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Abstract

The strong demand for complex and high performance
embedded system-on-chip requires quick turn around de-
sign methodology and high performance cores. Thus, there
is a clear need for new methodologies supporting efÞcient
and fast design of these systems on complex platforms im-
plementing both hardware and software modules.
In this paper, we describe a novel scalable core-based
methodology for systematic design environment of applica-
tion speciÞc heterogeneous multicore systems-on-chip (MC-
SoC). We also developed a high performance 32-bit Syn-
thesizable QueueCore (QC-2) with single precision ßoating
point support. The core is targeted for special purpose ap-
plications within our target MCSoC system. We present the
architecture description and design results in a fair amount
of details.

1. Introduction

System on chips designs have evolved from fairly sim-
ple uni-core, single memory designs to complex multicore
systems on-chip consisting of a large number of IP blocks
on the same silicon. As more and more cores (macros)
are integrated into these designs to share the ever increas-
ing processing load, the main challenge lies in efÞciently
and quickly integrating them into a single system capable
of leveraging their individual ßexibility. Moreover, to con-
nect the heterogeneous cores, the multi-core architecture
requires high performance complex communication archi-
tectures and efÞcient communication protocols architecture,
such as hierarchical bus [1, 2], point-to-point connection
[15], or Time Division Multiplexed Access based bus [3].
Current design methods tend toward mixed HD/SW co-
designs targeting multicore system-on-chip for speciÞc ap-

plications [16, 18, 21]. To decide on the lowest cost mix
of cores, designers must iteratively map the deviceÕs func-
tionality to a particular HW/SW partition and target archi-
tecture. Every time the designers explore a different system
architecture, the interfaces must be redesigned.
Unfortunately, the speciÞc target applications generally lead
to a narrow application domain and also managing all of
these details is so time consuming that designers typically
cannot afford to evaluate several different implementations.
Automating the interface generation is an alternative solu-
tion and a critical part of the development of embedded sys-
tem synthesis tools. Currently most automation algorithms
implement the system based on a standard bus protocol
(input/output interface) or based on a standard component
(processing) protocol. Recent work has used a more gener-
alize model consisting of heterogeneous multicore with ar-
bitrary communication links. The SOS algorithm [19] uses
an integer linear programming approach. The co-synthesis
algorithm, developed in [20], can handle multiple objec-
tives such as costs, performance, power and fault tolerance.
Unfortunately, such design practices allow only limited au-
tomation and designers resort to manual architecture design,
which is time consuming and error-prone especially in such
complex SoCs.
Our design automation algorithm generates generic-
architecture-template (GAT), where both processing and in-
put/output interface may be customized to Þt the speciÞc
needs of the application. Therefore, the utilization of the
GAT enables a designer to make a basic architecture design
without detailed knowledge of the architecture.
High performance processor cores are also needed for high
performance heterogeneous multicore SoCs. Thus, we
also describe a high performance synthesizable soft-core
architecture, which will be used as a task-distributor-core
(TDC) in the MCSoC system. The system may consist,
then, of multiple processing cores of various types (i.e.,
QueueCore(s), general purpose processor(s), domain spe-



neural network-based architecture for these manner of 
articulation attributes was already implemented in [5]. 

The main idea of the ASAT project is that the 
performance of conventional knowledge-ignorant 
modeling approaches can be improved integrating the 
knowledge sources available in a large body of speech 
science literature. In [3] it is showed that the idea of a 
direct incorporation of acoustic-phonetic knowledge 
into ASR design raises its accuracy. These 
“knowledge-based” features (also referred to as speech 
attributes in the same work) are used to augment the 
front-end module of a conventional ASR system by 
means of a set of feature detectors able to capture the 
speech attributes.  

The rest of the paper is organized as follows. 
Section 2 describes the general framework of the event 
detector module, which we will call knowledge 
extraction to be consistent with the nomenclature used 
in [1]. In sections 3 and 4 the MFCCs and its digital 
implementation are given respectively. An overview of 
the digital implementation of the six MLP detectors is 
shown in section 5. Section 6 presents the experimental 
set-up and results with comparison to the baseline 
architecture. Concluding remarks are given in the last 
section of the paper to summarize its main 
contributions. 

 
2. Knowledge Extraction Module 
 

The Knowledge Extraction (KE) module uses a 
frame-based approach to provide K manner of 
articulation attributes Ai, where i=1,2, … K, from an 
input speech signal s(t). In this paper the manner 
classes were chosen as in [6], and are listed in Table 1.  

The KE module, depicted in Figure 1, is composed 
of two fundamentals blocks: the feature extraction 
module (FE), and the attribute scoring module (SC). 
The FE module consists of a bank of K feature 
extraction blocks FEi, where i=1,2, … K, and it maps a 
speech waveform into a sequence of speech parameter 
vectors Yi,  i=1,2, … K. Actually, each of the FEi is fed 
by the same speech waveform s(t,) and for each speech-
frame it computes a thirteen MFCC feature vector Xi 
(12 MFCCs + Energy). The frame length is of 30 msec 
overlapped by 20 msec.   Finally, FEi produces as 
output a 117-feature vector Yi combining the actual 
frame with the eight surrounding frames, 4 frames 
before and after, so that each speech parameter vector 
represents nine frames. 
The SC module is composed of six feed-forward neural 
networks, and its goal is to attach a score, referred to as 
knowledge score (KSi), to each vector Yi.  The input of 
each network is a 9 frames of 12 MFCCs + energy, so 

that the input layer is of 117 nodes. The output layer 
has two nodes, one for the desired class, and one for 
the anti-class. Actually, the value obtained for the 
desired class for case i is defined to be the KSi. 

Table 1. Manner of articulation attribute definition 

Articulation 
Manner 

Class  
Elements 

Anti-Class Elements 

Vowel IY, IH, EH, 
EY, AE, AA, 
AW, AY, AH, 
AO, OY, OW, 
UH, UW, ER, 
AX, IX 

JH, CH, S, SH, Z, ZH, 
F, TH, V, DH, B, D, G, 
P, T, K, DX, M, N, NG, 
EN, L, R, W, Y, HH, EL, 
SIL 

Fricative JH, CH, S, 
SH, Z, ZH, 
F, TH, V, 
DH 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, B, 
D, G, P, T, K, DX, M, 
N, NG, EN, L, R, W, Y, 
HH, EL, SIL 

Stop B, D, G, P, 
T, K, DX 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH, M, N, NG,
EN, L, R, W, Y, HH, EL, 
SIL 

Nasal M, N, NG, 
EN 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH, B, D, G, P, 
T, K, DX, L, R, W, Y, 
HH, EL, SIL 

Silence SIL  IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH,  B, D, G, P, 
T, K,  DX, M, N, NG,
EN, L, R, W, Y, HH, EL 

Approximant 
(App.) 

L R W Y EL IY IH EH EY AE AA AW AY 
AH AO OY OW UH UW ER AX 
HH IX JH CH S SH Z ZH F 
TH V DH B D G P T K DX 
M N NG EN SIL 
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Fig. 1. Knowledge Extraction Module, adapted 

from[6]. The detectors are based on a MLP neural 
network. 

 
 

3. Mel-Frequency Cepstrum Coefficients 
Extractor 
 

In the feature extraction phase a set of useful 
parameters termed as Mel-frequency cepstrum 
coefficients (MFCC) are extracted directly from the 
speech waveforms. To compute the MFCCs, the speech 


