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Abstract 
 

Evolution of grid has drawn attention from various 
resource intensive applications addressing domains 
of bio-informatics, astrology and multimedia, to 
name a few. Image analysis applications in both bio-
sciences and astrophysics are explicitly built in 
modular fashion to exploit the potential offered by 
grid. In this paper we present a framework for 
resource allocation and task scheduling, MARS, 
which efficiently allocates resources for such 
resource intensive applications which can be 
represented as Task Interaction Graph (TIG), while 
keeping makespan as minimum as the current state of 
resources in grid allows. Simulation experiments with 
MARS show a considerable improvement in job 
completion time and host utilization over traditional 
resource management and scheduling algorithms for 
grid. 
 
 
1. Introduction 
 

A grid is composed of a set of shared resources 
made available by different providers. Consumers 
can request grid management system for allocation of 
required resources according to their needs. 
Allocation of resources is a bi-party agreement as it 
depends both upon meeting consumer’s needs and 
fulfilling provider’s constraint. An example of 
provider set constraint is limit on extent of time a 
resource can be allocated.  

Scheduling applications onto a grid is of special 
interest for resource intensive application. Normally 
such applications are modeled as directed acyclic 
graph (DAG). Representative of these applications 
come from various domains such as high-energy 
physics, bio-informatics, multimedia, and 
cryptography. Domains such as bio-informatics and 
astronomy rely heavily on image analysis for various 

purposes Some examples in this area are Grid-
enabled Image Processing [1], EMAN [2], and 
Montage [3]. First two applications are closely 
related with biological systems whereas Montage 
deals with creating a wide view of area by combining 
images covering smaller areas, for use in astrology 
and astrophysics. Processing requirements of such 
applications are pretty intensive. Creating a mosaic 
image of Rho Ophiuchi dust cloud which consisted of 
972 images, for example, takes 15 hrs on a 1GHz Sun 
machine.  

Finding appropriate resources and completing the 
application in the minimum possible time is of prime 
interest for grid management and scheduling system. 
In this paper we present Management Architecture 
for Resource Services (MARS), which is a 
framework for resource allocation and task 
scheduling in grid environment. The rest of the paper 
is structured as follows. In Section 2 we present the 
problem statement. Section 3 serves as a 
comprehensive review of scheduling strategies and 
resource management in grid. In Section 4 we present 
MARS resource allocation and task scheduling 
mechanism. In Section 5 we present experimental 
evaluation of our proposed technique. Section 6 
concludes the paper with pointing out the future 
directions.  
 
2. Problem Formulation 
 

A resource is an entity that can perform a useful 
function and maybe contributed to the grid. Providers 
are the owner of such resources and control access to 
them by defining access policy. Clients are 
consumers of the resources present in the grid. 
Resource(s) along with a communication interface is 
called a host or workstation. A host can have one or 
more resources. Every host has associated set of 
general and resource specific attributes and usage 
restrictions. The general attributes are used to 
identify host itself, whereas the resource specific 
attributes defines services provided by the host. A 



task is a unit of work which can be completed in 
isolation once all its resource requirements are 
completed. Every task has an associated set of 
required resources. Tasks also carry an estimated 
completion time if all the task requirements are 
fulfilled. A set of interacting tasks is called a job. A 
job can be represented as a directed acyclic graph 
called Task Interaction Graph (TIG). A Task 
Interaction Graph has tasks T as vertices and 
communication links C as edges. Formally a TIG is 
represented as (T, C). Directed edges between the 
tasks establish task precedence and the weight on 
these edges represent communication cost between 
the tasks. Communication between two tasks Ti and 
Tj is shown with the communication link Cij. Such 
directed communication edge also indicates that Tj 
can not start until Ti finishes and send all the required 
communication to Tj. 

The purpose of task scheduling algorithms is to 
map given number of tasks onto the available 
workstations, with respect to some objective 
function. Most common objective functions are 
makespan (Cmax), total flow time (Ci), and weighted 
total flow time (wiCi). For the purpose of this paper 
we will deal mainly with the makespan of the 
schedule which is also known as schedule length. The 
allocation problem itself is shown to be NP-complete 
in general [4,5]. Allocation of precedence constraint 
task graph to multi processors is also proved to be 
NP-Complete [6,7,8], and NP-hard with additional 
constraints. The problem of optimally scheduling set 
of precedence constraint tasks on more than one 
workstation is shown to be NP-complete when all the 
tasks have unit time execution and unit time 
communication delays [9]. Various results proving 
NP-hardness of the problem with respect to identical 
and uniformly- related machines are reported by 
Garey and Johnson [10], Ullman [11] and Kubiak 
[12, 13]. 
 

Given a set of resources (R) and a job consisting of 
number of tasks (T), the main characteristics that 
define our task allocation algorithm are as follows: 
 
• An online, preemptive task scheduling algorithm 

for precedence constraint tasks. 
• For jobs arriving over time, with each job 

consisting of i number of clairvoyant tasks. 
• Scheduling onto dynamic set of multi-purpose 

uniformly related distributed networked 
workstations (or more precisely for grid) 

• While observing restricted assignment, i.e. only 
some of the available workstations fulfill the task 
requirements 

 

The objective function of our proposed approach is 
to: 
 
• Minimize the job completion time, makespan, 

Cmax. 
• Minimize the number of resources needed for the 

completion of job. For the purpose of this paper, 
we measure it as number of workstations 
allocated for a specific job. 

 
There are two dimensions of this problem, first 

identifying the feasible resources for running the 
task, termed as matching, and second, ordering the 
execution of tasks on these resources, such that both 
the objective functions are met. Formally, there are n 
number of workstations (W), and m Jobs (J). A job 
can be composed of number of tasks where each task 
T can be processed by any workstation in the set µT 
such that µT ⊆ {W1, W2, W3, W4,…, Wn}. The 
composition and presence of workstations varies over 
time, given the dynamic environment of grid. Thus 
making discovery of resources and matching a crucial 
component of the overall approach. Another crucial 
restriction is on the processing time of the algorithm. 
An efficient scheduling algorithm for such 
environment should be fast in order to compete with 
any other algorithm which is working without any 
complex scheduling objective function, i.e. it will 
schedule the job on the first available matching 
workstation. 
 
3. Related Work 
 

Scheduling problem is known to be NP-complete 
in the general as well as many special cases. Various 
heuristics have been proposed for scheduling tasks 
onto the multi-purpose machines [14, 15, 16]. As our 
work spans two major areas of distributed computing, 
namely scheduling heuristics for heterogeneous 
resources and grid resource management, in the 
following sections we will cover the current state-of-
art in both the areas. 
 
3.1. Scheduling Heuristics for 

Heterogeneous Environment 
 

Scheduling heuristics can be divided into four 
broad categories based on how they match tasks to 
workstations. Following is a brief review of the 
prominent classes in scheduling heuristics. Though 
genetic algorithms were able to produce a makespan 
which is better by 5 to 10%, their time consumption 
was much higher (with an average execution time of 
60s) as compared to average running time in 
milliseconds for other static algorithms [14]. 



Experiments with scalability of genetic algorithms 
have found that performance of the algorithm 
declines when the problem size increases [17]. 
Another limiting factor for genetic algorithms is that 
a set of several control parameters need to be 
determined for producing acceptable schedule. A set 
of control parameters that works best for one problem 
may not work for the other. Clustering heuristics 
assume unbounded number of processors, and 
therefore final scheduled produced by such 
algorithms is subjected to further processing. Post 
processing for such algorithms generally includes 
reduction in the number of cluster to match with the 
processors available and ordering of tasks. Task 
Duplication based heuristics have higher algorithm 
complexity as compared to other heuristic classes. 
Unless required by the clients as quality of service 
parameter, scheduling tasks redundantly in grid may 
lessen the chances of scheduling any subsequent 
tasks. 

Network of Workstations (or Grid) environment is 
characterized by its dynamic composition, 
heterogeneous resources, online arrival of jobs and 
restrictive task-to-host mapping. An ideal scheduling 
algorithm for grid should take into account these 
factors to create an acceptable schedule for incoming 
precedence oriented jobs. A common assumption 
which list scheduling heuristics make is static target 
environment for task mapping. Given the offline 
nature, where all the tasks are known in advance, list 
scheduling heuristics often resort to constructing a 
computation time matrix M, where Mij gives the 
execution time of task ti on processor pj [18]. This 
approach can work well in a static environment with 
a small number of workstations but for environments 
such as grid, where the availability of resources is 
dynamic in nature and jobs arrive over time, 
constructing such a table is virtually impossible. List 
scheduling heuristics are generally less complex and 
generate better schedules than other categories 

Another important factor which makes traditional 
scheduling algorithm un-usable in grid environment 
is the need of advance reservation mechanism. When 
a client is in need of set of resources to run a job, it 
advertises its requirements to multiple resource 
brokers. These resource brokers check if they can 
fulfill the resource requirements or not. If former is 
the case, then Resource Manager reserves these 
resources for the job and notifies the client. The 
client picks up the best offer it gets and releases the 
job to that resource manager. In this scenario it is not 
only necessary to reserve resources but to also 
provide mechanism for expiring reservations if 
resource manager does not receive the job. 
 

3.2. Existing Grid Management 
Architectures 

 
We now turn our attention to online algorithms 

designed specifically for grid scheduling. In an 
environment where neither the resources availability 
nor the number of jobs to be scheduled are known 
beforehand, exploiting inter-task dependencies is the 
only way to efficiently allocate resources and to 
reduce the schedule length of the job. 

Grid computing is relatively new area and 
algorithms and techniques for utilizing its full 
potential are continually under development. 
Specialized resource management architectures 
(RMA) exist in grid domain to schedule tasks and 
manage the allocation of heterogeneous resources. 
Three main resource management architectures that 
address the needs of grid environment are Globus 
[19], Condor[20] and Legion[21]. The objective of 
scheduling algorithms employed in these RMAs is 
limited to matching only. Complex objective 
functions such as makespan of the job, or resource 
utilization are not considered in scheduling 
algorithms implemented in these architectures. Meta-
Scheduler in Globus, for example, resort to reserving 
all the resources required by the job in advance 
without considering any interdependence among the 
tasks. Condor on the other hand handles a single task 
at a time. In Condor, a task only becomes available 
when all its predecessors have been processed. Both 
approaches have their positive as well as negative 
aspect. In first approach, the algorithm provides the 
guarantee that all the required resources will be 
available when needed but may end-up reserving 
more resources than actually needed. On the other 
hand Condor’s approach is resource efficient, but its 
lack of reservation mechanism can hinder job 
completion on time. 

In addition to default RMA scheduling algorithms, 
researchers have proposed pluggable scheduling 
modules to extend the scheduling capabilities of the 
resource manager. These scheduling algorithms 
address specific areas in grid domain such as 
scheduling of coarse grained tasks [22], master-
worker paradigm [23] and parameter-sweep 
applications [24]. Among them scheduling of coarse-
grained precedence constrained tasks is most relevant 
to our work. Multi-processing environment, such as 
presented in the aforementioned work, does not 
provide any guarantee of resource availability, as 
some remote job may not get any processor time 
under heavy local load. Our proposed model assumes 
a different approach in which remote jobs are 
allowed to run only when resources are idle. This 
assumption is in line with popular commodity-grid 
practices employed by various resource intensive 



computation projects such as Seti@home [25]. 
Assuming static set of resources is another major 
drawback of this approach, a case which is not true 
for grid in general and public-resource computing in 
particular. 
 
4. Management Architecture for 

Resource Services (MARS)  
 

Before describing the scheduling approach it would 
be beneficial to outline the overall working of MARS 
and its interaction with the outside world. A job is 
described in the form of a Task Interaction Graph 
(TIG), in which each vertex represents a task. Every 
task has associated resource requirements. We term 
such a graph as resource requirements graph (RRG). 
MARS would accept jobs that need to be scheduled 
from a client and “bid” for it based upon the earliest 
it can complete the job while meeting the resource 
requirements. The client would relay the job to the 
site which has the earliest finishing time. When 
making allocation decisions, MARS has two 
objectives insight. First, to minimize the completion 
time and second, to allocate minimum number of 
resources. These two parameters guarantee efficiency 
and ability to serve more jobs.  

 
4.1. Resource Allocation and Task 

Scheduling  
 

Resource negotiation algorithm in MARS consists 
of three phases namely Scoring, Matching and 
Allocation. Scoring algorithm takes resource 
requirements and generate a list of available 
resources that match these requirements. Furthermore 
these matched resources are assigned a score based 
upon their closeness to required value. Given TIG 
and list of available “ranked” resources, matching 
phase identify potential candidates for task allocation. 
Finally, allocation decision is made by evaluating 
proximity of these potential matches, in order to 
ensure minimum network latency between the 
interacting tasks. Figure 1 is a high level diagram 
depicting interaction among the three components. 

 
4.2. Match Scoring Scheme 
 

Purpose of scoring (or ranking) process is to 
identify a pool of potential hosts that match task 
requirements with the help of MARS Information 
Repository (MIR). Host suitability for running a task 
is determined by the score host carries. Degree of 
weakness, or strongness, of a match is calculated as 
follows. First of all resources are evaluated for the 
hard requirements such as operating system and 
instruction set. The resulting hosts are ranked using 
the following approach. Assume that a required 
resource N for a task is stated as N, ≤ Npref, ≥ Nlow; 
Where Npref is the preferred valued of resource and 
Nlow represents the lowest acceptable value for that 
resource. Say N is matched with value Nmatch which 
lies between Npref, and Nlow. The variation from the 
preferred value and the maximum variation can be 
calculated as: 

Nvar = Npref - Nmatch  
Nmaxvar = Npref – Nlow 

 
The score of the match will be: 

 
Nscore = (Nvar / Nmaxvar) * 100/10 

 
This normalization will yield a score ranging from 

0 to 10 for an individual resource match, where 0 
indicating a perfect match. A node’s score can also 
be a weighted average of the required resources. This 
need can arise in cases when some resources are 
more important than others. Resource matching 
algorithm will return a set of resources for each task, 
along with the score. 
 
4.3. Resource Matching 
 

Once potential candidates for running the tasks are 
identified, next step is to match tasks with hosts. 
Purpose of resource matching phase is to schedule 
tasks while satisfying task’s resource requirements 
and keeping number of hosts minimum. Before 
explaining the algorithm itself, we like to introduce 
relationship among tasks which will help 
understanding allocation decisions. Assuming X and 
Y are two arbitrary tasks in the task graph, X and Y 
can have either of the following relation with each 
other. 
 
• Direct Parent: Node X is direct parent of Y if 

there is a directed edge from X to Y. In this case 
task Y can start directly after task X finishes, 
given that only parent of Y is X. 



• Indirect Parent: Node X is indirect parent to 
node Y if there is no direct edge between them, 
but they connect with each other through 
intermediate nodes. Task Y can not start until 
both its direct and indirect parents finish 
execution.  

• Independent: Node X and Y does not have any 
direct on indirect edge between them and thus 
their completion is independent of each other. 

 
Each of the above relationship determines 

allocation of a host to a task. Generally speaking 
independent tasks can run in parallel and thus should 
be assigned to different hosts, whereas in child-parent 
relationship children can be assigned to same host 
parent is assigned to, if the same host meets 
requirements of both parent and child tasks. 
Matching algorithm itself is presented in Listing 1 
and is described below. 

The main allocation algorithm parses through a list 
of potential hosts and chooses the best possible host 
for running the task while keeping the number of host 

utilized minimum. Altogether task allocation 
algorithm deals with two main cases. 
 
Case 1 - Host being evaluated for the current task is 
not assigned to any task: The host can be among the 
best possible ( ∈ Preferred List, LP) or can be just a 
potential match (∉Preferred List, LP but ∈ Potential 
Match List LM; such that LP ⊆ LM). A preferred node 
meets certain threshold score requirement for any 
task. In cases when host does not belong to LP or is 
the only preferred host in the list (Host ⊂ LP), current 
task gets the host. If the preferred list has more than 
one hosts for the current task (Host ⊆ LP) then all the 
hosts are profiled according to their relationship with 
other tasks. This step is achieved by procedure 
createAssignmentProfile, by sorting all the preferred 
nodes into four categories; assigned to parent task, 
assigned to indirect parent task, assigned to 
independent task, and not-assigned. Profiling of 
nodes will help us minimize the number of allocated 
hosts, e.g. if we find a host in preferred list that is 
allocated to parent task, then it is best to assign child 
to the same host, as this will minimize not only the 
host numbers but also saves us the communication 
overhead. Following is the decision rationale for the 
priority assignment of tasks.  
 
• If possible task should be assigned to host parent 

task is assigned to. This will reduce number of 
hosts utilized and eliminate inter-task 
communication overhead between parent and 
child tasks. (As communication cost of two tasks 
running at the same host is assumed to be zero) 

• Second priority goes to host which is running a 
task which is indirect parent of the current host. 
This will only reduce number of hosts utilized. 

• Hosts that are not yet assigned come third. 
Making such assignment will add-up to total 
number of hosts used, and will not reduce any 
communication cost. 

• Fourth priority goes to host that is assigned to 
tasks that are independent of the current task. 
This will add to completion time of the job as a 
whole and thus has the least priority. 
 

These priorities are handled in part by procedures, 
createAssignmentProfile (listing 2) and 
makePriorityAssignment. Case 1 is handled by steps 
3 – 8 of the main algorithm. 
 
Case 2 - Host being evaluated for the current task(TC) is 
assigned to a task(TA): If the required host is allocated to 
another task, then the decision relies on relationship 
between these two tasks. If two tasks are related (direct or 
indirect, parent-child relationship) then we again resort to 



calling the sub-procedures to evaluate the best possible 
allocation from preferred nodes. If two tasks are 
independent of each other, then only way we can assign 
current task the host being evaluated HE is if we can make 
TA leave HE. TA can only leave HE if it still have more 
hosts in its preferred lists LP. In such case, TA will take-up 
the next host in preferred list, and HE will be assigned to 
TC. If this is not possible, then TC will proceed to evaluate 
next host in its match list. Case 2 is handled by steps 10 to 
26 of the main algorithm. 
 
Resource Matching – Example Run 
 

An example run of a job consisting of five tasks is 
shown in figure 2. We use this example to explain the 
working of the algorithm and the primary measuring 

criteria for the results.  
Potential matches are generated from 10 hosts 

(203.135.3.0 – 203.135.3.10) and maximum ranked 
hosts for any tasks for this particular example were 
five. For a simple assignment algorithm the 
allocation was easy, because resource broker was 
able to match every task with a distinct host that met 
the resource requirements. Following simple 
allocation, task 0 was matched with host 
“203.135.3.0,” task 1 to host “203.135.3.4,” task 2 to 
host “203.135.3.7,” task 3 to host “203.135.3.3” and 
task 4 to host “203.135.3.5”. Interesting thing to note 
here is that first host task 4 was matched with is 
“203.135.3.4” but as this host is already assigned to 
task 1, the algorithm has to look for more options. 
Resource matching algorithm in MARS however was 
able to deduct following two important observations 
from the task graph. 
 
• Task 1, 2 and 4 are dependent on each other, i.e. 

Task 2 can not start until Task 1 finishes, and 
Task 4 can not start until Task 2 finishes 

• Task 1, 2 and 4 have a host in common, which 
perfectly matches all requirements put forward 
by these tasks, i.e. 203.135.3.4. 

 
Based on these observations MARS allocation 

algorithm created the assignment shown in Figure 
2(c). 

Task 0 and Task 3 were independent and/or they 
had different resource requirements and thus have 
their individual host mapping. There are couple of 
things to note in this assignment. First we have 
minimized number of hosts used, achieving 
efficiency of 60%; secondly we have also reduced the 
critical path of the job. A critical path is defined as 
the path which dominates overall execution of the 
workload. In the original task graph, the critical path 
involved task 0, 1, 2, and 3. Giving the 
communication cost of 4 (0 to 1), 8(1 to 2) and 8(2 to 



3) plus the cost of executing the tasks themselves 
which are assumed to be taking single unit of time at 
the moment. This adds up to 24. In MARS 
assignment, though critical path remained the same, 
the communication cost of task 1 to 2 is no longer 
there as both these tasks are assigned to the same 
host. This reduces the critical path to 16. These two 
attributes namely minimized number of hosts used 
and critical path reduction are our main contribution 
to the resource allocation paradigm is concerned.  
 
Results and Discussion 
 

There are three major criteria for evaluating 
performance of MARS resource allocation and task 
scheduling component. Namely, Makespan of the 
job, number of allocated resources, and time taken by 
the scheduling and allocation algorithm.  There is a 
number of different parameters that are considered 
while designing the experiments. Number of tasks in 
the task graph, number of hosts present in the grid 
domain, and the connectivity of the task graph are 
among the major ones. The first two parameters 
represent the state of the grid at the arrival of a job 
and client requests. Task graph connectivity serves as 
a normalization parameter, so that results are not 
biased towards certain type of task graphs. 
Considering all the parameters, result for a single 
TIG represents 62475 runs. The resulting values are 
compared against a resource management scheme 
with advance reservation mechanism such as Globus. 
In the context of TIG, critical path is the most time 
consuming (longest) path in the graph. This includes 
the execution time of tasks and time involved in 
exchanging messages between the tasks. Time of the 

critical path establishes the lower bound for job 
completion, i.e. a job can not complete earlier than 
the finish time of critical path. Thus reduction in 
critical path effectively translates into overall shorter 
makespan of the job itself. Figure 4 and 5 shows 
relative percentage improvement. The improvement 
in critical path depends directly on how many tasks 
are clustered together. Therefore there is a sharp 
decline in critical path reduction when hosts 
utilization decreases. Host utilization is dependent 
upon what hosts parent task picks. Therefore when 
number of hosts increases, and so does the 
probability to find perfect matching hosts, host 
utilization decreases. This trend emphasize the need 
for forward looking mechanism which also takes into 
account hosts needed by the child tasks when making 
host allocation decision for a task.  

Algorithm’s running time show a very promising 
picture, albeit for a smaller set of tasks. For 15 tasks 
algorithm was able to make allocation decision in 
180 milliseconds.  
 
5. Future Directions 
 

Preliminary results presented in this paper validate 
our hypothesis that considering task interdependence 
in grid environment can produce considerable 
improvement in job’s makespan and resource 
utilization. The scheduling algorithm we have 
presented in this paper assumes tasks of unit time 
length. In future we plan to relax this restriction by 
taking into account variable length tasks. 

Besides task matching, scheduling in grid poses 
additional challenges [26]. Fault tolerance is crucial 
for systems that are composed of resources prone to 
failures. Impact of the resource failure varies 
depending upon the current state of the resource. If 
the resource is currently not running any task then 
marking the resource as unavailable would be 
sufficient to prevent its assignment to a task. In case 
resource was executing a task, than failure recovery 
procedure should recover completed portion of the 
task and find an alternate resource to complete the 
task. QoS is another important issue when designing 
a grid resource management system. In some cases a 



task may be under-matched because of absence of the 
ideal set of resources needed to execute the tasks. 
Under such circumstances a resource allocation re-
evaluation mechanism can help locating the ideal 
match that becomes available at later stages of task 
execution. 
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