
An Adaptive Directed Query Dissemination Scheme for Wireless Sensor
Networks

Supriyo Chatterjea*, Simone De Luigi§, and Paul Havinga*
*Department of Computer Science, University of Twente, P.O. Box 217, 7500AE Enschede,

The Netherlands,
§Dipartimento di Ingegneria, Università di Ferrara Via Saragat, 1-44100 Ferrara, Italy

*{supriyo, havinga}@cs.utwente.nl, §simone.de.luigi@student.unife.it

Abstract

This paper describes a directed query dissemination

scheme, DirQ that routes queries to the appropriate
source nodes based on both constant and dynamic-
valued attributes such as sensor types and sensor
values. Unlike certain other query dissemination
schemes, location information is not essential for the
operation of DirQ. DirQ uses only locally available
information in order to route queries accurately.
Nodes running DirQ are able to adapt autonomously
to changes in network topology due to certain cross-
layer features that allow it to exchange information
with the underlying MAC protocol. DirQ allows nodes
to autonomously control the rate of sending update
messages in order to keep the routing information
updated. The rate of sending updates is dependent on
both the number of queries injected into the network
and the rate of variation of the measured physical
parameter. Our results show that DirQ spends between
45% and 55% the cost of flooding.

1. Introduction

Wireless sensor networks (WSNs) are made up of
tiny devices equipped with wireless transceivers that
communicate with each other through multihop
networks. They have a very limited computing
capability and are usually battery-operated. The sensor
nodes can have a host of sensor types attached to them
to measure a range of physical parameters such as
temperature, light, humidity, etc.

While there are a whole spectrum of application
scenarios for WSNs driving sensor network research
[1], we focus on one of the key applications –
Environmental monitoring. More specifically, we
concentrate on how to query the environmental sensor
network in an energy-efficient manner. Thus, our

design describes how to accurately locate the necessary
sensors to help fulfill the request specified in the query
injected by a user into the network. This paper does
not deal with the data extraction mechanisms that come
into play once the required data sources have been
identified and located.

When designing a querying scheme for WSNs, it is
important to recognize the various forms of dynamism
that exist within the network due to both extrinsic and
intrinsic factors. An example of an extrinsic factor
would be the varying rate at which queries may be
injected into the network while an intrinsic factor
would be the rate of variation of the physical
parameter being measured or changes in network
topology. Rather than designing a static querying
scheme which disregards all sources of dynamism, a
protocol designer should try to take advantage of these
variations by allowing the querying scheme to adapt
accordingly. For example, nodes should spend more
energy capturing information when user demand is
high or when significant changes take place in the
physical parameters being measured. Conversely,
nodes should try to conserve energy by operating more
economically during periods of inactivity.

In this paper we describe an adaptive directed query
dissemination scheme (DirQ) which tries to ensure that
queries are only delivered to the relevant nodes in the
network. By relevant nodes, we refer to nodes that are
either able to service a particular query (source nodes)
and also forwarding nodes through which a query
needs to propagate in order to reach the source nodes.
The DirQ scheme works in contrast to the conventional
approach of flooding the entire network every time a
user poses a query. In order to ensure accurate
delivery, all nodes in the network need to store some
information that can eventually be used for limiting the
dissemination of a query only to the appropriate
regions of the network. Instead of updating this

information on a periodic basis, DirQ adapts the
update rate based on the rate at which queries are
injected into the network and the rate of variation of
the physical parameter being measured.

While DirQ is predominantly designed for fixed
networks, it is able to cope with changes in network
topology caused by the addition or death or removal of
sensor nodes. This is due to the fact that DirQ
incorporates certain cross-layer features which allow it
to gather information from the underlying MAC
protocol [2]. It also has a scalable architecture as it
allows for the addition of new sensor types after
deployment of sensors has been completed, i.e. a user
is not required to have prior information about all the
types of sensors that may be added to the network after
the initial deployment.

Our simulations indicate that DirQ is fairly accurate
(i.e. it suffers from an average overshoot of only
3.6%), even though the cost of DirQ hovers between
45% and 55% of flooding. They also illustrate how
individual nodes are able to make autonomous
decisions about the update rate to be used at any point
of time based on locally available information.

In the following section we present current research
related to the area of query dissemination in WSNs.
Section 3 describes an example application where
DirQ could be used. It helps to define the requirements
of the design and the assumptions we make. We then
present the actual operation of DirQ in Section 4 and
an analytical evaluation in Section 5. Section 6
describes details of the Adaptive Threshold Control
mechanism which allows nodes to change update rates
autonomously. Simulation results are presented in
Section 7 and finally, the paper is concluded in Section
8.

2. Related work

Our work focuses on directing injected one-shot
range queries to the relevant parts of the network
instead of carrying out a simple flooding of the entire
network. What sets DirQ apart from the majority of the
other existing schemes for sensor networks is that
queries can be directed based on a combination of
static and dynamic attributes, e.g. sensor values
(dynamic), sensor types (static) and even location
(static) if it is available. Thus two identical queries
could follow two completely different paths during
different times of the day. Moreover, since DirQ can
operate based on just sensor value and sensor type
information, it is not dependent on any underlying
localization mechanism. Having location information
would of course extend the capabilities of DirQ. The
problem of directing queries to the appropriate section

of the network has been addressed in numerous query
dissemination architectures.

Directed diffusion [3], [4] is an example of a data-
centric routing protocol, i.e. routing is performed based
on the name of the data rather than the identity of the
destination node. The Directed diffusion substrate can
route queries to specific locations. However, it requires
geographic information embedded in it in order to do
this.

Our work is closely related to Semantic Routing
Trees (SRT) presented in [5]. SRT is based on a
distributed index. SRT however, only considers single
attributes where as DirQ can use multiple attributes.
Also, SRT is more suited for constant attributes such
as location, where as DirQ is capable of working with
varying attributes.

The authors in [6] present COUGAR which views
the sensor network as a distributed database. However,
the main problem with their approach is that a large
amount of meta-data needs to be transferred to the
query-processor on a periodic basis. The architecture
of DirQ ensures that nodes are able to take
autonomous decisions based on locally available
information and thus adapt to changing network
dynamics.

There are also a number of data-centric storage
mechanisms designed specifically for wireless sensor
networks. DCS [8] is a scheme which provides a
hashing function for mapping an event name to a
specific location. DIFS [7] and DIM [9] extend the
data-centric approach to provide spatially distributed
hierarchies of indexes to data. However, DCS, DIFS
and DIM all require location information and are
actually dependent on GPSR as the underlying routing
protocol. Additionally, these complex indexing
schemes may be too complex for sensor-class nodes as
they require maintaining significant state and large
tables. It should be noted that DIM for example, was
tested on PDA and PC platforms. The operation of
DirQ on the other hand, has been kept relatively simple
as nodes only store information from their local, one-
hop neighborhood.

3. Details of application

This query dissemination scheme is targeted for

applications such as environmental monitoring where a
large number of queries can be expected to be injected
into the network. For example a network that is laid
out to monitor a various physical parameters in a forest
may be used by researchers at the university, and the
public in general.

We have made a few assumptions about the queries
posed to the network and about the network itself.

Firstly, due to the large variety of users, ranging from
researchers to students and even the public, the
network can expect to be faced with a very large
number of queries. Queries can also be multi-
dimensional in nature, e.g. while some users might be
interested in temperature data, others might be
interested in humidity. Users are expected to inject
one-shot range queries into the network, e.g. “Acquire
all temperature readings that are currently between
22°C and 25°C.” We also assume that the server
connected to the root of the sensor network (which is
in-charge of injecting queries) is capable of predicting
the number of queries that will be posed to the network
in the next hour based on historical data. The
techniques used to make this prediction can be similar
to the ones used in web servers to predict web page
accesses [10].

4. Operation of DirQ

The operation of DirQ has a number of phases. We
first provide the reader with an overview of the phases
and then describe them in greater detail in the
following sections. Once the nodes have been placed
in the network, a spanning tree is set up. Subsequently,
the root node broadcasts an estimate message, EHr, of
the number of queries that can be expected to be
injected into the network over the next hour. This
operation is repeated by the root once every hour.
Next, a receiving node combines the estimate received
with the local conditions of the physical parameter
being measured (e.g. temperature, humidity, etc.) to
decide upon a suitable threshold value. A node decides
whether to transmit an update message when the
threshold value is exceeded. An update message is
made up of a tuple that consists of minimum and
maximum sensor readings and is used by nodes to
maintain range information of sensor readings. This
range information is subsequently used to direct a
query only to the relevant nodes instead of flooding the
entire network, thus resulting in substantial energy
savings.

4.1. Maintaining the range table

Upon receiving an EHr message from the root, a
node calculates the threshold value, δ. (Section 6
describes how δ is calculated.) When a node acquires a
sensor reading, RAq, it sets a minimum threshold, THmin
and a maximum threshold, THmax where,

THmin = RAq – δ (1)

THmax = RAq + δ (2)

THmin and THmax are put together to form a tuple
which is referred to as a Range Message. The Range
Message is then inserted into the Range Table of the
node. If a newly acquired sensor reading falls outside
the range of THmin and THmax, it is considered as the
new RAq and new THmin and THmax values are computed
as shown above and inserted into the Range Table.
However, if the newly acquired reading falls within
THmin and THmax, the existing range values in the
Range Table are left unchanged. Thus only major
temperature changes are reflected in the node’s Range
Table. This process that takes place within every node
is illustrated in Fig. 1.

Apart from storing a node’s own THmin and THmax
values, the Range Table of a node also contains all the
minimum and maximum threshold values of all its
immediate child nodes (i.e. child nodes that are just
one hop away). Thus the Range Table of a node that
has n child nodes one hop away contains n+1 tuples of
THmin and THmax (i.e. one tuple for a node’s own entry
and one tuple each for all n child nodes).

Every time the Range Table of a node is modified
(i.e. one of the THmin or THmax values is changed), the
node parses through the table and picks out the
minimum THmin and the maximum THmax among all the
entries, i.e. min(THmin) and max(THmax) respectively.
This is shown in Fig. 2. These values are then
compared with the previously transmitted min(THmin)
and max(THmax) values, i.e. prev_min(THmin) and
prev_max(THmax). If min(THmin) or max(THmax) differs

Min

min2 max2

min3 max3

min4 max4

Max

N2

N3

N4

A

} }
min()TH

min
m ()ax TH

max

Range Table for Sensor Type A

Figure 1. Local update of range table

Figure 2. Picking the maximum and
minimum threshold values

from prev_min(THmin) or prev_max(THmax)
respectively by an amount greater than δ, then the node
transmits a new Update Message that contains the new
min(THmin) and max(THmax) values. Thus, only
significant changes in sensor readings trigger an
Update Message that traverses upwards towards the
root of the network which in turn ensures that the
range information stored in nodes en route to the root
remain updated. This helps to direct range queries
more accurately to the relevant parts of the network.
This process of transmitting Update Messages is
illustrated in Fig. 3.

Every node can contain one or more Range Tables.
Each Range Table contains range information for a
single sensor type. As an example, Fig. 4 shows that
Node N1 maintains three separate Range Tables for
sensor types A, B and C. This is despite the fact that
N1 only has sensor type C. The presence of a
particular range table within a node means that the
corresponding sensor type exists either within the node
itself, or within one or more of the children deeper
within the tree structure. This design of the Range
Tables allows the network to be made up of
heterogeneous nodes (i.e. different nodes can possess a
different combinations of sensors). This is a great
benefit over previous architectures such as TinyDB
which only supports homogeneous networks.

4.2. Adapting to network dynamics

The Range Tables of DirQ are able to adapt to

changes within the network topology due to dead
nodes or the addition of new nodes. This is because of
DirQ’s cross-layer interaction with LMAC [2]. LMAC
is a TDMA-based MAC protocol with a completely
distributed and self-organizing scheduling algorithm.
When LMAC detects that a neighboring node has died,
it sends a notification to DirQ which then checks to see
how the removal of the neighboring node has affected
its Range Table. Any changes in the range information
are then propagated up the tree. Similarly, any changes

in sensor types such as the addition or removal of
sensors also propagates up the tree.

5. Analytical analysis

In this section we carry out an analytical
comparison of the performance of flooding and
directed query dissemination. Since the basic
mechanism of DirQ is based on a tree, we perform our
analysis using a k-nary tree with depth d. We also
mention another reason for using a k-nary tree for the
analytical comparison in Section 5. Additionally, the
cost of transmitting a message is assumed to be one
unit while the cost of receiving a message is also
assumed to be one unit.

5.1. Cost of flooding

Before describing how we analyze the cost of

flooding, we first explain how a flooding operation is
carried out in order to justify the analysis later on.

When performing a flooding operation, a node
transmits a message to its neighbors using a broadcast
operation. We assume this behavior is followed by all
nodes in the network no matter where the nodes may
be located and is carried out regardless of the number
of neighbors a node has. Thus even if a node does not
have any other neighbor apart from the node it has
received a message from, it still carries out a broadcast
operation.

Therefore, regardless of the topology of the
network, the transmission cost for flooding one query
in a network of N nodes is N because each node sends
only one MAC broadcast per query. Conversely,
during a flooding operation, each node receives the
query from all its neighbors. Thus the reception cost
for a particular query is determined by two times the
number of links in the network. The total cost of

prev_min()TH
min

(prev_min() +TH TH
min max

prev_max())/2

prev_max()TH
max

Transmit an Update
Message if new

min() falls in

this shaded region.

TH
min

Transmit an Update
Message if new

m () falls in

this shaded region.

ax TH
max

Figure 3. Transmission of an update
message

Figure 4. Support for multiple sensor
types

flooding in a network of N nodes can then be
computed as follows:

CFTotal = CTx + CRx= N + (2 x Total no. of links) (3)

where CFTotal is the total cost of flooding, CTx is the
cost of transmission, and CRx is the cost of reception.
Note that we use N for the cost of transmission since it
is a broadcast operation and not a unicast. We only
consider edges for unicast operations.

Since we are focusing on a specific case of using a
k-nary tree (due to the nature of DirQ), we calculate
the cost to flood one query to a k-nary tree with depth
d as follows (we refer the reader to [13] for the
detailed derivation):

CFTotal =
1

123 1

−
−−+

k
kk d

 (4)

5.2. Cost of directed query dissemination
scheme

In a flooding operation, energy is consumed
disseminating a query to the entire network. In DirQ
however, there are two sources of energy consumption
– (i) directing a query to the relevant nodes in the
network and (ii) the update mechanism to keep the
minimum and maximum ranges updated. As there are
two sources of energy consumption in the directed
query dissemination scheme as opposed to only a
single source in the flooding mechanism, the reader
may be inclined to think that DirQ consumes more
energy than the flooding mechanism. However, we
ensure that this does not happen by adding an adaptive
feature to the second source in DirQ, i.e. the update
mechanism known as the Adaptive Threshold Control
(ATC) mechanism. ATC ensures that the cost of DirQ
always remains below the cost of flooding.

The cost of function of DirQ can be defined as
follows:

CTD = CQD + CUD (5)

where CTD is the total cost of DirQ for a single
query, CQD is the cost of disseminating one query to
the relevant nodes and CUD is the cost of sending an
update message. It is important to realize that the cost
of disseminating a query to the relevant nodes, i.e.
CQD, is really dependent on where the nodes are
located within the communication tree. For example, if
the nodes relevant to the query are located close to the
root, the dissemination cost will be much lower than
another query whose relevant nodes might be located

much deeper within the tree. This is because the deeper
the relevant nodes are within the tree, the greater will
be number of nodes involved in forwarding the query.
The spread of the relevant nodes within the tree is also
another factor that affects the cost of disseminating a
particular query, i.e. the greater the spread of the
relevant nodes, the greater the dissemination cost.
From these examples, it is apparent that the maximum
cost of disseminating a query (i.e. CQDmax) will occur
only when all the leaf nodes of a tree are involved in
servicing a query. This is another reason why we use a
k-nary tree (as opposed to using an incomplete tree) to
compute the maximum cost of query dissemination as
this ensures that the number of leaf nodes is maximum.

The computation of the worst case of DirQ occurs
when both CQD and CUD are maximum. CUDmax occurs
when all the nodes in the network transmit an Update
Message.

Furthermore, it should be noted that when
calculating the maximum query dissemination cost, the
leaf nodes do not transmit the query. This implies that
only nodes within d-1 hops from the root will be
involved in query transmission. Also, since all queries
are being unicast, we assume that the cost of
transmission is equal to the cost of reception.
Therefore, the maximum cost of query dissemination is
(we refer the reader to [13] for the detailed derivation),

CQDmax 1
11

−
−−+

=
+

k
kkk dd

 (6)

For calculating CUDmax we assume that all the nodes
in the network send one update message. We introduce
a variable f which indicates the frequency at which
updates are received at the root. So for example, if one
update is received at the root every 10 queries, then f =
0.1. Thus the maximum cost of sending an update can
be calculated as follows:

CUDmax 1
)(2 1

−
−

=
+

k
kk d

 (7)

Then the maximum cost of DirQ is,

CTDmax = CQmax+ f x CUDmax

1
)(21 11

−
−+−−+

=
++

k
kkfkkk ddd

 (8)

5.3. Keeping the cost of DirQ below that of
flooding

When using DirQ, it is essential to ensure that its
cost is always kept below that of flooding. Thus we
need to consider the worst case of DirQ and adapt it to
make sure that it does not exceed the cost of flooding.
This is performed by ensuring that CUDmax < CFTotal.
Thus,

fMax
)(2

2
1

1

kk
kkk

d

dd

−
−−

<
+

+

 (9)

where fMax is the maximum number of updates that a
node can transmit per query to guarantee that DirQ
does not surpass the cost of flooding. So as an
example, if k = 2 and d = 4, then fMax<0.76, i.e there
can be at the most 0.76 updates per query or 1 update
every 1.03 queries in order for the directed query
dissemination scheme to be more energy efficient than
flooding. Note however, that this is for the worst case.
This implies that for example that you could have say
2 updates per query (i.e. fMax=2) when the query is
disseminated only to a few nodes that are close to the
root or all nodes in the network are not involved in
sending update messages.

6. Adaptive threshold control

DirQ uses an Adaptive Threshold Control (ATC)
mechanism which changes the value of δ dynamically.
The chosen value of δ is dependent on the number of
queries that are expected to be injected into the
network over the next hour and also on the rate of
change of the measured data. Due to space constraints
we refer the reader to [13] which contains a detailed
description of the ATC mechanism. The ATC
mechanism ensures that the cost of DirQ ranges
between 45% and 55% the cost of flooding.

7. Simulation results

In this section, we evaluate the performance of
DirQ using simulations and compare its performance
in relation to flooding. Our simulations intend to
highlight the strengths of DirQ in terms of energy
savings and also in terms of the accuracy of our
directed dissemination scheme. The primary objectives
of the simulations are to illustrate: (i) how DirQ

maintains a cost below that of flooding and yet attains
a high level of accuracy for the current network and
environmental conditions, (ii) how DirQ allows
individual nodes to make their own decisions (about
what threshold level to use) autonomously based on
current network and environmental conditions without
the external influence of the user of the sensor
network.

We initially examine the effects of accuracy and
efficiency of query dissemination when using fixed
thresholds (i.e. fixed values of δ). We then illustrate
how the ATC mechanism curbs the total cost such that
it is below flooding and yet maintains an acceptable
level of accuracy. We also show how nodes adjust
their threshold levels autonomously using the ATC
mechanism according to the current environmental
conditions.

The simulation is performed using OMNeT++
which is a discrete event simulator [11]. The results are
based on a network topology of 50 nodes which
includes one root where k=8 and d=10. DirQ was
implemented on top of the LMAC protocol [2]. A
synthetic dataset with 4 sensor types has been
generated where sensor values of nodes located close
to one another are spatially related. The generated
sensor data is also related in the temporal dimension.
Each sensor acquires a reading every time unit for a
period of 20,000 time units. We refer to each time unit
as an epoch [12]. Random queries which covered 20%,
40% and 60% of the nodes were generated every 20
epochs.

7.1. Using fixed threshold values

We initially perform simulations to investigate the
effects when fixed threshold values were used.
Threshold values are fixed at δ = 3%, 5% and 9%. For
every value of δ we also examined how the percentage
of nodes involved in responding to a query would
affect the results.

Note that the percentage of nodes involved in a
query is not directly dependent on the selectivity of the
query itself. As an example, even if the selectivity of a
particular query is very high (i.e. only a small number
of nodes are involved) the percentage of nodes
involved in answering the query is highly dependent
on the location of the relevant nodes within the
communication tree. If the relevant nodes are located
very close to the root, the selectivity would be
proportional to the number of nodes involved in the
query. However, if the nodes are located deep within
the network, propagating the query to the relevant
nodes would be a lot more expensive due to the large
number of intermediate forwarding nodes involved.

Thus our definition of “percentage of nodes involved
in responding to a query” involves not only the
relevant nodes but also the intermediate forwarding
nodes.

Our first result studies how the accuracy of the
directed query dissemination scheme is affected using
various levels of δ. Let us first state how we define the
term accuracy. When a query is injected, ideally it
should be directed only to the relevant nodes in the
network. However, this does not happen in reality due
to the threshold levels used in the network. Since the
transmission of updates is dependent on the value of δ
and the rate of change of the measured parameters, the
range values maintained by the nodes is not always
accurate. Thus in certain instances, queries could be
routed to nodes which are not relevant to a particular
query. Naturally, routing queries to the non-relevant
nodes, also consumes energy. We measure accuracy by
computing the proportion of nodes that are being
reached in response to a query to nodes that should be
reached. Nodes that “should” be reached refer to both
source nodes and intermediate forwarding nodes.

The results in Fig. 5 indicate that as the threshold
increases (i.e. value of δ) the difference between the
percentage of nodes that receive a query and the
percentage of nodes that should receive the query
increases. This is because as δ increases, the range
information becomes more inaccurate. This effect is
less pronounced as the percentage of relevant nodes
increases. This is because when more nodes are
involved in servicing a particular query, the probability

of routing queries to wrong nodes diminishes greatly.
The value of δ clearly plays a more significant role
when the percentage of relevant nodes is small.

Our results in [13] also indicate that the energy
saved due to the transmission of a lesser number of
updates is far greater than the cost incurred due to the
transmission of incorrect queries. Thus increasing δ
does have a net positive effect.

7.2. Using the adaptive threshold control

We now describe the effects of the Adaptive

Threshold Control (ATC) scheme. ATC enables
individual nodes to autonomously adjust the value of δ.
The main drawback of using a fixed threshold is that
there is a possibility that the cost of the directed
dissemination scheme may exceed the cost of flooding.
Fig. 6 shows the total number of Update Messages that
are transmitted by all the nodes in the network every
100 epochs over a period of 20,000 epochs. It can be
seen that the ATC is successfully able to adapt the
transmission rate such that its cost lies around the
region where the cost is roughly around 45-55% the
cost of flooding. The performance remains constant for
varying percentages of relevant nodes.

Fig. 5 has shown that the danger of increasing δ
results in the query dissemination scheme becoming
less accurate. The main idea of having the ATC is to
ensure that while the number of updates transmitted is
limited, the accuracy (i.e. overshoot) should not
decrease significantly. Fig. 7 shows that the average
overshoot when using the ATC is only around 3.6%
when we consider the 20% of relevant nodes scenario.

8. Conclusion and future work

We presented a Directed Query Dissemination
Scheme which tries to ensure that queries injected into
the network are only sent to the relevant nodes instead
of flooding. DirQ routes queries based on sensor

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

Percentage of relevant nodes = 40%

Epoch

T
ot

al
 N

o.
 o

f U
pd

at
e

M
sg

s.
 tr

an
sm

itt
ed

 e
ve

ry
 1

00
 e

po
ch

s

delta = 3%
delta = 5%
delta = 9%
delta = ATC
Umax/Hr
0.55*Umax/Hr
0.45*Umax/Hr

 Figure 6. Effect of delta on accuracy

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100
Percentage of relevant nodes = 40%

Threshold, delta (%)

P
er

ce
nt

ag
e

of
 N

od
es

Nodes that SHOULD receive a query
Nodes that RECEIVE a query
Source nodes
Nodes that SHOULD NOT receive a query

(a)

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100
Percentage of relevant nodes = 60%

Threshold, delta (%)

P
er

ce
nt

ag
e

of
 N

od
es

Nodes that SHOULD receive a query
Nodes that RECEIVE a query
Source nodes
Nodes that SHOULD NOT receive a query

(b)

 Figure 5. Effect of delta on accuracy

values and sensor types. It ensures that information in
routing tables is accurate by sending update messages.
The rate at which update messages are transmitted is
dependent on the level of usage of the network and the
also the rate of variation of the physical parameter
being measured by the sensors. Thus every node in the
network is able to control its threshold level
autonomously.

A drawback of DirQ is that we assume that nodes
are able to sample sensors continuously to check if the
thresholds have been exceeded. This consumes a lot of
energy. We are currently developing a statistical
prediction technique that can be used by DirQ to
ensure that sensor sampling costs are minimized.

9. References

[1] I. F. Akyildiz et al., Wireless sensor networks: a survey,
Computer Networks, Vol. 38, pp. 393-422, March 2002.

[2] L. van Hoesel and P. Havinga, A lightweight medium
access protocol (LMAC) for wireless sensor networks:
Reducing preamble transmissions and transceiver state
switches. In Proceedings of 1st International Workshop on
Networked Sensing Systems, 2004.

[3] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and
Networking, Boston, MA, USA, Aug. 2000.ACM, pp. 56-67.

[4] D. Estrin, R. Govindan, J. Heidermann, and S. Kumar.
Next Century Challenges: Scalable Coordination in Sensor
Networks. In MobiCOM, 1999.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong. The design of an acquisitional query processor for
sensor networks. In SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD international conference on Management of
data,pages 491–502. ACM Press, 2003.

[6] Y. Yao and J. Gehrke. The cougar approach to in-
network query processing in sensor networks. In SIGMOD
Record, September 2002.

[7] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker. DIFS: A Distributed Index for Features in Sensor
Networks. In Proceedings of 1st IEEE International
Workshop on Sensor Network Protocols and Applications,
Anchorage, AK, May 2003.

[8] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,R.
Govindan, and S. Shenker. GHT: A Geographic Hash Table
for Data-Centric Storage. In Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and
Applications, Atlanta, GA, September 2002.

[9] X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-
dimensional range queries in sensor networks,” in
Proceedings of the First International Conference on
Embedded Networked Sensor Systems. ACM Press, 2003, pp.
63–75.

[10] E. Cohen, B. Krishnamurthy and J. Rexford, Efficient
algorithms for predicting requests to web servers. In
Proceedings of the IEEE INFOCOM ’99 Conference, 1999.

[11] Omnet++ discrete event simulator,
http://www.omnetpp.org.

[12] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks, In Proceedings of VLDB, 2004.

[13] S. Chatterjea, S. de Luigi and P. Havinga. DirQ: A
Directed Query Dissemination Scheme for Wireless Sensor
Networks, In Proceedings of the IASTED International
Conference on Wireless Sensor Networks, Banff, Alberta,
Canada, July 2006.

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

2

4

6

8

10
Percentage of relevant nodes = 20%

Epoch

O
ve

rs
h
o
o
t
(%

)

delta = 3%
delta = 5%
delta = 9%
delta = ATC

Figure 7. Overshoot using different δ
and the ATC

