
*This research is conducted as a program for the "21st

Century COE Program" by Ministry of Education, Culture,
Sports, Science and Technology, Japan.P

Practical Task Flow Scheduling for High Throughput Computational Grid

Wei Sun 1, Yuanyuan Zhang 1, Yanwei Wu3, and Yasushi Inoguchi 2

1Graduate School of Information Science,
2Center for Information Science,

Japan Advanced Institute of Science and Technology,
1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan

{sun-wei, inoguchi, yuanyuan}@jaist.ac.jp

3Department of Computer Science,
Illinois Institute of Technology,

10 W. 31st Street, Chicago
ywu24@cs.iit.edu

Abstract
In a practical computational grid system, task

scheduling in local resource management normally is
affected by the arrival rate of tasks and the sizes of
tasks, that is, the scheduler must deal with the dynamic
task flow. On the long-term viewpoint it is necessary
and possible to improve the performance of the
scheduler serving the dynamic task flow. In this
paper we developed a scheduling strategy which
adapts to the dynamic task flow and a genetic
algorithm which balances the loads of the nodes
furthest. We simulated task flows with several arrival
rates and average sizes of tasks, the scheduler with our
strategy and algorithm, and the schedulers with other
strategies and algorithms. The simulation results show
that our scheduler can adapt to the change of arrival
rates better than other schedulers.

1. Introduction

The computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities [1]. The key to achieving
this purpose is highly efficient resource management.
The main job of resource management is to allocate
tasks received from upper level to resources within its
precinct. Normally this is a problem of task scheduling.
 Task scheduling for the computational grid is
continuous and dynamic. However, most task
scheduling strategies and algorithms are affected by the
tidal task flow. It is really necessary and possible to
perform a long-term optimization on schedulers. We
propose a methodology for task scheduling which can
achieve the highest possible throughput and utilization

in view of the arrival rate of tasks and task sizes.
 The organization of this paper is as follows. In
Section 2 the abstract model of task scheduling in
computational grid and the problem of scheduling task
flow are introduced. The scheduling strategy is
described in Section 3. In Section 4 a genetic algorithm
is presented. We made a simulation and performed
some experiments, which are documented in Section 5
along with the results. Section 6 reviews some related
work. Section 7 concludes this article.

2. Model and problem

In a computational grid, resources are shared by
many users, who submit their applications concurrently.
Since tasks come from many unrelated users, it is
feasible to assume tasks to be independent. The
resource management usually receives tasks with
different computation sizes at variant arrival rates. One
of the objectives of resource management is to allocate
the tasks to the set of computational nodes. We present
an abstract model of this kind of task scheduling in
Figure. 1.

Figure 1. Model of task scheduling in the

resource management of computational grid.
The black lines on the left denote tasks. The

intervals between the lines indicate the
intervals of task arrival. The length of each line

denotes the task size.

When the arrival rate of tasks is high enough, the

scheduler can always collect enough tasks and the
computational nodes are always busy. The throughput
and the utilization reach the maximum, which are
decided by the total processing ability of the system.
We defined this phase of system status as saturation.
Most researches on task scheduling focused on the
saturation phase to optimize scheduling algorithms to
shorten the maxspan. The maxspan is basically the
largest task completion time among all the nodes in the
system [2].

When the arrival rate of tasks is low, the
scheduler might be idle and the computational nodes
could be left unused. The throughput and the utilization
are affected mainly by the arrival rate of tasks and the
task sizes. We defined this phase of system status as
starvation. The optimization on task scheduling can be
of little help in the deep starvation phase.

For any definite system, when the supply of
computation, i.e. the total processing capacity, can just
satisfy the requirement of computation from users, the
system status is on the boundary between the saturation
phase and the starvation phase. We called this
boundary as balance line. Around the balance line
there is a region where the coming low arrival rate and
the coming small average task size do not move the
system status into the starvation phase at once or vice
versa. This is due to the historical light load or heavy
load on the nodes. The system status in this region is
easy to slide into the deep saturation phase or the deep
starvation phase. We named this region as slide region.
Figure 2 illustrates the relationship of the arrival rate,
task size, and the system status.

Figure 2. Two phases of system status. The

darker the color is, the busier system is. The
slide region is marked with two dot lines.

A scheduler normally consists of the scheduling
algorithm and the scheduling strategy. The scheduling
algorithm tries to map one task or a batch of tasks onto
the computational nodes, where the workloads are
balanced as possible. In theory the more balanced the
workloads are, the shorter the maxspan is and the more

efficient the system is. There are two main classes of
scheduling algorithm: the immediate mode scheduling
and the batch mode scheduling. It is commonly
believed that the batch mode can lead to a shorter
maxspan than the immediate mode under the
precondition that the scheduler can collect enough
tasks, but there is no guarantee for collecting enough
tasks for the scheduler serving a dynamic task flow. On
the other side the immediate mode can approach the
same result of the batch mode or better when the
number of tasks is quite small [3]. The scheduling
strategy is used to control the scheduling algorithm to
create schedules. The scheduling strategy with simple
timer or counter can not adapt the scheduler to the
dynamic task flow. We are going to present a task
scheduling method which can perform well and adapt
to the variety of task flows.

3. Scheduling strategy

Generally the task flow scheduler fulfills a
scheduling process after every time interval, called the
scheduling cycle. In every scheduling cycle one or a
batch of tasks are allocated to computational nodes. We
named our scheduling strategy as dynamic scheduling
cycle. Some notations to appear in this paper are listed
in Table 1.

Table 1: Notation list
Notation Definition

N Task set; tasks in the task queue
M Set of Computational node
|·| Cardinality of set
Li Total size of tasks at node i
λ Average arrival rate of tasks
λΗ A high arrival rate of tasks
λL A low arrival rate of tasks
Ci Processing capacity of node i
si Computation size of task i
SE Average size of tasks
cij The communication cost of task i to be

send to node j
ri The remaining execution time of the task

currently being processed by the ith node
tl The shortest execution time of the tasks

ready to be processed by nodes,

|]|,1[),min(Mjr
C
L

t j
j

j
l ∈+=

ts time needed to create a task schedule

In our strategy a new scheduling cycle starts only
if there are almost no tasks ready to be executed on the
computational nodes, so that the length of the
scheduling cycle is changed dynamically as the system
status moves between the saturation phase and the

starvation phase. Because the arrival rate has a direct
impact on the number of tasks in task queue, and the
shortest execution time of the tasks on all the nodes tl
can imply the system status, |N| and tl are used as the
main parameters in the dynamic scheduling cycle
strategy.

If there are enough tasks in task queue at the
beginning of scheduling cycle, we chose the batch
mode task scheduling algorithm in order to obtain high
throughput and utilization. Considering higher and
higher bandwidth, the execution time of a grid task is
generally longer than the transmission time over
networks. Moreover, in the saturation phase the task
execution happens in parallel with the transmission of
other subsequent tasks. Therefore we ignore the
communication cost in batch mode scheduling. We
developed a genetic algorithm, which is presented in
Section 4. After the task scheduling the system status
has been in the deep saturation phase or will come into.

If there are a few tasks in task queue at the
beginning of scheduling cycle, the scheduler
immediately sends one task to the computational node
where the task can be finished earliest. In this way the
scheduler allocates a few of tasks to computational
nodes as soon as possible and waits for next high tide
of task flow. In this moment we take the
communication cost into account in order to finish
tasks in the shortest time. After the task scheduling the
system status has been in the deep starvation phase or
will come into.

Figure 3. Scheduling Strategy.

The strategy is shown in Figure 3. In our strategy
when a node finishes all tasks and is ready to receive
new tasks, we call this node as the ready node and the
corresponding time as the ready time. The time ts that
the scheduler takes to create a schedule should be
decided in the real environment.

4. Genetic algorithm

A GA [4, 5] is a biologically inspired search
method, which partially searches for a large solution
space, known as population, and uses historical
information to exploit the best solution from previous
searches, known as generations, along with random
mutations to explore new regions of the solution space.
A GA basically repeats three steps: selection, crossover,
and mutation. The process combined with initiation
and evaluation is shown in Figure 4. According to the
nature of computational grid and our scheduling
strategy, we developed a genetic algorithm for our task
scheduling.

Figure 4. Procedure of a basic GA.

The encoding represents a chromosome of
individual, which is a schedule. A number in the
chromosome is a gene, which represents the
corresponding task to be allocated in the node denoted
by this number. The length of chromosome n is equal
to |N|, and the largest number of genes m is equal to
|M|. We use ch to denote a chromosome. A
chromosome is illustrated in Figure 5.

Figure 5. Representation of chromosome.

The fitness function creates a fitness value for
each individual, which indicates the quality of the
scheduling. For a task scheduling problem, the ideal
result is the absolute balanced workloads. Any
scheduling result can only be close to the ideal result
but never to reach it. We use relative error as the fitness

//Procedure of Genetic Algorithm
1. Initiate population;
2. Evaluation
3. While(stop criteria not met){
4. Selection operation;
5. Crossover operation;
6. Mutation operation;
7. Evaluation;

}
8. Output the best solution //Scheduling strategy;

1.while(1){
2. update tl , ts;
3. if(tl > ts){
4. wait 1 second;
5. }elseif(|N|>2|M|){//enough tasks;
6. GA_Scheduling();
7. }elseif(|N| = = 0){//empty task queue;
8. wait 1 second;
9. }else{//a few tasks;
10. for (i=1; i < |M|; i++){
11. find the node j with

],1[),min(Mjrc
C

Ls
jij

j

ii ∈++
+

;

12. map task i to node j;
}

}
}

value. The smaller fitness value implies the more
balanced workloads. The ideal scheduling result is

∑

∑∑∑

=

===
⋅++

=
M

l
l

M

l
ll

M

j
j

N

i
ich

ideal

C

CrLs
t

1

111
][)(

.

The time needed to finish a batch of tasks on a node is

k
k

k
kpch

p

node r
C

Ls
t

k
+

+∑
= =][

.

Thus our fitness function is

∑ −
=

=
M

k knodeideal ttFit
1

2

.

The initiation of population has a straightforward
effect on the convergence time of the GA and the
quality of the result. Our initiation was designed to
guide GA to search more effective solution space by
avoiding impossible allocation of task. The details of
initiation are shown in Figure 6.

Figure 6. Initiation Operation.

We use a tournament selection in our GA. Firstly a
subset of individuals are selected from the population.

Secondly the individual with the smallest fitness value
is selected as one parent. Two tournaments are
performed and two individuals are chosen as the
parents. After the selection operation we use a
two-point crossover operation [6] to reproduce the
child individual.

Usually a mutation operation exchanges two
randomly selected genes. But here the random
selection has a pitfall: if the values of the two selected
genes are identical, then the mutation operation is in
vain. We describe this problem with a numeric matrix
shown in Figure 7. Hence we compel the mutation
operation to select two genes with different values.

Figure 7. Matrix of task allocation. “1”

indicates that the task is allocated on the
corresponding node. Only the “1” in different

rows allow to be exchanged.

It is possible to decrease the fitness value when a
task is moved from the node with the longest ready
time to another node. We developed a refinery
algorithm to refine the individual produced by the
mutation operation. The execution time of the refinery
algorithm is less than O(mn).

Figure 8. Refinery Algorithm.

Refinery()// The refinery algorithm
Input: an individual with chromosome ch;
Output: refined individual with chromosome ch’;
{
1. find node j with

],1[),max(][Mjr
C

Ls

j
j

j
jich
i

∈+

+∑
= ;

2. for(all i with ch[i] = j){
3. for(all k with ch[k] != j){
4. copy ch to ch’;
5. exchange ch’[i] with ch’[k];
6. if(ch’.fit < ch.fit) return ch’;

}
}

}

Initiation() //Initiation Algortihm;
Input: task set N, population set P; //
Output: chromosome ch1, ch2, ch3, … chp
{
1. for (i=1; i<= |P|; i++){
2. Initiate_chromosome (N, chi);

}
}
Initiate_chromosome ()//Sub-function;
Input: task set Ω;
Output: chromosome ch;
{
3. while(Ω is not empty){
4. select a subset ω from Ω randomly;
5. find the taski in ω with

],1[),min(][Mkr
C

Lss

k
k

k
kjch
ji

∈+

++ ∑
= ;

6. ch[i] = k;
7. remove taski from Ω;

}
}

After the refinery algorithm, the solution with the
largest fitness value is replaced. Note that the child
solution, whose structure is identical to any of the
solution structures in the population, is not allowed to
enter the population. This constraint is helpful for
avoiding a homogeneous population.

The GA will evolve the population until the stop
criterion is met. Our stop criterion is to define a
boundary generation number. After that number of
generations, for example 1000, if the best fitness value
of every generation is invariable or oscillates in a small
range, the GA stops and outputs the best solution.

5. Simulation

A simulation was built for testing and evaluation.
We implemented the scheduling strategies and
algorithms in this simulation. We compared our
strategy and algorithm with some well known
scheduling algorithms which were Max-min, Min-min,
Sufferage, and the genetic algorithm described in [8],
and the most familiar scheduling strategy - the regular
time interval. Each algorithm was assembled with a
strategy to form a scheduler. All schedulers are listed in
Table 2. We denote the scheduler with our scheduling
strategy and algorithm as PTFS (Practical Task Flow
Scheduling).

Table 2. Scheduler List.
Scheduler Strategy Algorithm
PTFS Dynamic scheduling cycle Our GA
GA_1 Regular time interval Our GA
GA_2 Regular time interval GA[8]
Max-min Regular time interval MaxMin
Min-min Regular time interval MinMin
Sufferage Regular time interval Safferage

 The task sizes in a task flow were randomly
generated and two task flows，each of which has 4000
tasks, were simulated. Ten computational nodes with
different processing abilities were also simulated. The
scheduler and all computational nodes are connected
by a network. We scaled the processing abilities of
computational nodes and task sizes simply in integers.
The SE of one task flow was 5000 and the other one is
50000. In all experiments the population size is 80. The
regular time interval is 20s. For any NPC problem, GA
requires no more than exponential time to produce the
result, if the MCL (Minimum Chromosome Length)
growth rate is no more than linear [9]. The execution
time ts of creating a schedule by PTFS is estimated by
the following conservative estimate equation. The error
of this estimation equation is less than 10% in the
worst case.

40)
1580

exp(40 −=
N

ts

 When the arrival rate of tasks is high enough and
swings within a sensitive scope λΗ∼λL, the maxspan of
the task flow with SE = 50000 is shown in Figure 9.
Here the high arrival rate can keep system status
always in the moderate saturation phase, and the
variant arrival rate can keep system status moving
between the deep saturation phase and around the
balance line.

In fact most modern scheduling algorithms can be
quite close to the ideal result tideal. The extent of the
real result being close to tideal depends on the real
problem such as the task heterogeneity and the
processing capacity heterogeneity. Roughly the
optimization on algorithm is limited. Our task
scheduling methodology is not merely to develop an
optimized genetic algorithm; furthermore the dynamic
scheduling cycle strategy can make a good contribution
to the scheduler as a whole. Therefore the advantage of
our scheduler at the variant arrival rate is more obvious
than at high arrival rate.

Figure 9: Maxspan (SE = 50000).

Under the same λΗ and λL, the maxspan of the
task flow with SE = 5000 is shown in Figure 10.

Figure 10: Maxspan (SE = 5000).

The system status is not only related to the arrival
rate of tasks but also the task size. Under the same

λΗ and λL the system status for SE = 5000 is in the deep
saturation phase and moving between the deep
saturation phase and the starvation phase. If the system
status is always in the starvation phase, the differences
of maxspan between our scheduler and the others are
small, and the maxspan in the starvation phase is
mainly decided by the time that all tasks arrive at the
scheduler. So we did not plot the maxspan under a
quite low arrival rate.

In the saturation phase the well balanced
workload implies the high resource utilization. In the
starvation phase the response time of scheduler can
affect the resource utilization, despite the utilization is
low in the starvation phase. The regular time interval
strategy can not achieve the higher utilization at the
high arrival rate and the faster response time at low
arrival rate than our scheduling strategy.

We define the utilization of a node simply as

Maxspani
 i node of timeidle the1 ∑−=µ ,

and the average utilization as

M
i

average
 ∑=

µµ .

Our definition of average utilization is similar with the
definition in [2], but our definition is more suitable for
low arrival rate and variant arrival rate because we do
not simply calculate the task completion time.
 The following experiments illustrate the maxspan
and the resource utilization differences between the
results of PTFS and the best results of other schedulers.
In these experiments the arrival rate swings around the
corresponding average arrival rate with the amplitude
not more than the neighboring average arrival rate. The
results are shown in Figure 11 and 12. In order to plot
all the data together, the maxspans are normalized and
the average arrival rates of tasks are on the logarithmic
scale.

The differences between PTFS and other
schedulers are going to become smaller as the arrival
rate of tasks becomes very small or very large. The
largest differences appear in the moderate saturation
phase and around the balance line. When the arrival
rate of tasks reaches a high enough value, the
differences between PTFS and the other schedulers
will not change, and meanwhile the system status is in
the utmost of the saturation phase, which is the
maximum processing ability of this system. When the
arrival rate is going to be quit low, the differences
between PTFS and the other schedulers are going to
gradually disappear, and meanwhile the maxspan and

utilization are decided by the arrival of tasks.

Figure 11: Utilizations and normalized
maxspan at different λ (SE = 50000).

Figure 12: Utilizations and normalized

maxspan at different λ (SE = 5000).

6. Related work

Usually there is a scheduling system in a grid
environment including meta-scheduler or global
scheduler, global task queue, local scheduler, local task
queue and so on [10, 11, 12]. Our scheduling strategy
and algorithm focus on the resource level in a
computational grid. The model presented in this paper
aims at the local scheduling problem. The scheduling
problem in grid computing environment needs the
practical and realistic solutions rather than the theoretic
ones. Thus it is an inevitable trend to induct the arrival
of tasks and the system status into the research on task
scheduling [11, 12].

The independent task mapping techniques have
been well summarized and compared in [3, 7, 8]. It is
shown that a genetic algorithm is an effective method
for task scheduling. GA was successfully used for task
scheduling in [2, 13, 14, 15, 16]. There are two main
class task scheduling: the immediate mode scheduling
and the batch mode scheduling. The immediate mode
scheduling uses the FCFS strategy to deal with the task
one bye one. For the batch mode scheduling the two
basic elements which should be considered by

scheduling strategy are the time and the count of tasks.
The regular interval time strategy and fixed count
strategy are the simplest ones [3]. In order to improve
the resource utilization, a dynamic batch size strategy
was used to adjust the batch size to avoid long
scheduling time and idle resources [13]. A technique
similar with the dynamic batch size strategy, called
slide window, was used to update the number of tasks
in creating the next schedule [2]. No matter whether
the fixed count or the dynamic batch size, it is difficult
to adapt to the dynamic task flow when the arrival rate
of tasks increases or decreases, even if the dynamic
batch size strategy can change the batch size according
to the resource load and the execution time of
scheduler.

7. Conclusion and future work

In this paper after defining the system status in
terms of utilization, throughput, arrival rate of tasks
and task sizes, we present a scheduling strategy to
adapt to the dynamic task flow, and a genetic algorithm
which is used in the scheduling strategy. According to
the result of simulation our methodology works well,
especially in the situations where the arrival rate of
tasks swings within a scope and the mean of task sizes
is large. In each scheduling cycle our methodology can
achieve more or less advantage over the other
schedulers, but the long-term advantage is obvious. We
believe our methodology is a good solution for
practical resource management in a computational grid.
 In this paper the estimate equation for GA is a
conservative method to calculate the execution time of
our genetic algorithm. Therefore it is possible to
develop a more accurate method. An alterable
population size of GA is more suitable for the variant
number of tasks. Thus the genetic algorithm can be
improved further to shorten the convergence time. In
our strategy it is possible to take the place of the
genetic algorithm with another batch mode scheduling
algorithm, only if the latter one can achieve better
result and is easier to estimate the accurate execution
time.

References

[1] Forster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, San
Francisco, 1999.

[2] A. Y. Zomaya and Y. H. Teh, “Observations on Using
Genetic Algorithms for Dynamic Load-balancing”, IEEE
Trans. Parallel and Distributed System, vol.12, no.9, Sep.
2001.

[3] M. Maheswaran, S. Ali, H. J. Siegel, et al., “Dynamic
Mapping of a Class of Independent Tasks onto
Heterogeneous Computing System”, Journal of Parallel
and Distributed Computing, 59, 1999, pp.107-131.

[4] J. H. Holland, Adaptation in Natural and Artificial
System, Univ. of Michigan Press, 1975

[5] P. C. Chu, and J. E. Beasley, “A Genetic Algorithm for
the Generalised Assignment Problem”, Computer &
Operation Research, 24, 1997, pp17-23.

[6] G. Syswerda, “Uniform Crossover in Genetic
Algorithms”, Proc. 3rd Int’l Conf. on Genetic Algorithms,
2-9, 1989.

[7] T. D. Braun, H. J. Siegel et al., “A Comparison Study of
Static Mapping Heuristic for a Class of Meta-task on
Heterogeneous Computing Systems”, Proc. 8th
Heterogeneous Computing Workshop, San Juan, Puerto
Rico, 1999.

[8] T. D. Braun, H. J. Siegel et al., “A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed Computing
Systems”, Journal of Parallel and Distributed
Computing, 61, 2001, pp.810-837.

[9] B, Rylander, “Computational Complexity and the Genetic
Algorithm”, Ph.D. Dissertation, University of Idaho,
USA, June, 2001.

[10] E. Caron, V. Garonne, A. Tsaregorodtsev, “Evaluation of
Metacheduler Architectures and Task Assignment
Policies for High Throughput Computing”, INRIA
Technical report, 2005, 2005-27.

[11] L. He, S. A. Jarvis, D. P. Spooner et al., “Allocating
Non-Real-Time and Soft Real Time Jobs in
Multiclusters”, IEEE Trans. Parallel and Distributed
System, vol.17, no.2, Feb. 2006, pp 99-112.

[12] V. Berten, J. Goossens, and E. Jeannot, “On the
Distribution of Sequential Jobs in Random Broking for
Heterogeneous Computational Grids”, IEEE Trans.
Parallel and Distributed System, vol.17, no.2, Feb. 2006,
pp113-124.

[13] A. J. Page and T. J. Naughton, “Dynamic Task
Scheduling Using Genetic Algorithms for Heterogeneous
Distributed Computing”, Proc. of 19th IEEE/ACM Intl.
Parallel and Distributed Processing Symposium, Denver,
Colorado, 2005.

[14] A. Y. Zomaya, C. Ward, and B. Macey, “Genetic
Scheduling for Parallel Processor System: Comparative
Studies and Performance Issues”, IEEE Trans. Parallel
and Distributed System, vol.10, no.8, Aug. 1999.

[15] L. Wang, H. J. Siegel, V.P. Roychowdhury, et al., “Task
matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach”,
Journal of Parallel and Distributed Computing, 1997,
pp.8-22.

[16] E.S. H. Hou, N. Absari, and H. Ren, “A Genetic
Algorithm for Mutiprocess Scheduling,” IEEE Trans.
Parallel and Distributed System, vol.5, no.2, 1994.

