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Abstract 

 
This paper describes a directed query dissemination 

scheme, DirQ that routes queries to the appropriate 
source nodes based on both constant and dynamic-
valued attributes such as sensor types and sensor 
values. Unlike certain other query dissemination 
schemes, location information is not essential for the 
operation of DirQ. DirQ uses only locally available 
information in order to route queries accurately. 
Nodes running DirQ are able to adapt autonomously 
to changes in network topology due to certain cross-
layer features that allow it to exchange information 
with the underlying MAC protocol. DirQ allows nodes 
to autonomously control the rate of sending update 
messages in order to keep the routing information 
updated. The rate of sending updates is dependent on 
both the number of queries injected into the network 
and the rate of variation of the measured physical 
parameter. Our results show that DirQ spends between 
45% and 55% the cost of flooding. 
 
1. Introduction 
 

Wireless sensor networks (WSNs) are made up of 
tiny devices equipped with wireless transceivers that 
communicate with each other through multihop 
networks. They have a very limited computing 
capability and are usually battery-operated. The sensor 
nodes can have a host of sensor types attached to them 
to measure a range of physical parameters such as 
temperature, light, humidity, etc. 

While there are a whole spectrum of application 
scenarios for WSNs driving sensor network research 
[1], we focus on one of the key applications – 
Environmental monitoring. More specifically, we 
concentrate on how to query the environmental sensor 
network in an energy-efficient manner. Thus, our 

design describes how to accurately locate the necessary 
sensors to help fulfill the request specified in the query 
injected by a user into the network. This paper does 
not deal with the data extraction mechanisms that come 
into play once the required data sources have been 
identified and located. 

When designing a querying scheme for WSNs, it is 
important to recognize the various forms of dynamism 
that exist within the network due to both extrinsic and 
intrinsic factors. An example of an extrinsic factor 
would be the varying rate at which queries may be 
injected into the network while an intrinsic factor 
would be the rate of variation of the physical 
parameter being measured or changes in network 
topology. Rather than designing a static querying 
scheme which disregards all sources of dynamism, a 
protocol designer should try to take advantage of these 
variations by allowing the querying scheme to adapt 
accordingly. For example, nodes should spend more 
energy capturing information when user demand is 
high or when significant changes take place in the 
physical parameters being measured. Conversely, 
nodes should try to conserve energy by operating more 
economically during periods of inactivity.  

In this paper we describe an adaptive directed query 
dissemination scheme (DirQ) which tries to ensure that 
queries are only delivered to the relevant nodes in the 
network. By relevant nodes, we refer to nodes that are 
either able to service a particular query (source nodes) 
and also forwarding nodes through which a query 
needs to propagate in order to reach the source nodes. 
The DirQ scheme works in contrast to the conventional 
approach of flooding the entire network every time a 
user poses a query. In order to ensure accurate 
delivery, all nodes in the network need to store some 
information that can eventually be used for limiting the 
dissemination of a query only to the appropriate 
regions of the network. Instead of updating this 



information on a periodic basis, DirQ adapts the 
update rate based on the rate at which queries are 
injected into the network and the rate of variation of 
the physical parameter being measured. 

While DirQ is predominantly designed for fixed 
networks, it is able to cope with changes in network 
topology caused by the addition or death or removal of 
sensor nodes. This is due to the fact that DirQ 
incorporates certain cross-layer features which allow it 
to gather information from the underlying MAC 
protocol [2]. It also has a scalable architecture as it 
allows for the addition of new sensor types after 
deployment of sensors has been completed, i.e. a user 
is not required to have prior information about all the 
types of sensors that may be added to the network after 
the initial deployment.  

Our simulations indicate that DirQ is fairly accurate 
(i.e. it suffers from an average overshoot of only 
3.6%), even though the cost of DirQ hovers between 
45% and 55% of flooding. They also illustrate how 
individual nodes are able to make autonomous 
decisions about the update rate to be used at any point 
of time based on locally available information. 

In the following section we present current research 
related to the area of query dissemination in WSNs. 
Section 3 describes an example application where 
DirQ could be used. It helps to define the requirements 
of the design and the assumptions we make. We then 
present the actual operation of DirQ in Section 4 and 
an analytical evaluation in Section 5. Section 6 
describes details of the Adaptive Threshold Control 
mechanism which allows nodes to change update rates 
autonomously. Simulation results are presented in 
Section 7 and finally, the paper is concluded in Section 
8. 
 
2. Related work 
 

Our work focuses on directing injected one-shot 
range queries to the relevant parts of the network 
instead of carrying out a simple flooding of the entire 
network. What sets DirQ apart from the majority of the 
other existing schemes for sensor networks is that 
queries can be directed based on a combination of 
static and dynamic attributes, e.g. sensor values 
(dynamic), sensor types (static) and even location 
(static) if it is available. Thus two identical queries 
could follow two completely different paths during 
different times of the day. Moreover, since DirQ can 
operate based on just sensor value and sensor type 
information, it is not dependent on any underlying 
localization mechanism. Having location information 
would of course extend the capabilities of DirQ. The 
problem of directing queries to the appropriate section 

of the network has been addressed in numerous query 
dissemination architectures. 

Directed diffusion [3], [4] is an example of a data-
centric routing protocol, i.e. routing is performed based 
on the name of the data rather than the identity of the 
destination node. The Directed diffusion substrate can 
route queries to specific locations. However, it requires 
geographic information embedded in it in order to do 
this. 

Our work is closely related to Semantic Routing 
Trees (SRT) presented in [5]. SRT is based on a 
distributed index. SRT however, only considers single 
attributes where as DirQ can use multiple attributes. 
Also, SRT is more suited for constant attributes such 
as location, where as DirQ is capable of working with 
varying attributes. 

The authors in [6] present COUGAR which views 
the sensor network as a distributed database. However, 
the main problem with their approach is that a large 
amount of meta-data needs to be transferred to the 
query-processor on a periodic basis. The architecture 
of DirQ ensures that nodes are able to take 
autonomous decisions based on locally available 
information and thus adapt to changing network 
dynamics. 

There are also a number of data-centric storage 
mechanisms designed specifically for wireless sensor 
networks. DCS [8] is a scheme which provides a 
hashing function for mapping an event name to a 
specific location. DIFS [7] and DIM [9] extend the 
data-centric approach to provide spatially distributed 
hierarchies of indexes to data. However, DCS, DIFS 
and DIM all require location information and are 
actually dependent on GPSR as the underlying routing 
protocol. Additionally, these complex indexing 
schemes may be too complex for sensor-class nodes as 
they require maintaining significant state and large 
tables. It should be noted that DIM for example, was 
tested on PDA and PC platforms. The operation of 
DirQ on the other hand, has been kept relatively simple 
as nodes only store information from their local, one-
hop neighborhood. 

 
3. Details of application 

 
This query dissemination scheme is targeted for 

applications such as environmental monitoring where a 
large number of queries can be expected to be injected 
into the network. For example a network that is laid 
out to monitor a various physical parameters in a forest 
may be used by researchers at the university, and the 
public in general. 

We have made a few assumptions about the queries 
posed to the network and about the network itself. 



Firstly, due to the large variety of users, ranging from 
researchers to students and even the public, the 
network can expect to be faced with a very large 
number of queries. Queries can also be multi-
dimensional in nature, e.g. while some users might be 
interested in temperature data, others might be 
interested in humidity. Users are expected to inject 
one-shot range queries into the network, e.g. “Acquire 
all temperature readings that are currently between 
22°C and 25°C.” We also assume that the server 
connected to the root of the sensor network (which is 
in-charge of injecting queries) is capable of predicting 
the number of queries that will be posed to the network 
in the next hour based on historical data. The 
techniques used to make this prediction can be similar 
to the ones used in web servers to predict web page 
accesses [10]. 

 
4. Operation of DirQ 
 

The operation of DirQ has a number of phases. We 
first provide the reader with an overview of the phases 
and then describe them in greater detail in the 
following sections. Once the nodes have been placed 
in the network, a spanning tree is set up. Subsequently, 
the root node broadcasts an estimate message, EHr, of 
the number of queries that can be expected to be 
injected into the network over the next hour. This 
operation is repeated by the root once every hour. 
Next, a receiving node combines the estimate received 
with the local conditions of the physical parameter 
being measured (e.g. temperature, humidity, etc.) to 
decide upon a suitable threshold value. A node decides 
whether to transmit an update message when the 
threshold value is exceeded. An update message is 
made up of a tuple that consists of minimum and 
maximum sensor readings and is used by nodes to 
maintain range information of sensor readings. This 
range information is subsequently used to direct a 
query only to the relevant nodes instead of flooding the 
entire network, thus resulting in substantial energy 
savings. 

 

4.1. Maintaining the range table 
 

Upon receiving an EHr message from the root, a 
node calculates the threshold value, δ. (Section 6 
describes how δ is calculated.) When a node acquires a 
sensor reading, RAq, it sets a minimum threshold, THmin 
and a maximum threshold, THmax where, 

THmin = RAq – δ  (1) 

THmax = RAq + δ  (2) 

THmin and THmax are put together to form a tuple 
which is referred to as a Range Message. The Range 
Message is then inserted into the Range Table of the 
node. If a newly acquired sensor reading falls outside 
the range of THmin and THmax, it is considered as the 
new RAq and new THmin and THmax values are computed 
as shown above and inserted into the Range Table. 
However, if the newly acquired reading falls within 
THmin and THmax, the existing range values in the 
Range Table are left unchanged. Thus only major 
temperature changes are reflected in the node’s Range 
Table. This process that takes place within every node 
is illustrated in Fig. 1. 

Apart from storing a node’s own THmin and THmax 
values, the Range Table of a node also contains all the 
minimum and maximum threshold values of all its 
immediate child nodes (i.e. child nodes that are just 
one hop away). Thus the Range Table of a node that 
has n child nodes one hop away contains n+1 tuples of 
THmin and THmax (i.e. one tuple for a node’s own entry 
and one tuple each for all n child nodes). 

Every time the Range Table of a node is modified 
(i.e. one of the THmin or THmax values is changed), the 
node parses through the table and picks out the 
minimum THmin and the maximum THmax among all the 
entries, i.e. min(THmin) and max(THmax) respectively. 
This is shown in Fig. 2. These values are then 
compared with the previously transmitted min(THmin) 
and max(THmax) values, i.e. prev_min(THmin) and 
prev_max(THmax). If min(THmin) or max(THmax) differs 
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Figure 1. Local update of range table 

Figure 2. Picking the maximum and 
minimum threshold values 



from prev_min(THmin) or prev_max(THmax)  
respectively by an amount greater than δ, then the node 
transmits a new Update Message that contains the new 
min(THmin) and max(THmax) values. Thus, only 
significant changes in sensor readings trigger an 
Update Message that traverses upwards towards the 
root of the network which in turn ensures that the 
range information stored in nodes en route to the root 
remain updated. This helps to direct range queries 
more accurately to the relevant parts of the network. 
This process of transmitting Update Messages is 
illustrated in Fig. 3. 

Every node can contain one or more Range Tables. 
Each Range Table contains range information for a 
single sensor type. As an example, Fig. 4 shows that 
Node N1 maintains three separate Range Tables for 
sensor types A, B and C. This is despite the fact that 
N1 only has sensor type C. The presence of a 
particular range table within a node means that the 
corresponding sensor type exists either within the node 
itself, or within one or more of the children deeper 
within the tree structure. This design of the Range 
Tables allows the network to be made up of 
heterogeneous nodes (i.e. different nodes can possess a 
different combinations of sensors). This is a great 
benefit over previous architectures such as TinyDB 
which only supports homogeneous networks. 

 
4.2. Adapting to network dynamics 

 
The Range Tables of DirQ are able to adapt to 

changes within the network topology due to dead 
nodes or the addition of new nodes. This is because of 
DirQ’s cross-layer interaction with LMAC [2]. LMAC 
is a TDMA-based MAC protocol with a completely 
distributed and self-organizing scheduling algorithm. 
When LMAC detects that a neighboring node has died, 
it sends a notification to DirQ which then checks to see 
how the removal of the neighboring node has affected 
its Range Table. Any changes in the range information 
are then propagated up the tree. Similarly, any changes 

in sensor types such as the addition or removal of 
sensors also propagates up the tree. 

 
5. Analytical analysis 
 

In this section we carry out an analytical 
comparison of the performance of flooding and 
directed query dissemination. Since the basic 
mechanism of DirQ is based on a tree, we perform our 
analysis using a k-nary tree with depth d. We also 
mention another reason for using a k-nary tree for the 
analytical comparison in Section 5. Additionally, the 
cost of transmitting a message is assumed to be one 
unit while the cost of receiving a message is also 
assumed to be one unit. 

 
5.1. Cost of flooding 

 
Before describing how we analyze the cost of 

flooding, we first explain how a flooding operation is 
carried out in order to justify the analysis later on. 

When performing a flooding operation, a node 
transmits a message to its neighbors using a broadcast 
operation. We assume this behavior is followed by all 
nodes in the network no matter where the nodes may 
be located and is carried out regardless of the number 
of neighbors a node has. Thus even if a node does not 
have any other neighbor apart from the node it has 
received a message from, it still carries out a broadcast 
operation. 

Therefore, regardless of the topology of the 
network, the transmission cost for flooding one query 
in a network of N nodes is N because each node sends 
only one MAC broadcast per query. Conversely, 
during a flooding operation, each node receives the 
query from all its neighbors. Thus the reception cost 
for a particular query is determined by two times the 
number of links in the network. The total cost of 
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flooding in a network of N nodes can then be 
computed as follows: 

CFTotal = CTx + CRx= N + (2 x Total no. of links) (3) 

where CFTotal is the total cost of flooding, CTx is the 
cost of transmission, and CRx is the cost of reception. 
Note that we use N for the cost of transmission since it 
is a broadcast operation and not a unicast. We only 
consider edges for unicast operations. 

Since we are focusing on a specific case of using a 
k-nary tree (due to the nature of DirQ), we calculate 
the cost to flood one query to a k-nary tree with depth 
d as follows (we refer the reader to [13] for the 
detailed derivation): 

CFTotal = 
1

123 1

−
−−+

k
kk d

  (4) 

5.2. Cost of directed query dissemination 
scheme 
 

In a flooding operation, energy is consumed 
disseminating a query to the entire network. In DirQ 
however, there are two sources of energy consumption 
– (i) directing a query to the relevant nodes in the 
network and (ii) the update mechanism to keep the 
minimum and maximum ranges updated. As there are 
two sources of energy consumption in the directed 
query dissemination scheme as opposed to only a 
single source in the flooding mechanism, the reader 
may be inclined to think that DirQ consumes more 
energy than the flooding mechanism. However, we 
ensure that this does not happen by adding an adaptive 
feature to the second source in DirQ, i.e. the update 
mechanism known as the Adaptive Threshold Control 
(ATC) mechanism. ATC ensures that the cost of DirQ 
always remains below the cost of flooding. 

The cost of function of DirQ can be defined as 
follows: 

CTD =  CQD + CUD  (5) 

where CTD is the total cost of DirQ for a single 
query, CQD is the cost of disseminating one query to 
the relevant nodes and CUD is the cost of sending an 
update message. It is important to realize that the cost 
of disseminating a query to the relevant nodes, i.e. 
CQD, is really dependent on where the nodes are 
located within the communication tree. For example, if 
the nodes relevant to the query are located close to the 
root, the dissemination cost will be much lower than 
another query whose relevant nodes might be located 

much deeper within the tree. This is because the deeper 
the relevant nodes are within the tree, the greater will 
be number of nodes involved in forwarding the query. 
The spread of the relevant nodes within the tree is also 
another factor that affects the cost of disseminating a 
particular query, i.e. the greater the spread of the 
relevant nodes, the greater the dissemination cost. 
From these examples, it is apparent that the maximum 
cost of disseminating a query (i.e. CQDmax) will occur 
only when all the leaf nodes of a tree are involved in 
servicing a query. This is another reason why we use a 
k-nary tree (as opposed to using an incomplete tree) to 
compute the maximum cost of query dissemination as 
this ensures that the number of leaf nodes is maximum. 

The computation of the worst case of DirQ occurs 
when both CQD and CUD are maximum. CUDmax occurs 
when all the nodes in the network transmit an Update 
Message. 

Furthermore, it should be noted that when 
calculating the maximum query dissemination cost, the 
leaf nodes do not transmit the query. This implies that 
only nodes within d-1 hops from the root will be 
involved in query transmission. Also, since all queries 
are being unicast, we assume that the cost of 
transmission is equal to the cost of reception. 
Therefore, the maximum cost of query dissemination is 
(we refer the reader to [13] for the detailed derivation), 

CQDmax 1
11

−
−−+

=
+

k
kkk dd

  (6) 

For calculating CUDmax we assume that all the nodes 
in the network send one update message. We introduce 
a variable f which indicates the frequency at which 
updates are received at the root. So for example, if one 
update is received at the root every 10 queries, then f = 
0.1. Thus the maximum cost of sending an update can 
be calculated as follows: 

CUDmax 1
)(2 1

−
−

=
+

k
kk d

  (7) 

Then the maximum cost of DirQ is, 

CTDmax = CQmax+ f x CUDmax 
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5.3. Keeping the cost of DirQ below that of 
flooding 
 

When using DirQ, it is essential to ensure that its 
cost is always kept below that of flooding. Thus we 
need to consider the worst case of DirQ and adapt it to 
make sure that it does not exceed the cost of flooding. 
This is performed by ensuring that CUDmax < CFTotal. 
Thus, 

fMax
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  (9) 

where fMax is the maximum number of updates that a 
node can transmit per query to guarantee that DirQ 
does not surpass the cost of flooding. So as an 
example, if k = 2 and d = 4, then fMax<0.76, i.e there 
can be at the most 0.76 updates per query or 1 update 
every 1.03 queries in order for the directed query 
dissemination scheme to be more energy efficient than 
flooding. Note however, that this is for the worst case. 
This implies that for example that you could have say 
2 updates per query (i.e. fMax=2) when the query is 
disseminated only to a few nodes that are close to the 
root or all nodes in the network are not involved in 
sending update messages. 

 
6. Adaptive threshold control 
 

DirQ uses an Adaptive Threshold Control (ATC) 
mechanism which changes the value of δ dynamically. 
The chosen value of δ is dependent on the number of 
queries that are expected to be injected into the 
network over the next hour and also on the rate of 
change of the measured data. Due to space constraints 
we refer the reader to [13] which contains a detailed 
description of the ATC mechanism. The ATC 
mechanism ensures that the cost of DirQ ranges 
between 45% and 55% the cost of flooding. 

 
7. Simulation results 
 

In this section, we evaluate the performance of 
DirQ using simulations and compare its performance 
in relation to flooding. Our simulations intend to 
highlight the strengths of DirQ in terms of energy 
savings and also in terms of the accuracy of our 
directed dissemination scheme. The primary objectives 
of the simulations are to illustrate: (i) how DirQ 

maintains a cost below that of flooding and yet attains 
a high level of accuracy for the current network and 
environmental conditions, (ii) how DirQ allows 
individual nodes to make their own decisions (about 
what threshold level to use) autonomously based on 
current network and environmental conditions without 
the external influence of the user of the sensor 
network. 

We initially examine the effects of accuracy and 
efficiency of query dissemination when using fixed 
thresholds (i.e. fixed values of δ). We then illustrate 
how the ATC mechanism curbs the total cost such that 
it is below flooding and yet maintains an acceptable 
level of accuracy. We also show how nodes adjust 
their threshold levels autonomously using the ATC 
mechanism according to the current environmental 
conditions. 

The simulation is performed using OMNeT++ 
which is a discrete event simulator [11]. The results are 
based on a network topology of 50 nodes which 
includes one root where k=8 and d=10. DirQ was 
implemented on top of the LMAC protocol [2]. A 
synthetic dataset with 4 sensor types has been 
generated where sensor values of nodes located close 
to one another are spatially related. The generated 
sensor data is also related in the temporal dimension. 
Each sensor acquires a reading every time unit for a 
period of 20,000 time units. We refer to each time unit 
as an epoch [12]. Random queries which covered 20%, 
40% and 60% of the nodes were generated every 20 
epochs. 

 
7.1. Using fixed threshold values 
 

We initially perform simulations to investigate the 
effects when fixed threshold values were used. 
Threshold values are fixed at δ = 3%, 5% and 9%. For 
every value of δ we also examined how the percentage 
of nodes involved in responding to a query would 
affect the results. 

Note that the percentage of nodes involved in a 
query is not directly dependent on the selectivity of the 
query itself. As an example, even if the selectivity of a 
particular query is very high (i.e. only a small number 
of nodes are involved) the percentage of nodes 
involved in answering the query is highly dependent 
on the location of the relevant nodes within the 
communication tree. If the relevant nodes are located 
very close to the root, the selectivity would be 
proportional to the number of nodes involved in the 
query. However, if the nodes are located deep within 
the network, propagating the query to the relevant 
nodes would be a lot more expensive due to the large 
number of intermediate forwarding nodes involved. 



Thus our definition of “percentage of nodes involved 
in responding to a query” involves not only the 
relevant nodes but also the intermediate forwarding 
nodes. 

Our first result studies how the accuracy of the 
directed query dissemination scheme is affected using 
various levels of δ. Let us first state how we define the 
term accuracy. When a query is injected, ideally it 
should be directed only to the relevant nodes in the 
network. However, this does not happen in reality due 
to the threshold levels used in the network. Since the 
transmission of updates is dependent on the value of δ 
and the rate of change of the measured parameters, the 
range values maintained by the nodes is not always 
accurate. Thus in certain instances, queries could be 
routed to nodes which are not relevant to a particular 
query. Naturally, routing queries to the non-relevant 
nodes, also consumes energy. We measure accuracy by 
computing the proportion of nodes that are being 
reached in response to a query to nodes that should be 
reached. Nodes that “should” be reached refer to both 
source nodes and intermediate forwarding nodes. 

The results in Fig. 5 indicate that as the threshold 
increases (i.e. value of δ) the difference between the 
percentage of nodes that receive a query and the 
percentage of nodes that should receive the query 
increases. This is because as δ increases, the range 
information becomes more inaccurate. This effect is 
less pronounced as the percentage of relevant nodes 
increases. This is because when more nodes are 
involved in servicing a particular query, the probability 

of routing queries to wrong nodes diminishes greatly. 
The value of δ clearly plays a more significant role 
when the percentage of relevant nodes is small. 

Our results in [13] also indicate that the energy 
saved due to the transmission of a lesser number of 
updates is far greater than the cost incurred due to the 
transmission of incorrect queries. Thus increasing δ 
does have a net positive effect. 
 
7.2. Using the adaptive threshold control 

 
We now describe the effects of the Adaptive 

Threshold Control (ATC) scheme. ATC enables 
individual nodes to autonomously adjust the value of δ. 
The main drawback of using a fixed threshold is that 
there is a possibility that the cost of the directed 
dissemination scheme may exceed the cost of flooding. 
Fig. 6 shows the total number of Update Messages that 
are transmitted by all the nodes in the network every 
100 epochs over a period of 20,000 epochs. It can be 
seen that the ATC is successfully able to adapt the 
transmission rate such that its cost lies around the 
region where the cost is roughly around 45-55% the 
cost of flooding. The performance remains constant for 
varying percentages of relevant nodes. 

Fig. 5 has shown that the danger of increasing δ 
results in the query dissemination scheme becoming 
less accurate. The main idea of having the ATC is to 
ensure that while the number of updates transmitted is 
limited, the accuracy (i.e. overshoot) should not 
decrease significantly. Fig. 7 shows that the average 
overshoot when using the ATC is only around 3.6% 
when we consider the 20% of relevant nodes scenario. 

 
8. Conclusion and future work 
 

We presented a Directed Query Dissemination 
Scheme which tries to ensure that queries injected into 
the network are only sent to the relevant nodes instead 
of flooding. DirQ routes queries based on sensor 
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 Figure 5. Effect of delta on accuracy 



values and sensor types. It ensures that information in 
routing tables is accurate by sending update messages. 
The rate at which update messages are transmitted is 
dependent on the level of usage of the network and the 
also the rate of variation of the physical parameter 
being measured by the sensors. Thus every node in the 
network is able to control its threshold level 
autonomously. 

A drawback of DirQ is that we assume that nodes 
are able to sample sensors continuously to check if the 
thresholds have been exceeded. This consumes a lot of 
energy. We are currently developing a statistical 
prediction technique that can be used by DirQ to 
ensure that sensor sampling costs are minimized. 
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