related to other heuristics is its adaptivity on dif-
ferent problems and his simplicity of implementation.
Previous work has already adapted simulated anneal-
ing to graph partitioning [7]. Our adaptation differs
from this one. The perturbation function chooses ran-
domly a vertex in V . This vertex is moved to an
another partition. If the temperature is high, this
partition is the lowest partition regarding the sum of
edges weight which are entirely inside partitions, oth-
erwise it is randomly chosen between connected parti-
tions. Thus, connectivity between sectors is not forced.
Equilibrium condition is reached when a fixed num-
ber of solutions are refused. The cooling schedule is
D(T) = T ∗ tmax−tmin

tmax
where tmax, tmin are the max-

imal and minimal temperature. Stopping criterion is
T ≤ tmin.

3.2 Ant colony

Ant colony optimization is inspired by the foraging
behavior of real ants. This metaheuristic proposed by
Dorigo is explained in [6]. The algorithm uses the abil-
ity of ants to find the shortest path between food source
and their nest. While walking from food sources to
the nest and vice versa, ants leave a substance called
pheromone on the ground. When they decide about
a direction to go, they choose with higher probability
paths that are marked by stronger pheromone concen-
trations.

The ant colony algorithm is based on three (one op-
tional) steps. While a termination condition is not sat-
isfied, the three steps are executed, but not necessary
in the order we propose.

• The first step is the motion of ants. Ants
move through nodes of the graph G by apply-
ing a stochastic local decision policy which uses
pheromone values and a local heuristic. While
moving, the ant keeps in memory the path used
in the graph.

• During the second, pheromones are updated. Ants
always update the pheromone trails they are using.
But if a path leads to “food” (a local solution),
the ant can update backward the path it used by
using its memory. Finally, like real pheromones,
pheromone trail intensity decreases over time (to
avoid convergence into a sub-optimal region).

• The last step is optional. It is used to implement
centralized actions which cannot be performed by
single ants.

Our adaptation of ant colony algorithm to the k-
partitioning problem uses k colonies, each one rep-
resenting a partition of the graph. These colonies
are in competition for food. Each colony has its
own pheromones, ie. an ant can only distinguish
pheromones of its colony. The weight of vertices (usu-
ally the sum of the weights of each connected edges)
corresponds to ant’s food. Ants put down pheromones
on edges. A vertex is owned by a colony if the sum
of its pheromones on adjacent edges is greater than for
other colonies. A local heuristic forces ants to explore
edges which have no pheromone. Ants can go where
they want, so ants from different colonies can be in the
same vertex at the same step. Thus, the connectivity
of sets is not forced. It is important to observe that if
connected sets often produced best results, we should
not force this connectivity.

To conclude, our approach of k-partitioning with ant
colony is very different than preceding works [22, 23].
Further details of our approach are explain in previous
work [2].

4 A new metaheuristic method based
on fusion and fission

The k-partitioning problem inspires our method. A
very simple process of k-partitioning is to successively
put one vertex of a set into a different set, and to see
if the result is better. A vertex is simply a particle of
a set, and the set containing all sets is a structured
world. We can make an analogy between a vertex and
a nucleon, a set and an atom, and the set containing
all sets and molecule. Making a structured molecule is
just moving nucleons from atoms to atoms.

All partitioning methods solve problems for a con-
stant number k of partitions. But our work on air
traffic control showed us that we can search for k, k−1
or k+1 partitions. Moreover, sometimes, a k−1 parti-
tion is greatly better than a k partition, regarding the
objective function. Our new method is based on the
change of the number of partitions. Nevertheless, we
must know an approximate value for k.

Because of the limited space available, we explain
this method through the k-partitioning problem. For
more details see [2].

4.1 Introduction of the method

Like other metaheuristics, this method infused on
nature behaviour. Fusion and fission are two processes
which organize atoms. Fusion is the process which
merges two atoms in one. On the contrary, fission is the
process which breaks atoms in two parts. The method

consists in merging and breaking atoms successively.
Then, applied to the partitioning problem, the number
of partitions changes over time.

Because objectives functions of section 1 are com-
puted for a constant k number of partitions, the fusion
fission method uses an scaling function after the calcu-
lation of the objective function. This scaling function
is used to produce the curve of binding energy. Bind-
ing energy is the energy required to break an atom.
Considering the number of nucleons per atom, bind-
ing energy of light elements increases fast; there is af-
terwards a region of stability, and then, the binding
energy of big elements decreases slowly. The objec-
tive function generally return lower results for a graph
with few partitions than a lot (results is the smallest
when there is no partition). Graphs which have differ-
ent number of partitions but the same quality of par-
titioning, regarding the objective function only, return
different energies. After the scaling function applied
to the objective function, energies are the same for the
same quality of partitioning.

The process of choice between fusion and fission is a
simple heuristic which guides our partitioning method
around the number of k partitions, regarding the en-
ergy of the partitioning (the result returned after the
upstream function and the objective function).

Temperature has a highly significant role in fusion
and fission process. The higher the temperature is, the
easier the fusion of big atoms is and the easier the fis-
sion of small atoms is. Thus, it is important to include
temperature in our method.

In nature, fusion and fission obey to laws. Some
fissions in two atoms leave nucleons alone (especially
when the atom is big). In the same way, fusion of two
atoms can make a new atom and eject one or more
nucleons. The algorithm includes these laws, but with
a memory which updates laws (if the law gives a better
solution, the process is enforced, else it is weakened).
Each law depends on the number of nucleons of, the
atom(s). The number of laws is twice the number of
vertices (one for fusion plus one for fission). Each law
is composed of four probabilities (less if the sum of
nucleons is lower). The first one is the probability to
eject no nucleon, the second to eject one nucleon and
so on. The sum of these four probabilities must be one.
If the number chosen gives good results (the energy of
the new partition is lower), we add to its probability an
input value and remove to the other probabilities the
third of this input value. Of course, each probability
must be strictly in [0, 1].

4.2 Algorithms of fusion fission

Because of the particular approach of our method,
we have to initialize the process. The goal of this ini-
tialization is to construct a (near) k-partition of the
problem. This initialization is a simplification of the
core algorithm, so we will discuss it later.

We use distance between two atoms (partitions).
This is the inverse of the sum of the weights of con-
nected edges between these atoms (partitions). The
distance is infinity if the partitions are not connected.

Let’s explain the core algorithm (Algorithm 1). It
start with a (near) k-partition of the problem which
has high temperature, and runs step by step. Let Si be
the partition of the graph at step number i. An atom
is randomly selected by choose atom. A function of
probability, random, decides if this atom is to be cut
or joined with an another atom. A law is selected.
Depending on the result of random:

• Fusion. A second partition is selected accord-
ing to its size, its distance to the first one, and
temperature. The two partitions are joined to-
gether. According to the law, some nucleons are
ejected. These nucleons are incorporated into dif-
ferent atoms connected with them.

• Fission. A partition is cut in two sets. According
to the law, some nucleons are ejected. If temper-
ature is high, these nucleons can produce another
simple fission, with no nucleon ejected. Atoms
connected to these nucleons are chosen for these
fissions. Else, if the temperature is low, this nu-
cleons are incorporated into atoms.

Next, the law is updated and the temperature is de-
creased. If the temperature is too low, the algorithm is
initialized with the best partition found and the higher
temperature. Else, (even if energy is higher) a new step
begins with the current partition.

As explained earlier, the initialization is a simplifi-
cation of algorithm 1. Initialization starts with a graph
where each partition is a vertex. The number of par-
titions and the number of vertices are the same. The
energy of such a graph is maximal. The first goal of
initialization is to group vertices, to obtain a near k-
partition. The initialization process is described in al-
gorithm 2. Compared to the core algorithm, we remove
temperature, fission produced by nucleons, and use a
different heuristic to choose between fusion and fission.

4.3 Functions used by fusion fission

The fusion fission algorithm uses a function to de-
crease temperature, decrease(t) and a function to

Algorithm 1 Fusion / Fission
Contractions: nfusion(nfission) from nucleon fu-
sion(fission), cpart(npart) from current(new) partition,
n(ln) from nucleon(list of), t from temperature, nlaws
from new laws.

cpart ⇐ best part;
t ⇐ max t;
while Stop condition do

atom ⇐ choose atom(cpart);
if random(atom, cpart) is fusion then

(npart, ln) ⇐ fusion(atom, cpart, laws);
for all n ∈ ln do

npart ⇐ nfusion(n, npart, laws);
else

(npart, ln) ⇐ fission(atom, cpart, laws);
for all n ∈ ln do

if high energy(n, t) then
npart ⇐ nfission(n, npart, laws);

else
npart ⇐ nfusion(n, npart, laws);

new laws ⇐ update(laws, t);
new t ⇐ decrease(t);
if Energy(npart) < Energy(cpart) and
Energy(npart) < Energy(best part) then

best part ⇐ npart;
if low temperature(t) then

cpart ⇐ best part; t ⇐ max t;
else

cpart ⇐ npart; t ⇐ new t;

Algorithm 2 Initialization
Contractions: same than algorithm 1

while Stop condition do
atom ⇐ choose atom(cpart, laws);
if random(atom, cpart) is fusion then

(npart, ln, nlaws) ⇐
fusion(atom, cpart, laws);

else
(npart, ln, nlaws) ⇐

fission(atom, cpart, laws);
for all n ∈ ln do

(npart, nlaws) ⇐ nfusion(n, npart, nlaws);
cpart ⇐ npart; t ⇐ new t;

choose between fusion and fission, choice(x).

decrease(t) = t
tmax − tmin

nbt

The temperature will decrease nbt time befor reaching
tmin.

The choice function depends on the number x of
nucleons of the atom chosen (the atom from which we
choose fusion or fission). We define n = nbv

k , with nbv
the vertex number of the graph, and the function of
temperature α(t) = k tmax−t

tmax−tmin
+r, with tmax, tmin the

maximal and minimal temperature, and k, r adjusted
by the user.

choice(x) =

⎧⎨
⎩

1 if x > n + 1
2α(t)

0 if x < n − 1
2α(t)

α(t) ∗ (x − n) + 1
2 else

4.4 Percolation to cut atoms

We use a process which is like percolation to cut
partitions. This process is used by fission to cut atoms.
A percolation is a liquid flow which goes through a
porous substance. The liquid starts on a place, and
then drips gradually all over this place.

We define k different vertices ci, from which k dif-
ferent colored liquids can start. Each color represents
a partition Pi. The algorithm progresses step by step.
A vertex v is added to a partition Pi (it is colored) if
∀j, bond(v, Pi) > bond(v, Pj), with :

bond(v, Pi) =
∑

e ∈ path from ci to v

w(e)
2d

where d is the number of vertex between e and cn. All
bonds are recomputed at each step. The distance to
the center of a partition is represented by the division
by 2d. For a vertex v, for each connected vertex which
already has bonds, a new bond is calculated with the
weight between these two vertices. The lowest bond
and the corresponding path are assigned to v. This
path is not always the shortest, and can change during
the process. The algorithm stops when no vertex moves
to an other partition.

This process is fast and can partition a graph into k
partitions. We use it to initialize ant colony, simulated
annealing, and we use it during fission to cut partitions
into two.

5 Application on Air Traffic Control

“The primary purpose of the Air Traffic Control
(ATC) system is to prevent a collision between air-

craft operating in the system and to organize and expe-
dite the flow of traffic” (Federal Aviation Administra-
tion [8]). The first objective of ATC is safety, the sec-
ond is efficiency. The FABOP project is a study in the
“strategic” level of ATC, ie. our methods are applied
long before any tactical control of aircraft. However,
we are working for safety and efficiency.

Each air traffic controller supervises a limited space,
called an air traffic sector. Controllers have qual-
ifications to work only on a set of sectors. These
sets are sometimes called functional airspace blocks.
The FABOP project consists in cuting the European
airspace into blocks. Currently blocks almost never
cross countries border. We study a new organization
of blocks only based on flows of aircraft and not on
borders.

Because “it is well known that controller-controller
coordination is easier and more effective inside an ATC
unit (a block) than between ATC units” [14], we search
to maximize flows of aircraft inside blocks and mini-
mize flows of aircraft between blocks. The graph ver-
tices are air traffic sectors and edges are flows of air-
craft between sectors. The air traffic problem is a k-
partitioning problem where k is the number of func-
tional airspace blocks into which we want to cut the
European airspace. Regarding our objectives, the ap-
propriate objective function to use is Mcut.

6 Results

We applied all these algorithms to our problem. The
graph we want to cut is composed of 762 vertices and
3, 165 edges. This is the total number of sectors of what
we have defined as the “country core area” [1], which
is composed of Germany, France, United Kingdom,
Switzerland, Belgium, Netherlands, Austria, Spain,
Denmark, Luxembourg and Italy, which is the set of
countries with the highest flows of aircraft in Europe.

We compare partitioning results, in table 1, of the
three metaheuristics we have adapted, simulated an-
nealing, ant colony and fusion fission, with results of
spectral and multilevel graph partitioning methods,
thanks to the Chaco software [16]. We use contrac-
tions in table 1: bi for bisection, oct for octasection,
KL for Kernighan-Lin algorithm, Lanc for Lanczos, and
RQI for RQI/Symmlq. Results are solutions of a 32-
partition of the European sky.

Regarding the number of input parameters, simu-
lated annealing is the simplest algorithm with one pa-
rameters to change, tmax (we put tmin = 0). Perco-
lation with the set of k initial vertices is slightly more
complicated. Ant colony has four parameters. The fu-
sion fission algorithm has five parameters, tmax, tmin

Table 1. Comparisons between algorithms.
Cut results are divided by 1 000

Method Cut Ncut Mcut
Linear (Bi) 274.2 30.12 2300.85
Linear (Bi, KL) 210.4 23.35 89.09
Linear (Oct, KL) 216.5 23.97 105.16
Spectral (Lanc, Bi) 202.0 22.62 81.38
Spectral (Lanc, Bi, KL) 202.7 22.62 120.29
Spectral (Lanc, Oct) 201.0 22.56 89.89
Spectral (Lanc, Oct, KL) 203.1 22.88 88.18
Spectral (RQI, Bi) 203.2 22.58 79.58
Spectral (RQI, Bi, KL) 203.0 22.47 77.80
Spectral (RQI, Oct) 201.6 22.47 78.02
Spectral (RQI, Oct, KL) 202.4 22.31 75.45
Multilevel (Bi) 202.1 22.42 76.93
Multilevel (Oct) 201.7 22.49 78.84
Percolation 213.7 23.72 96.87
Simulated annealing 203.9 22.34 74.44
Ant colony 203.3 22.30 74.22
Fusion Fission 198.0 21.83 69.03

and nbr for the temperature, k and r in α(t) for the
choice function. We are surprised by the number of pa-
rameters of the Chaco software. Thus, it is difficult to
obtain the best result. And this is why we present many
results (linear, spectral and multilevel) from Chaco in
table 1. For spectral and multilevel results, we use the
REFINE PARTITION parameter which increases con-
siderably the quality of results. It is thus as difficult
to choose parameters for spectral and multilevel algo-
rithm, as for metaheuristics.

The objective function which interests us the most
is Mcut as we say in section 5. We can notice that best
results are obtained for metaheuristics, first fusion fis-
sion, then with approximately same results, ant colony
and simulated annealing. Later come spectral, multi-
level, and last percolation. Considering Ncut, the clas-
sification is a little different. Fusion fission stays first,
but spectral method with RQI/Symmlq, octasection
and KL refinement, is second, then the other meta-
heuristics. Considering Cut, fusion fission is always
first, but spectral and multilevel are before the other
metaheuristics.

We must keep in mind that spectral and multilevel
algorithms can only cut into k = 2n partitions, when
metaheuristics can cut into all natural k partitions.
And, if fusion fission returns a 32-partition, it returns
good solutions from 27 to 38 partitions.

Spectral and multilevel partitioning algorithms are
much faster than metaheuristics. These algorithms

70

75

80

85

90

95

100

60m20m6m2m1m30s10s1s

M
cu

t

Time (log scale)

simulated annealing
fusion fission

ant colony
multilevel

spectral

Figure 1. Running time of the metaheuristics.
Energies are compared to best spectral and
multilevel cuts.

take only a few seconds to compute, while the others
can run infinitely. Figure 6 represents the time use by
these algorithms on an Intel Pentium 4 CPU 3GHz. As
we can see, the algorithm of fusion fission starts with
the worst initialization. Ant colony and simulated an-
nealing start with the result of percolation. But ant
colony loses 22% of energy in less than a second. Thus
ant colony is the fastest of the three metaheuristics.
Regarding results, the best is fusion fission.

Conclusion

We present a lot of different algorithms: spectral and
multilevel algorithms which are specific tools for graph
partitioning, an heuristic adapted to graph partition-
ing (pecolation), and three metaheuristics: simulated
annealing, ant colony and a new one, fusion fission. We
applied all of these algorithms to an air traffic problem
which is a k-partitioning problem. Results show that,
if specific tools are faster than the others, metaheuris-
tics give better results. It is important to notice that
metaheuristics are not only theoretical tools, but can
be successfully used dealing with real problems.

We present a new metaheuristic, named fusion fis-
sion, which gives the best results of all of these algo-
rithms for our graph partitioning problem. This al-
gorithm can be customized, especially throught choice
function. Other choice functions not presented here
give better results, but are much more complicated.

References

[1] C.-E. Bichot and J.-M. Alliot. A theoretical approach
to defining the european core area. Technical report,
ENAC - LOG, 2005.

[2] C.-E. Bichot, J.-M. Alliot, N. Durand, and P. Brisset.
Optimisation par fusion et fission. application au prob-
lème du découpage aérien européen. Journal Européen
des Systèmes Automatisés, 38(9-10):1141–1173, 2004.

[3] C. Chekuri, A. V. Goldberg, D. R. Karger, M. S.
Levine, and C. Stein. Experimental study of minimum
cut algorithms. In Symposium on Discrete Algorithms,
pages 324–333, 1997.

[4] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon.
A min-max cut algorithm for graph partitioning and
data clustering. In Proceedings of ICDM 2001, pages
107–114, 2001.

[5] W. E. Donath and A. J. Homan. Lower bounds for
the partitioning of graphs. IBM J. of Research and
Development, 17:420–425, 1973.

[6] M. Dorigo, V. Maniezzo, and A. Colorni. The ant sys-
tem: Optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics
- Part B, 26(1):29–41, 1996.

[7] F. Ercal, J. Ramanujam, and P. Sadayappan. Task al-
location onto a hypercube by recursive mincut bipar-
titioning. Journal of Parallel and Distributed Comput-
ing, 10(1):35–44, 1990.

[8] Federal Aviation Administration (U.S. Department of
Transportation). Air Traffic ControL : FAA Order
7110.65K, July 1997.

[9] C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. In 19th
ACM Design Automation Conf., pages 175–181, 1982.

[10] M. Fielder. A property of eigenvectors of non-negative
symmetric matrices and its application to graph the-
ory. Czechoslovak Math. J., 25:619–633, 1975.

[11] M. Garey, D. Johnson, and L. Stockmeyer. Some sim-
plified np-complete graph problems. Theoretical Com-
puter Science, 1(3):237–267, 1976.

[12] W. A. Greene. Genetic algorithms for partitioning
sets. International Journal on Artificial Intelligence
Tools, 10(1-2):225–241, 2001.

[13] L. Hagen and A. Kahng. New spectral methods for ra-
tio cut partitioning and clustering. IEEE Transactions
on Computer-Aided Design, 11(9):1074–1086, 1992.

[14] A. Hallgren. Restructuring european airspace: func-
tional airspace blocks. Skyway, pages 20–22, autumn
2005.

[15] B. Hendrickson and R. Leland. Multidimensional spec-
tral load balancing. Technical Report SAND93-0074,
Sandia National Laboratories, 1993.

[16] B. Hendrickson and R. Leland. The Chaco user’s
guide. Sandia National Laboratories, 2 edition, 1994.

[17] B. Hendrickson and R. Leland. A multi-level algorithm
for partitioning graphs. In Supercomputing, 1995.

[18] G. Karypis and V. Kumar. MeTis: Unstrctured Graph
Partitioning and Sparse Matrix Ordering System, 2
edition, 1995.

[19] G. Karypis and V. Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

[20] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291–307, 1970.

[21] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671–
680, May 1983.

[22] P. Kuntz, P. Layzell, and D. Snyers. A colony of ant-
like agents for partitioning in vlsi technology. In the
Fourth European Conference on Artificial Life, pages
417–424. MIT Press, 1997.

[23] A. E. Langham and P. W. Grant. A multilevel k-way
partitioning algorithm for finite element meshes using
competing ant colonies. In the Genetic and Evolution-
ary Computation Conf., volume 2, pages 1602–1608,
Orlando, Florida, USA, 1999.

[24] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIAM J.
Matrix Anal. Appl., 11(3):430–452, 1990.

[25] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[26] H. D. Simon and S.-H. Teng. How good is recursive
bisection ? SIAM Journal on Scientific Computing,
18(5):1436–1445, 1997.

[27] M. Stoer and F. Wagner. A simple min-cut algorithm.
Journal of the ACM, 44(4):585–591, 1997.

[28] E. G. Talbi and P. Bessiere. A parallel genetic algo-
rithm for the graph partitioning problem. In Proceed-
ings of the ACM International Conference on Super-
computing, ACM, Cologne, 1991.

[29] Y. Weiss. Segmentation using eigenvectors: A unifying
view. In ICCV (2), pages 975–982, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

