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Abstract

Workflow execution on large-scale heterogeneous dis-
tributed computing systems, such as Grids, requires a com-
plex coordination. Activities of complex workflow patterns
must be matched with entities of the computing system that
possesses highly dynamic properties. We pinpoint the key
concept of such workflow coordination as actions accord-
ing to actual and local conditions – analogously to chemi-
cal reactions. Modeling workflow enactment as molecules
and reactions, formalized in the nature inspired γ-calculus,
yielded an autonomously evolving, distributed, decentral-
ized coordination model that can adapt to a dynamically
changing environment.

1 Introduction

According to the most general definition, a workflow is
”the computerized facilitation or automation of a business
process in whole or part” [12]. In the field of scientific com-
putations it is understood in a more relaxed form as a collec-
tion of activities (computational tasks) that are processed in
some order and where both data-flow and control-flow rela-
tionships are present. [9].

In compliance with the Workflow Reference Model [12],
first, the application to be executed is decomposed into a
number of independent activities that are related to each
other by data and control dependency specified in the Pro-
cess Definition. Subsequently, a Workflow Enactment Ser-
vice instantiates and controls activities according to the Pro-
cess Definition. Looking at more details ([8, 9]), Process
Definition has two aspects. First the problem is transformed
into the so called Abstract Workflow (AW) that expresses the
logic of the problem to be solved yet, it does not contain any
specific means how to be executed. This phase is related to

the semantics and therefore, it is mostly up to the appli-
cation writer’s intention how to decompose a problem into
separate activities and what relations are established. Next,
Abstract Workflow is transformed into a Concrete Workflow
(CW) where each logical entity in the AW is mapped onto
physical entities (i.e. resources, services, processes etc.)
that can enable the execution.

We take into consideration the execution of scientific
workflows on large-scale heterogeneous distributed com-
puting systems, like Grids. Such an environment is extent,
highly dynamic with respect to performance and availabil-
ity, and fault prone. We also consider the presence of ad-
vanced workflow patterns [1] that introduce some degree of
uncertainty.

Generally, there is no consensus if the transformation of
AW into CW belongs to the Process Design & Definition
(build time) or the Workflow Enactment (run-time) phase –
Process Definition in the reference model [12] may mean
either of them on the boundary of build time and run-time
activities. Some works tend to consider it as a build time
activity by a static schedule or optimization of the mapping
prior to run-time. In our view this transformation must be
carried out at run-time and forms a central issue in work-
flow enactment that we define as a complex coordination
between elements of the workflow the distributed system.
Such a coordination comprises resource, service, data dis-
covery and selection, handling control and data dependen-
cies of activities, possibly fault detection and recovery.

We aimed at establishing a highly abstract declarative
coordination model for executing workflows in large-scale
heterogeneous distributed systems based on the following
principles. (I) Resources can appear or disappear any time,
abrupt changes may occur in the execution. Activities in the
workflow should be able to react to the changes of the em-
bedding environment. Therefore, enactment must be per-
formed dynamically without any a priori decisions. (II)
Workflow enactment should be able to make decisions on
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actual information. Information repositories contain data
that are necessarily inconsistent with the actual state of re-
sources. There cannot be a global and consistent view of
all activities and resources assumed. (III) Workflow enact-
ment should provide a higher level of autonomy and dy-
namic adaptation that at the same time also exhibits some
degree of fault tolerance than most current approaches. (IV)
Workflow coordination should be able to support advanced,
complex control structures.

As in many cases, where the problem is complex and dif-
ficult to formalize, a nature metaphor may inspire a heuristic
solution; in this case we have considered a chemical anal-
ogy. Activities of a workflow should be scheduled on re-
sources autonomously, without any centralized control, yet
observing certain rules just like particular molecules react
according to laws of nature. We used γ-calculus to for-
malize the chemical metaphor and establish an inherently
distributed declarative coordination framework. This paper
presents the concept and some design alternatives – without
actual technical details of implementation – by advanced
examples where chemical coordination gives a sophisti-
cated, yet elegantly simple solution to the requirements.

This paper is organized as follows. Section 2 gives the
rationale behind our decision to use the chemical metaphor.
Section 3 briefly introduces the γ-calculus. Section 4 de-
scribes the representation of resources as chemical solutions
and then Section 5 shows how a workflow can be modeled
as molecules and enacted as reactions. Further details and
advanced scenarios of the proposed approach are illustrated
by examples in Section 6. Section 7 presents related works
close to our approach and finally, section 8 concludes the
paper and outlines perspectives.

2 Why chemical reactions?

Chemical reactions take place without any control of
each atom or molecule. Molecules react according to their
chemical properties, actual local conditions and universal
laws of nature. While reactions are unpredictable at the
level of particular molecules, the overall properties of the
matter are known and predictable based on chemical laws.

We envision workflow enactment in a similar, distributed
and autonomous way using little or no a priori informa-
tion but sensitively to changes in the infrastructure. There
are resources and workflow activities that may be matched
in numerous combinations. Instead of picking one possi-
ble enactment pattern in advance, as any a priori schedule
would do, workflow enactment in our model is a process
that evolves in time. Properties of resources and activities
define the possible matchings just like chemical properties
define the affinity of molecules to react. Actual conditions
enable a certain enactment step just like they define the po-
tential of a reaction. If properties and conditions are well

defined, the outcome of the coordination is predictable and
controllable.

In our coordination model resources and workflow activ-
ities form together a chemical solution. Within this solution,
resources are passive molecules (precisely: sub-solutions),
activities are active molecules that may capture others. The
solution may also contain control molecules that influence
reactions – sometimes their role is similar to catalysts. The
entire coordination procedure is realized by the molecules
and series of reactions, i.e. autonomously, independently
from each other, concurrently, without any predefined pat-
tern. The state of the computation is represented by the en-
tire solution itself – it is a distributed information system by
nature. The chemical model has two cornerstones: resource
quantums, the way how resources are represented and γ-
calculus, the modeling formalism.

The capacity of a resource is represented by quantums:
a certain, guaranteed service on behalf of the resource. Ac-
tivities may apply for such a quantum and if granted, they
have the exclusive right to use the given quantum. They
can be considered as a ticket for accessing a resource. Re-
source owners may offer all or parts of their capacities or
services in quantums manifested as molecules. The strat-
egy how quantums are established and how molecules are
emitted is at the resource owners’ discretion. For instance,
a Linux cluster of 16 computing nodes may be transformed
into quantums in any of the following forms according to
a chosen strategy (details like network or storage are omit-
ted here but can be added easily): 16 tickets as 1 node re-
source, 1 ticket as 16 node resource, 3 tickets as 4, 4, 8 node
resources, respectively, and so on. Actual resource utiliza-
tion strategies, validity and outreach of the quantums can be
controlled by catalysts (see some examples in Section 6.)
Resource quantums or resource molecules are the material-
ization of resource information and also serve as an access
control mechanism; they ensure the validity of the informa-
tion. Resources that are used exclusively are represented by
a single molecule whereas resources that are shared by na-
ture, e.g. networks, may emit multiple molecules into the
coordination solution.

The vision of chemical enactment is specified as a con-
cise coordination model using the γ-calculus. Both work-
flow structures (activities) and resources are formalized as
γ-expressions that, at the same time, define their possible
interactions, i.e. coordination semantics as well. Activities
are represented as active molecules that can capture other,
passive molecules like resources. The fact that all entities
in the coordination framework are modeled using the same
γ-formalism and the formalism defines the execution se-
mantics as well is unique among all workflow coordination
models.



3 The chemical paradigm and the γ-calculus

Gamma (General Abstract Model for Multiset Manipu-
lation) [5] is a pioneer work among other languages real-
izing the so called chemical model - chemical in a sense
that there is no concept of any centralized control, order-
ing, serialization rather, the computation is carried out in an
indeterministic way according to local conditions.

The γ-calculus is a formal definition of the chemical
paradigm that we applied in this work therefore, a very short
introduction to γ-calculus is presented here based on [2] and
[3]. The background and evolution of Gamma and the re-
lated models are introduced in [4, 5].

The fundamental data structure of the γ-calculus is the
multiset M . γ-terms (molecules) are : variables x, γ-
abstractions γ〈x〉.M , multisets (M1, M2) and solutions
〈M〉 [2]. Note, that molecule is a synonym for all γ-terms.
Since the word ’solution’ has many meanings, if there is
no ambiguity, solutions are be referred as molecules in this
paper.

Juxtaposition of γ-terms is commutative
(M1, M2 ≡ M2, M1) and associative (M1, (M2, M3) ≡
(M1, M2), M3). Commutativity and associativity are the
properties that realize the ’Brownian-motion’, i.e., the
free distribution and unspecified reaction order among
molecules that is a basic principle in the chemical paradigm
[3].

γ-abstractions are the reactive molecules that can take
other molecules or solutions and replace them by other ones
by reduction. Due to the commutative and associative rules,
the order of parameters is indifferent; molecules, solutions
participating in the reaction are extracted by pattern match-
ing – any of the matching ones may react. The semantics of
a γ-reduction is

(γ〈x〉.M), 〈N〉 →γ M [x := N ]

i.e., the two reacting terms on the left hand side are replaced
by the body of the γ-abstraction where each free occurrence
of variable x is replaced by parameter N if N is inert, or x
is hidden in M , i.e., it only occurs as a solution 〈x〉 [3].

Besides the associativity and commutativity, reactions
occur according to laws of (i) locality (also called as chem-
ical) law [3]: if a reaction can occur, it will occur in the
same way irrespectively to the environment; and (ii) solu-
tion (also called as membrane) law [3]: reactions can occur
in nested solutions or in other words, solutions may contain
sub-solutions.

A conditional reaction is a γ-abstraction of form
γ〈x〉�C�.M that can be reduced only if C evaluates to true
before the reaction [2].

Atomic capture adds the possibility of reacting with more
than one molecule at a time. It is represented by an n-ary

γ-abstraction term: γ〈x1〉, 〈x2〉, ...〈xn〉.M that can be re-
duced in a single atomic step if it can be matched by n ap-
propriate terms [2].

The γ-calculus is a higher order model, where abstrac-
tions – just like any other molecules –, can be passed as
parameters or yielded as a result of a reduction.

The γ-calculus shows some similarities with the λ-
calculus. However, the λ-calculus is a sequential and de-
terministic model whereas, the γ-calculus is inherently par-
allel and nondeterministic.

4 Resources as chemical solutions

Resources (represented as quantums) are modeled as a
chemical solution, i.e. sub-solutions within the global coor-
dination solution. Attributes of the resource form molecules
within the solution. The general form of a solution describ-
ing a resource quantum:

〈a1 : v1a2 : v2...an : vn〉
where each ai : vi forms an attribute-value pair. The

exact number of attributes and their meaning is depending
on the resource. Yet, there are some attributes that every
resource should possess like identification, contact address,
optionally further information about contact protocols, va-
lidity, security and so on. We do not specify any strict for-
mat at this level of abstraction, instead show many possibil-
ities; nevertheless, these attributes must be used in a consis-
tent way within an application. A certain implementation
however, must have a well defined set of attributes.

The coordination solution may contain potentially hun-
dreds or thousands of resource sub-solutions of various
forms. A few examples:

• r1 = 〈id : R1, type : comp, proc : 16, OS :
Linux, mem : 32, installed : equsolver, ...〉 is
a computational resource with 16 processors, Linux
operating system, 32MB of memory and an equation
solver package installed. Note, that a default unit is as-
sumed for quantities: MB for memory, GB for disks,
etc.

• r2 = 〈id : R2, type : comp, proc :
4, OS : SunOS, disk : 120, installed :
statistics, network : N2...〉 is another computational
resource with 4 processor, SunOS, 120GB disk, a
statistics package installed and accessing network N2.

• r3 = 〈id : R3, proc : 1, OS : Linux, available :
1200, ...〉 – resource descriptions may contain at-
tributes related to their use. In this case, for instance,
R3 is available daily from 12.00.

• r4 = 〈id : R4, type : comp, OS : Linux, proc :
1, network : N2, owner : ownerid, ...〉 – resource
owner information may also be included.



• r5 = 〈id : N2, type : net, bandwidth : 10, ...〉 –
the network as a resource. Since it is not used exclu-
sively, multiple occurrences of molecule r5 is allowed.
Note, that relevant resources must be represented only.
For instance, if we assume that another network, N1

provides a default connectivity, it is not necessary to
include in the chemical solution or in the resource de-
scription.

5 Workflow as molecules and reactions

Workflow activities are modeled in the chemical solu-
tion as active molecules, i.e. a γ-abstraction in the form
of γ parameters.body. A reaction means reducing the ab-
straction: capture matching molecules to the parameters,
and substitute them in the body. The reaction replaces the
captured molecules and the abstraction itself by the body
with instantiated parameters.

The aim of coordination is to reduce dependent activities
to single activities that are ready to be executed, i.e. all de-
pendencies are satisfied. Each such single activity is treated
as an atomic unit that is executed and some results are re-
turned. The exact working behavior or the structure of the
activity is irrelevant at the coordination level. An activity A
ready to be executed is represented symbolically as:

execute A on resource(s) using parameter(s)

where execute can be considered as a primitive procedure,
i.e. it is not defined further in terms of γ-calculus. γ-
reduction progresses until this normal form is reached. The
entire chemical metaphor is aimed at coordinating the en-
actment of the workflow but not at executing its activities.
Once a γ-expression has been reduced to this primitive, it
is taken out of the chemical solution and passed to some
external processes that realize the physical execution. The
technical realization of the execution may vary since it de-
pends on the physical environment (if it is a cluster, a Grid,
a service oriented architecture, components, etc.) After the
activity has been executed externally, results from the exe-
cution and the redeemed resources must be put back to the
chemical solution, i.e. execute is reduced externally as:

execute A on resource using parameters
→ 〈A : result, ...〉, 〈id : resource, ...〉, ...

Note that result is a symbolic representation here. It
may be anything: a number, a string, a complex structure,
a pointer to a file, a pointer to any other data items or op-
positely, holding no information at all just signaling the ter-
mination. Apart from the obligatory activity : result pair
they may contain other information as well related to the
execution, e.g., error codes, number of iterations, resources
that were used and so on.

Resource dependency. An activity requires resources to
perform its task. We define the general form of resource
dependency expressed in the γ-calculus as:

γ〈a1 : v1, a2 : v2, ...an : vn〉.execute Aon vi

where ai is the mandatory identifier tag. The attributes
specify a resource profile that will be found in the solution
by pattern matching. This active molecule may capture any
resource that has the specified profile, i.e., those solutions
where attribute : values pairs can be matched. This gen-
eral form may involve variables and the universal matching
symbol, ω, as it is introduced in the following simple exam-
ples.

For instance, activity A1 requiring a computing node
with 1 processor and Linux OS may be specified as:

γ〈id : r, proc : 1, OS : Linux, ω〉 . executeA1 on r

where ω matches anything, i.e. rest of the resource pro-
file is irrelevant. Without specifying ω, it would match only
a resource that has no other tags but id and proc.

Taking resources from Section 4 as an example, pattern
matching may be successful in two cases thus, r may be
bound to either R3 or R4 and the expression reduced to
→ executeA1 onR3 or
→ executeA1 onR4
Which one is actually chosen – it is up to chance in
the chemical model where particular reactions are unpre-
dictable. Nevertheless, the basic chemical paradigm where
Brownian motion assures random choice can be augmented
with further nature laws. For instance, adding gravity to the
model could be represented by ordering the molecules and
choosing the first or last in these cases.

Data/control dependency. An activity may depend on
the result of other activities (data dependency) or simply
triggered by the termination of another activity (control de-
pendency).

If activity Ai depends on another activity Aj , i.e., they
are executed in sequence : Aj → Ai, the corresponding
γ-expression is:

γ〈Aj : x, ω〉.executeAiusingx

i.e. the execution of Ai requires a result molecule (pre-
cisely: sub-solution) that is emitted by Aj .

If activity Al depends on n other activities Asi , i.e., real-
izes a synchronization, the active molecule captures n result
molecules in an atomic step:

γ 〈As1 : x1, ω1〉, 〈As2 : x2, ω2〉, ...〈Asn : xn, ωn〉.
executeAiusing x1, x2, ...xn



In case of a parallel-split, i.e. there are m activities depend-
ing on Al, the result molecule must by multiplied m times
by a γ-abstraction added to the body of Al:

(γ 〈〈Al : x, ω〉〉.〈Al : x, ω〉, 〈Al : x, ω〉, ...〈Al : x,ω〉),
〈executeAl〉

Note, that the execution of Al takes place in a solution
(〈execute Al〉) therefore, its result will be a sub-solution
within the solution (〈〈Al : rAl

〉〉) and reducing further:

→ (γ 〈〈Al : x, ω〉〉.〈Al : x,ω〉, 〈Al : x, ω〉, ...〈Al : x, ω〉),
〈〈Al : rAl〉〉

→ 〈Al : rAl , ω〉, 〈Al : rAl , ω〉, ...〈Al : rAl , ω〉

the result molecules are multiplied. This construct ”hides”
the result molecule (〈Al : rAl

〉) otherwise, it could react
with any of the depending activities before the multiplica-
tion takes place.

These three γ-expressions realize sequence, synchro-
nized merge and parallel split constructs – many workflow
management systems do not go beyond these ones.

Informally we introduce further, advanced constructs
that are realized as a chemical reaction. For exact details
of their formal γ-definition see [13]. In case of split there is
number of potential follow-up activities but from them ex-
actly p are activated. Exclusive choice, as a special case for
split, where from all potential activities one and only one
may be activated after termination of Al. By combining it
with conditional, explicit choice can be realized. In case of
p out of n merge there are n antecedent activities that may
produce input for Al but the termination of exactly p, may
activate Al. p = 1 means that the termination of any re-
sult may activate Al. A structured loop can be constructed
from a merge and a conditional structure furthermore, the
core of the loop is added to the solution dynamically in each
iteration. Some of these constructs are illustrated in the next
section.

Resource and data/control dependencies do not differ in
the sense that they represent conditions that all must be met
before the activity can proceed. Thus, if data/control and
resource dependencies must be satisfied simultaneously, the
active molecule performs an atomic capture:

γ (〈Aj : x, ωa〉, 〈id : r, R,ωr〉).execute Ai on r using x

For instance, if activity A2 is dependent on the result of
A1 requiring a computing node with 1 processors may be
specified as:

γ 〈id : r, proc : 1, ωr〉〈A1 : x, ωa〉 .
executeA2 on r usingx

After A1 has finished and returned, e.g. 〈A1 : 42, ...〉, where
42 is a fictitious result of some calculations, reduction may
go on in one of two different directions depending on the
result of the pattern matching as (resources taken from Sec-
tion 4):

→ executeA2 onR3using 42 or
→ executeA2 onR4using 42
As it can be seen, in this case A2 can be executed if the
specified resources have been found and A1 has finished.

6 Advanced examples of the chemical model

Resource and data dependency. Obviously, both
data/control and resource dependencies must be satisfied
in order to execute the activity. Yet, the reaction can be
enabled in different ways by structuring the capture of
molecules.

The capture of the resource molecule can be postponed
until activity Ai is enabled according to data/control flow
rules (R is a symbolic notation for a resource profile):

γ 〈Aj : x, ωa〉.
(γ〈id : r, R,ωr〉.executeAi on r usingx)

This construct is effective when it is not known if a partic-
ular activity will be ever enabled (e.g. it is part of a condi-
tional branch). First it captures the result, e.g. 〈Aj : 42, ...〉
and reduces to

→ γ〈id : r, R, ωr〉.executeAi on r using 42

enabling the reaction with a resource molecule of profile
R.

Conversely, the capture order can be changed express-
ing that an appropriate resource must be found before
data/control flow may enable the activity. It may gain ef-
ficiency since the search for a resource may overlap with
computations that will yield enabling Ai.

γ 〈id : r, R, ωr〉.
(γ〈Aj : x, ωa〉.execute Ai on r using x)

Constrained resource matching. Everyday examples re-
quire and the chemical paradigm makes it possible to eas-
ily express dependencies or constraints among resources as
well. For instance, activity A requires simultaneously a
computing node with disk space of at least 30G and a com-
puting node with at least 128M memory so that the OS of
the two nodes are the same:

γ 〈id : r1, OS : x, disk : y, ω1〉,
〈id : r2, OS : x, memory : z, ω2〉�y > 30, z > 128�.
executeA on r1, r2

Constraints may exist between different execution stages
as well. Let us assume the following requirements: A1

needs a node with 1 processor, A2 needs a node with 4 pro-
cessors so that there must be a network connection of given
bandwidth between them to transfer resulted files. The ac-
tive molecule captures three resource molecules in a single
reaction. The molecule corresponding to the network is a
catalyst in this case: it must be present with given charac-
teristics but it is not reserved by the activities:



γ (〈id : r1, proc : 1, network : n, ωr1〉,
〈id : r2, proc : 4, netowrk : n, ωr2〉,
〈id : n, bandwidth : 10, ωn〉) .

(executeA1 on r1, (γ〈A1 : x, ω〉 . executeA2 on r2using x))

Let us assume, pattern matching yielded r1 = R4 and
r2 = R2 and n = N2 (see Section 4) and hence, the ex-
pression is reduced in the following order:

execute A1 onR4, γ〈A1 : x, ω〉 . executeA2 onR2using x
→ 〈A1 : 23, ...〉, γ〈A1 : x, ω〉 . executeA2 onR2using x
→ executeA2 onR2using 23
→ 〈A2 : 42, ...〉

Another approach may take the advantage that a result
molecule can contain any attributes as long as it is valid
(not conflicting) and used in a consistent way in a single
application. Thus, the utilized resource profile(s) can be
embedded as a named sub-solution in the result molecule.
In this example A1 is executed on a resource with at most
4 processors and subsequent activities must have the same
number of processors:

γ 〈id : r1, type : comp, proc : p, ω〉 �p ≤ 4�.
executeA1 on r1

and A2 can extract the constraint from the result of A1:

γ (〈id : r2, proc : p, ωr〉,
〈A1 : x, used resource = 〈proc : p, ωur〉, ωa〉).

executeA2 on r2usingx

that is, the resource to be reserved must have p processors.
Note, that p is unknown prior to run-time.

Resource control. Resource tickets should be canceled
whenever the resource is not available any longer either ac-
cording to the owner’s decision, to an error or to changes in
the management policy. In terms of the chemical metaphor:
a neutralizing agent must be added to the global solution:

γ〈a1 : v1, a2 : v2, ...an : vn〉.
that matches the specified resource molecule and re-

moves it, i.e. replaces it to nil.
Further examples: a resource owner may want to change

some attributes (in this case, for instance, a2 : v2 to a2 :
v′2) of a resource by a molecule: γ〈a1 : v1, a2 : v2, ...an :

vn〉.〈a1 : v1, a2 : v′
2, ...an : vn〉 Even further, a complete

resource sharing policy may be changed by capturing and
re-issuing the resource molecules. For instance, a resource
owner may decide to withdraw two 4-node resources and
offer one 8-node instead. In this case the following control
molecule is added:

γ 〈id : R1, type : comp, proc : 4, owner : self, ...ω1〉,
〈id : R2, type : comp, proc : 4, owner : self, ...ω2〉.

〈id : R, type : comp, proc : 8, ...〉

These molecules provide the logical control of changing
the molecules in an abstract way. The realization of remov-
ing or changing a resource molecule obviously requires au-
thorization procedures at the level of technical implementa-
tion.

Fault tolerance. The topic of fault tolerance is far beyond
the scope of this paper. The goal of this section is to show
by a few examples that the chemical framework is able to
provide constructs for such purposes.

A failed activity A (or an agent detecting the failure, on
behalf of A) may return a result molecule 〈A : result, ...〉
where result contains some sort of an error code. Subse-
quently an activity B expecting the termination of A may
include routines to handle the situation. If necessary, re-
dundant execution is also possible: by using split and
merge structures some activities may be initiated multiple
times. If any of them succeeds, the rest of them are omitted.
Using the loop structure it is possible to retry some critical
activities that might fail.

A more sophisticated rollback structure can also be
easily defined using γ-calculus. An activity puts a specific
molecule into the solution upon its reaction. The molecule
can reinstall the activity if necessary. For instance, activity
A requires resource profile R, expects results from Ai and
Aj and in case of a certain failure it should be re-executed
on another resource. In this case the reaction reduces to the
single activity and also puts an active molecule that in case
of an error re-schedules the resource and executes A again:

γ 〈Ai : x, ωa1〉,
〈Aj : y, ωa2〉,
〈id : r, R, ωr〉.

(executeAon r using x, y,
(γ〈A : error, ωerr〉, 〈id : r′, R,ωr′ , 〉.

executeA on r′ using x, y))

Obviously, instead of re-executing A, some other activi-
ties may be instantiated as well, like compensation; the re-
source scheduling policy may be changed and so on.

Complex workflow structures. Finally, a workflow
structure is shown to demonstrate that advanced patterns
can be realized easily. The workflow in Figure 1 is to be ex-
ecuted with the following assumptions: (i) Activities do not
have any specific resource needs (therefore resource specifi-
cations are oversimplified, symbolic R), (ii) there must be a
specific link between A1, A2 and A3 (iii) activities between
A1 and A4 are executed in a loop, A5 is executed after the
loop. Loop condition is tested on the result of A1 and (iv)
activity A4 synchronizes.

Activities are expressed by the following molecules. The
first activity can be triggered in two cases: initially (no
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Figure 1. An example workflow

dependence) and re-entering the loop (dependent on A4.
Therefore, A1 has two active molecules:

a1a = γ〈id : r,R, ω〉 . executeA1 on r
a1b = γ〈id : r, R, ω〉, 〈A4 : x〉 . executeA1 on r using x

S is a virtual activity introduced for a simpler represen-
tation of the conditional. If loop condition is true, virtual
activity S is enabled, copies results of A1 and puts into the
solution the loop core: a4, a1b

and itself.

s = γ〈A1 : x,ω〉 �C(x)� . 〈S : x, ω〉, 〈S : x, ω〉, a4, a1b, s

The copied results trigger A2 and A3

a2 = γ〈id : r, R,ω〉, 〈S : x, ω〉 . executeA2 on r using x
a3 = γ〈id : r, R,ω〉, 〈S : x, ω〉 . executeA3 on r using x

A4 is enabled if both results are present in the solution:

a4 = γ〈id : r, R, ω〉, 〈A2 : x, ω〉, 〈A3 : y, ω〉 .
executeA4 on r using x, y

Finally, A5 is triggered by the result of A1 if the repeat
condition does not hold:

a5 = γ〈id : r, R, ω〉, 〈A1 : x, ω〉 �¬C(x)� .
executeA5 on r using x

To ensure resource constraints as well, a1, a2 and a3 are
merged together:

a1a = γ 〈id : r1, network : n, R, ω1〉,
〈id : r2, network : n, R, ω2〉,
〈id : r3, network : n, Rω3〉,
〈id : n, type : network, ωn〉 .

(executeA1 on r1,
γ 〈S : x,ωs1〉 . executeA2 on r2usingx,
γ 〈S : y, ωs2〉 . executeA3 on r3using y)

a1b = γ 〈id : r1, network : n, R, ω1〉, 〈A4 : x,ωa〉,
〈id : r2, network : n, R, ω2〉,
〈id : r3, network : n, R, ω3〉,
〈id : n, type : network, ωn〉.
(executeA1 on r1using x,
γ 〈S : y, ωs1〉 . executeA2 on r2using y,
γ 〈S : z, ωs2〉 . executeA3 on r3using z)

At the beginning, the coordination solution contains a1a , s
and a5. Other activities are put into the solution dynami-
cally by S each time the loop is re-entered. A notable ex-
ample of the dynamic behaviour of the chemical model.

7 Related works

There are numerous papers on workflow management
yet, the enactment itself is rarely targeted directly. In this
section some of those enactment models are listed that are
(partly) dynamic, address a higher level coordination model
and are closer to our approach in some sense.

Deelman et al. [8] propose applying AI techniques for
planning an abstract workflow for applications where many
large files are transferred between components. The map-
ping of abstract workflow onto concrete workflow is prior to
execution and is based on static information. In a later pa-
per [7] this policy is relaxed and a semi-dynamic mapping
is introduced where the workflow is divided into smaller
workflows and such partial workflows are mapped at one
time. The work presented in [11] introduces a Petri-net
based model. It has dynamic features: Petri-nets can be
refined and on-the-fly resource mapping is also present. It
supports more workflow constructs than usual and provides
some degree of fault tolerance. Petri-nets also make a step
towards a formal enactment model. Condor DAGMan [6]
provides an on-the-fly dynamic mapping with fault toler-
ant features. Its functionality is similar to ours, but the ap-
proach is however, different. Condor is aimed at providing
a high throughput computing environment by maximizing
processor efficiency. Its structure and the scheduling policy
is fixed, the supported workflow constructs are limited. The
Workflow Enactment Engine (WFEE) [14] is probably the
closest to our work. It is a distributed event-driven workflow
enactment engine that realizes fully dynamic, just-in-time
resource mapping. It utilizes a tuple space to maintain the
state of the computation where tuples are related to events.
WFEE makes its scheduling decisions based on stored in-
formation.

8 Future work & Conclusion

The chemical coordination model is highly abstract yet,
it is not very far from a real-life implementation. An active
molecule γP �C�.M may be interpreted Gamma-style
[2, 3, 5] as

replaceP by M if C

that brings it close to if -then rules, for which advanced pat-
tern matching algorithms of production systems, like RETE
[10], an ”efficient method for comparing a large collection
of patterns to a large collection of objects” can serve as a
foundation for implementation.

We project the coordination system as a network of dis-
tributed workflow engines above the resources. Engines
keep reacting the molecules, i.e., interpreting the γ-terms
until some of them is reduced to an execute primitive that



is an exit point from the coordination level. In this case the
execute primitive is removed from the solution and passed
to a process that realizes all the procedures related to phys-
ical enactment corresponding to the activity and the param-
eters. The same process receives results from physical en-
tities, turns them into molecules and puts them back to the
coordination level. Similarly, resource quantums or error
reports can be submitted via appropriate interfaces. In such
a way the coordination is independent from any actual tech-
nical realization.

In this paper we introduced a workflow coordination
model based on a chemical metaphor. Most of current ap-
proaches, although technically sophisticated, pose some re-
strictions on the workflow structure or dynamic behaviour,
are aimed at some particular problems and quite often, lack
a high-level model. We aimed at establishing a general ab-
stract model and envisage workflow coordination as an au-
tonomous process evolving in time according to dependen-
cies and requirements but not bound to any a priori decision
or static pattern. In this sense it shows considerable similar-
ities with chemical reactions and thus, the work is based on
a chemical metaphor. In our model resources, workflow ac-
tivities and control information form a chemical matter and
enactment progresses by reactions according to actual and
local conditions. The informal concept of chemical work-
flow enactment is turned into a coordination model by ap-
plying the γ-calculus. The γ-calculus provides a mathe-
matically well founded declarative formalism for describ-
ing arbitrarily complex workflows and advanced coordina-
tion strategies; execution semantics is given without further
definitions.

The work presented in the paper is not a solution for
workflow enactment; many issues of workflow scheduling
are not addressed directly. Rather, the model is a highly ab-
stract framework where various advanced enactment strate-
gies can be specified. Since it is a high-level model and
thus, independent from technical details, the principles ex-
pressed in the γ-calculus can be turned into implementation
in several ways.
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[3] J.-P. Banâtre, Y. Radenac, P. Fradet: Chemical Specification
of Autonomic Systems. Proc. of the 13th Int. Conf. on In-
telligent and Adaptive Systems and Software Engineering
(IASSE’04)
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[13] Zs. Németh, C. Pérez, T. Priol: Workflow Enactment Based
on a Chemical Metaphor. 3rd IEEE International Conference
on Software Engineering and Formal Methods, SEFM 2005,
Koblenz, Germany, IEEE Computer Society Press.

[14] J. Yu and R. Buyya: A Novel Architecture for Realiz-
ing Grid Workflow using Tuple Spaces, Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing
(GRID 2004, Nov. 8, 2004, Pittsburgh, USA), IEEE Com-
puter Society Press, Los Alamitos, CA, USA.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


