

Grid Resource Allocation and Task Scheduling for Resource Intensive
Applications

Abdul Aziz, Hesham El-Rewini
Computer Science and Engineering Department

Southern Methodist University, Dallas. TX
{aaziz, rewini}@engr.smu.edu

Abstract

Evolution of grid has drawn attention from various
resource intensive applications addressing domains
of bio-informatics, astrology and multimedia, to
name a few. Image analysis applications in both bio-
sciences and astrophysics are explicitly built in
modular fashion to exploit the potential offered by
grid. In this paper we present a framework for
resource allocation and task scheduling, MARS,
which efficiently allocates resources for such
resource intensive applications which can be
represented as Task Interaction Graph (TIG), while
keeping makespan as minimum as the current state of
resources in grid allows. Simulation experiments with
MARS show a considerable improvement in job
completion time and host utilization over traditional
resource management and scheduling algorithms for
grid.

1. Introduction

A grid is composed of a set of shared resources
made available by different providers. Consumers
can request grid management system for allocation of
required resources according to their needs.
Allocation of resources is a bi-party agreement as it
depends both upon meeting consumer’s needs and
fulfilling provider’s constraint. An example of
provider set constraint is limit on extent of time a
resource can be allocated.

Scheduling applications onto a grid is of special
interest for resource intensive application. Normally
such applications are modeled as directed acyclic
graph (DAG). Representative of these applications
come from various domains such as high-energy
physics, bio-informatics, multimedia, and
cryptography. Domains such as bio-informatics and
astronomy rely heavily on image analysis for various

purposes Some examples in this area are Grid-
enabled Image Processing [1], EMAN [2], and
Montage [3]. First two applications are closely
related with biological systems whereas Montage
deals with creating a wide view of area by combining
images covering smaller areas, for use in astrology
and astrophysics. Processing requirements of such
applications are pretty intensive. Creating a mosaic
image of Rho Ophiuchi dust cloud which consisted of
972 images, for example, takes 15 hrs on a 1GHz Sun
machine.

Finding appropriate resources and completing the
application in the minimum possible time is of prime
interest for grid management and scheduling system.
In this paper we present Management Architecture
for Resource Services (MARS), which is a
framework for resource allocation and task
scheduling in grid environment. The rest of the paper
is structured as follows. In Section 2 we present the
problem statement. Section 3 serves as a
comprehensive review of scheduling strategies and
resource management in grid. In Section 4 we present
MARS resource allocation and task scheduling
mechanism. In Section 5 we present experimental
evaluation of our proposed technique. Section 6
concludes the paper with pointing out the future
directions.

2. Problem Formulation

A resource is an entity that can perform a useful
function and maybe contributed to the grid. Providers
are the owner of such resources and control access to
them by defining access policy. Clients are
consumers of the resources present in the grid.
Resource(s) along with a communication interface is
called a host or workstation. A host can have one or
more resources. Every host has associated set of
general and resource specific attributes and usage
restrictions. The general attributes are used to
identify host itself, whereas the resource specific
attributes defines services provided by the host. A

task is a unit of work which can be completed in
isolation once all its resource requirements are
completed. Every task has an associated set of
required resources. Tasks also carry an estimated
completion time if all the task requirements are
fulfilled. A set of interacting tasks is called a job. A
job can be represented as a directed acyclic graph
called Task Interaction Graph (TIG). A Task
Interaction Graph has tasks T as vertices and
communication links C as edges. Formally a TIG is
represented as (T, C). Directed edges between the
tasks establish task precedence and the weight on
these edges represent communication cost between
the tasks. Communication between two tasks Ti and
Tj is shown with the communication link Cij. Such
directed communication edge also indicates that Tj
can not start until Ti finishes and send all the required
communication to Tj.

The purpose of task scheduling algorithms is to
map given number of tasks onto the available
workstations, with respect to some objective
function. Most common objective functions are
makespan (Cmax), total flow time (Ci), and weighted
total flow time (wiCi). For the purpose of this paper
we will deal mainly with the makespan of the
schedule which is also known as schedule length. The
allocation problem itself is shown to be NP-complete
in general [4,5]. Allocation of precedence constraint
task graph to multi processors is also proved to be
NP-Complete [6,7,8], and NP-hard with additional
constraints. The problem of optimally scheduling set
of precedence constraint tasks on more than one
workstation is shown to be NP-complete when all the
tasks have unit time execution and unit time
communication delays [9]. Various results proving
NP-hardness of the problem with respect to identical
and uniformly- related machines are reported by
Garey and Johnson [10], Ullman [11] and Kubiak
[12, 13].

Given a set of resources (R) and a job consisting of
number of tasks (T), the main characteristics that
define our task allocation algorithm are as follows:

• An online, preemptive task scheduling algorithm

for precedence constraint tasks.
• For jobs arriving over time, with each job

consisting of i number of clairvoyant tasks.
• Scheduling onto dynamic set of multi-purpose

uniformly related distributed networked
workstations (or more precisely for grid)

• While observing restricted assignment, i.e. only
some of the available workstations fulfill the task
requirements

The objective function of our proposed approach is
to:

• Minimize the job completion time, makespan,

Cmax.
• Minimize the number of resources needed for the

completion of job. For the purpose of this paper,
we measure it as number of workstations
allocated for a specific job.

There are two dimensions of this problem, first

identifying the feasible resources for running the
task, termed as matching, and second, ordering the
execution of tasks on these resources, such that both
the objective functions are met. Formally, there are n
number of workstations (W), and m Jobs (J). A job
can be composed of number of tasks where each task
T can be processed by any workstation in the set µT
such that µT ⊆ {W1, W2, W3, W4,…, Wn}. The
composition and presence of workstations varies over
time, given the dynamic environment of grid. Thus
making discovery of resources and matching a crucial
component of the overall approach. Another crucial
restriction is on the processing time of the algorithm.
An efficient scheduling algorithm for such
environment should be fast in order to compete with
any other algorithm which is working without any
complex scheduling objective function, i.e. it will
schedule the job on the first available matching
workstation.

3. Related Work

Scheduling problem is known to be NP-complete
in the general as well as many special cases. Various
heuristics have been proposed for scheduling tasks
onto the multi-purpose machines [14, 15, 16]. As our
work spans two major areas of distributed computing,
namely scheduling heuristics for heterogeneous
resources and grid resource management, in the
following sections we will cover the current state-of-
art in both the areas.

3.1. Scheduling Heuristics for

Heterogeneous Environment

Scheduling heuristics can be divided into four
broad categories based on how they match tasks to
workstations. Following is a brief review of the
prominent classes in scheduling heuristics. Though
genetic algorithms were able to produce a makespan
which is better by 5 to 10%, their time consumption
was much higher (with an average execution time of
60s) as compared to average running time in
milliseconds for other static algorithms [14].

Experiments with scalability of genetic algorithms
have found that performance of the algorithm
declines when the problem size increases [17].
Another limiting factor for genetic algorithms is that
a set of several control parameters need to be
determined for producing acceptable schedule. A set
of control parameters that works best for one problem
may not work for the other. Clustering heuristics
assume unbounded number of processors, and
therefore final scheduled produced by such
algorithms is subjected to further processing. Post
processing for such algorithms generally includes
reduction in the number of cluster to match with the
processors available and ordering of tasks. Task
Duplication based heuristics have higher algorithm
complexity as compared to other heuristic classes.
Unless required by the clients as quality of service
parameter, scheduling tasks redundantly in grid may
lessen the chances of scheduling any subsequent
tasks.

Network of Workstations (or Grid) environment is
characterized by its dynamic composition,
heterogeneous resources, online arrival of jobs and
restrictive task-to-host mapping. An ideal scheduling
algorithm for grid should take into account these
factors to create an acceptable schedule for incoming
precedence oriented jobs. A common assumption
which list scheduling heuristics make is static target
environment for task mapping. Given the offline
nature, where all the tasks are known in advance, list
scheduling heuristics often resort to constructing a
computation time matrix M, where Mij gives the
execution time of task ti on processor pj [18]. This
approach can work well in a static environment with
a small number of workstations but for environments
such as grid, where the availability of resources is
dynamic in nature and jobs arrive over time,
constructing such a table is virtually impossible. List
scheduling heuristics are generally less complex and
generate better schedules than other categories

Another important factor which makes traditional
scheduling algorithm un-usable in grid environment
is the need of advance reservation mechanism. When
a client is in need of set of resources to run a job, it
advertises its requirements to multiple resource
brokers. These resource brokers check if they can
fulfill the resource requirements or not. If former is
the case, then Resource Manager reserves these
resources for the job and notifies the client. The
client picks up the best offer it gets and releases the
job to that resource manager. In this scenario it is not
only necessary to reserve resources but to also
provide mechanism for expiring reservations if
resource manager does not receive the job.

3.2. Existing Grid Management
Architectures

We now turn our attention to online algorithms

designed specifically for grid scheduling. In an
environment where neither the resources availability
nor the number of jobs to be scheduled are known
beforehand, exploiting inter-task dependencies is the
only way to efficiently allocate resources and to
reduce the schedule length of the job.

Grid computing is relatively new area and
algorithms and techniques for utilizing its full
potential are continually under development.
Specialized resource management architectures
(RMA) exist in grid domain to schedule tasks and
manage the allocation of heterogeneous resources.
Three main resource management architectures that
address the needs of grid environment are Globus
[19], Condor[20] and Legion[21]. The objective of
scheduling algorithms employed in these RMAs is
limited to matching only. Complex objective
functions such as makespan of the job, or resource
utilization are not considered in scheduling
algorithms implemented in these architectures. Meta-
Scheduler in Globus, for example, resort to reserving
all the resources required by the job in advance
without considering any interdependence among the
tasks. Condor on the other hand handles a single task
at a time. In Condor, a task only becomes available
when all its predecessors have been processed. Both
approaches have their positive as well as negative
aspect. In first approach, the algorithm provides the
guarantee that all the required resources will be
available when needed but may end-up reserving
more resources than actually needed. On the other
hand Condor’s approach is resource efficient, but its
lack of reservation mechanism can hinder job
completion on time.

In addition to default RMA scheduling algorithms,
researchers have proposed pluggable scheduling
modules to extend the scheduling capabilities of the
resource manager. These scheduling algorithms
address specific areas in grid domain such as
scheduling of coarse grained tasks [22], master-
worker paradigm [23] and parameter-sweep
applications [24]. Among them scheduling of coarse-
grained precedence constrained tasks is most relevant
to our work. Multi-processing environment, such as
presented in the aforementioned work, does not
provide any guarantee of resource availability, as
some remote job may not get any processor time
under heavy local load. Our proposed model assumes
a different approach in which remote jobs are
allowed to run only when resources are idle. This
assumption is in line with popular commodity-grid
practices employed by various resource intensive

computation projects such as Seti@home [25].
Assuming static set of resources is another major
drawback of this approach, a case which is not true
for grid in general and public-resource computing in
particular.

4. Management Architecture for

Resource Services (MARS)

Before describing the scheduling approach it would
be beneficial to outline the overall working of MARS
and its interaction with the outside world. A job is
described in the form of a Task Interaction Graph
(TIG), in which each vertex represents a task. Every
task has associated resource requirements. We term
such a graph as resource requirements graph (RRG).
MARS would accept jobs that need to be scheduled
from a client and “bid” for it based upon the earliest
it can complete the job while meeting the resource
requirements. The client would relay the job to the
site which has the earliest finishing time. When
making allocation decisions, MARS has two
objectives insight. First, to minimize the completion
time and second, to allocate minimum number of
resources. These two parameters guarantee efficiency
and ability to serve more jobs.

4.1. Resource Allocation and Task

Scheduling

Resource negotiation algorithm in MARS consists
of three phases namely Scoring, Matching and
Allocation. Scoring algorithm takes resource
requirements and generate a list of available
resources that match these requirements. Furthermore
these matched resources are assigned a score based
upon their closeness to required value. Given TIG
and list of available “ranked” resources, matching
phase identify potential candidates for task allocation.
Finally, allocation decision is made by evaluating
proximity of these potential matches, in order to
ensure minimum network latency between the
interacting tasks. Figure 1 is a high level diagram
depicting interaction among the three components.

4.2. Match Scoring Scheme

Purpose of scoring (or ranking) process is to
identify a pool of potential hosts that match task
requirements with the help of MARS Information
Repository (MIR). Host suitability for running a task
is determined by the score host carries. Degree of
weakness, or strongness, of a match is calculated as
follows. First of all resources are evaluated for the
hard requirements such as operating system and
instruction set. The resulting hosts are ranked using
the following approach. Assume that a required
resource N for a task is stated as N, ≤ Npref, ≥ Nlow;
Where Npref is the preferred valued of resource and
Nlow represents the lowest acceptable value for that
resource. Say N is matched with value Nmatch which
lies between Npref, and Nlow. The variation from the
preferred value and the maximum variation can be
calculated as:

Nvar = Npref - Nmatch
Nmaxvar = Npref – Nlow

The score of the match will be:

Nscore = (Nvar / Nmaxvar) * 100/10

This normalization will yield a score ranging from

0 to 10 for an individual resource match, where 0
indicating a perfect match. A node’s score can also
be a weighted average of the required resources. This
need can arise in cases when some resources are
more important than others. Resource matching
algorithm will return a set of resources for each task,
along with the score.

4.3. Resource Matching

Once potential candidates for running the tasks are
identified, next step is to match tasks with hosts.
Purpose of resource matching phase is to schedule
tasks while satisfying task’s resource requirements
and keeping number of hosts minimum. Before
explaining the algorithm itself, we like to introduce
relationship among tasks which will help
understanding allocation decisions. Assuming X and
Y are two arbitrary tasks in the task graph, X and Y
can have either of the following relation with each
other.

• Direct Parent: Node X is direct parent of Y if

there is a directed edge from X to Y. In this case
task Y can start directly after task X finishes,
given that only parent of Y is X.

• Indirect Parent: Node X is indirect parent to
node Y if there is no direct edge between them,
but they connect with each other through
intermediate nodes. Task Y can not start until
both its direct and indirect parents finish
execution.

• Independent: Node X and Y does not have any
direct on indirect edge between them and thus
their completion is independent of each other.

Each of the above relationship determines

allocation of a host to a task. Generally speaking
independent tasks can run in parallel and thus should
be assigned to different hosts, whereas in child-parent
relationship children can be assigned to same host
parent is assigned to, if the same host meets
requirements of both parent and child tasks.
Matching algorithm itself is presented in Listing 1
and is described below.

The main allocation algorithm parses through a list
of potential hosts and chooses the best possible host
for running the task while keeping the number of host

utilized minimum. Altogether task allocation
algorithm deals with two main cases.

Case 1 - Host being evaluated for the current task is
not assigned to any task: The host can be among the
best possible (∈ Preferred List, LP) or can be just a
potential match (∉Preferred List, LP but ∈ Potential
Match List LM; such that LP ⊆ LM). A preferred node
meets certain threshold score requirement for any
task. In cases when host does not belong to LP or is
the only preferred host in the list (Host ⊂ LP), current
task gets the host. If the preferred list has more than
one hosts for the current task (Host ⊆ LP) then all the
hosts are profiled according to their relationship with
other tasks. This step is achieved by procedure
createAssignmentProfile, by sorting all the preferred
nodes into four categories; assigned to parent task,
assigned to indirect parent task, assigned to
independent task, and not-assigned. Profiling of
nodes will help us minimize the number of allocated
hosts, e.g. if we find a host in preferred list that is
allocated to parent task, then it is best to assign child
to the same host, as this will minimize not only the
host numbers but also saves us the communication
overhead. Following is the decision rationale for the
priority assignment of tasks.

• If possible task should be assigned to host parent

task is assigned to. This will reduce number of
hosts utilized and eliminate inter-task
communication overhead between parent and
child tasks. (As communication cost of two tasks
running at the same host is assumed to be zero)

• Second priority goes to host which is running a
task which is indirect parent of the current host.
This will only reduce number of hosts utilized.

• Hosts that are not yet assigned come third.
Making such assignment will add-up to total
number of hosts used, and will not reduce any
communication cost.

• Fourth priority goes to host that is assigned to
tasks that are independent of the current task.
This will add to completion time of the job as a
whole and thus has the least priority.

These priorities are handled in part by procedures,
createAssignmentProfile (listing 2) and
makePriorityAssignment. Case 1 is handled by steps
3 – 8 of the main algorithm.

Case 2 - Host being evaluated for the current task(TC) is
assigned to a task(TA): If the required host is allocated to
another task, then the decision relies on relationship
between these two tasks. If two tasks are related (direct or
indirect, parent-child relationship) then we again resort to

calling the sub-procedures to evaluate the best possible
allocation from preferred nodes. If two tasks are
independent of each other, then only way we can assign
current task the host being evaluated HE is if we can make
TA leave HE. TA can only leave HE if it still have more
hosts in its preferred lists LP. In such case, TA will take-up
the next host in preferred list, and HE will be assigned to
TC. If this is not possible, then TC will proceed to evaluate
next host in its match list. Case 2 is handled by steps 10 to
26 of the main algorithm.

Resource Matching – Example Run

An example run of a job consisting of five tasks is
shown in figure 2. We use this example to explain the
working of the algorithm and the primary measuring

criteria for the results.
Potential matches are generated from 10 hosts

(203.135.3.0 – 203.135.3.10) and maximum ranked
hosts for any tasks for this particular example were
five. For a simple assignment algorithm the
allocation was easy, because resource broker was
able to match every task with a distinct host that met
the resource requirements. Following simple
allocation, task 0 was matched with host
“203.135.3.0,” task 1 to host “203.135.3.4,” task 2 to
host “203.135.3.7,” task 3 to host “203.135.3.3” and
task 4 to host “203.135.3.5”. Interesting thing to note
here is that first host task 4 was matched with is
“203.135.3.4” but as this host is already assigned to
task 1, the algorithm has to look for more options.
Resource matching algorithm in MARS however was
able to deduct following two important observations
from the task graph.

• Task 1, 2 and 4 are dependent on each other, i.e.

Task 2 can not start until Task 1 finishes, and
Task 4 can not start until Task 2 finishes

• Task 1, 2 and 4 have a host in common, which
perfectly matches all requirements put forward
by these tasks, i.e. 203.135.3.4.

Based on these observations MARS allocation

algorithm created the assignment shown in Figure
2(c).

Task 0 and Task 3 were independent and/or they
had different resource requirements and thus have
their individual host mapping. There are couple of
things to note in this assignment. First we have
minimized number of hosts used, achieving
efficiency of 60%; secondly we have also reduced the
critical path of the job. A critical path is defined as
the path which dominates overall execution of the
workload. In the original task graph, the critical path
involved task 0, 1, 2, and 3. Giving the
communication cost of 4 (0 to 1), 8(1 to 2) and 8(2 to

3) plus the cost of executing the tasks themselves
which are assumed to be taking single unit of time at
the moment. This adds up to 24. In MARS
assignment, though critical path remained the same,
the communication cost of task 1 to 2 is no longer
there as both these tasks are assigned to the same
host. This reduces the critical path to 16. These two
attributes namely minimized number of hosts used
and critical path reduction are our main contribution
to the resource allocation paradigm is concerned.

Results and Discussion

There are three major criteria for evaluating
performance of MARS resource allocation and task
scheduling component. Namely, Makespan of the
job, number of allocated resources, and time taken by
the scheduling and allocation algorithm. There is a
number of different parameters that are considered
while designing the experiments. Number of tasks in
the task graph, number of hosts present in the grid
domain, and the connectivity of the task graph are
among the major ones. The first two parameters
represent the state of the grid at the arrival of a job
and client requests. Task graph connectivity serves as
a normalization parameter, so that results are not
biased towards certain type of task graphs.
Considering all the parameters, result for a single
TIG represents 62475 runs. The resulting values are
compared against a resource management scheme
with advance reservation mechanism such as Globus.
In the context of TIG, critical path is the most time
consuming (longest) path in the graph. This includes
the execution time of tasks and time involved in
exchanging messages between the tasks. Time of the

critical path establishes the lower bound for job
completion, i.e. a job can not complete earlier than
the finish time of critical path. Thus reduction in
critical path effectively translates into overall shorter
makespan of the job itself. Figure 4 and 5 shows
relative percentage improvement. The improvement
in critical path depends directly on how many tasks
are clustered together. Therefore there is a sharp
decline in critical path reduction when hosts
utilization decreases. Host utilization is dependent
upon what hosts parent task picks. Therefore when
number of hosts increases, and so does the
probability to find perfect matching hosts, host
utilization decreases. This trend emphasize the need
for forward looking mechanism which also takes into
account hosts needed by the child tasks when making
host allocation decision for a task.

Algorithm’s running time show a very promising
picture, albeit for a smaller set of tasks. For 15 tasks
algorithm was able to make allocation decision in
180 milliseconds.

5. Future Directions

Preliminary results presented in this paper validate
our hypothesis that considering task interdependence
in grid environment can produce considerable
improvement in job’s makespan and resource
utilization. The scheduling algorithm we have
presented in this paper assumes tasks of unit time
length. In future we plan to relax this restriction by
taking into account variable length tasks.

Besides task matching, scheduling in grid poses
additional challenges [26]. Fault tolerance is crucial
for systems that are composed of resources prone to
failures. Impact of the resource failure varies
depending upon the current state of the resource. If
the resource is currently not running any task then
marking the resource as unavailable would be
sufficient to prevent its assignment to a task. In case
resource was executing a task, than failure recovery
procedure should recover completed portion of the
task and find an alternate resource to complete the
task. QoS is another important issue when designing
a grid resource management system. In some cases a

task may be under-matched because of absence of the
ideal set of resources needed to execute the tasks.
Under such circumstances a resource allocation re-
evaluation mechanism can help locating the ideal
match that becomes available at later stages of task
execution.

References

[1]. S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T.

Pan, and J. Saltz. “Image Processing on the Gird: A
Toolkit for Building Grid-enabled Image Processing
Applications”. In 3rd International Symposium on
Cluster Computing and the Grid. 2003.

[2]. S. Ludtke, P. Baldwin, and W. Chiu. EMAN:
Semiautomated Software for high-resolution single-
particle reconstructions. J. Struct. Biology. 128:82-
97. 1999.

[3]. G. B. Berriman, et al. Montage: A Grid enabled
image mosaic service for the national virtual
environments. ADASS XIII ASP Conference Series.
2004.

[4]. D. Fernandez-Baca. Allocating modules to
processors in a distributed system. IEEE Transaction
on Software Engineering, SE-15(11): 1427 – 1436,
Nov. 1989.

[5]. O.H. Ibrarra and C. E. Kim. Heuristic Algorithms
for scheduling independent tasks on non-identical
processors. Journal of the ACM, 24(2): 280 – 289,
Apr. 1977.

[6]. M.R. Gary and D. S. Johnson, Computer and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co, 1979.

[7]. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.
Rinnoy Kan. Optimization and Approximation in
Deterministic sequencing and Scheduling: A
Survey. Annals of Discrete Mathematics. 5:287 –
326, 1979.

[8]. T. Cassavant and J. A. Juhl, “Taxonomy of
Scheduling in General Purpose Distributed Memory
Systems,” Transaction on Software Engineering,
SE-14(2). 141- 154. 1988.

[9]. V. J. Rayward-Smith. UET scheduling with inter-
processor communication delays. Technical Report
SYS-C86-06. School of Information Systems.
University of East Anglia. Norwich. 1986.

[10]. M. R. Garey and D. S. Johnson. Strong NP-
Completeness results: motivation, examples, and
implications. Journal of the ACM. 25(3): 499 – 508.
1978

[11]. J. D. Ullman. NP Complete Scheduling Problems.
Journal of Computer and System Sciences. 10: 384 –
393. 1975

[12]. W. Kubiak. Exact and Approximate Algorithms for
scheduling unit time tasks with tree-like precedence
constraints. EURO IX – TIMS XXVIII Paris, page
195. 1988

[13]. W. Kubiak, B. Penzabd D. Trystram. Scheduling
Chains on Uniform processors with communication
delays. Journal of Scheduling. 5(6): 459 – 476,
2002.

[14]. T. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M.
Maheswaran, A. I. Reuther, J.P. Robertson, M.D.
Theys, B. Yao, D. Hengsen, and R.F. Freund. A
comparison study of static mapping heuristics for a
class of meta-tasks on heterogeneous computing
systems. Proceedings of the International
Heterogenous Computing Workshop (HCW, 99).
Pp. 15-29. April 1999.

[15]. Y. Kwok and I. Ahmad, “Benchmarking and
Comparison of the Task Graph Scheduling
Algorithms,” Journal of Parallel and Distributed
Processing. March 1999.

[16]. H. El-Rewini, H. Ali and T. Lewis, “Task
Scheduling in Multiprocessing Systems,” IEEE
Computer. Dec. 1995.

[17]. Annie S. Wu, Han Yu, Shiyuan Jin, Kuo-Chi Lin,
and Guy Schiavone. “An Incremental Genetic
Algorithm Approach to Multiprocessor Scheduling”.
IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 9. September 2004.

[18]. Haluk Topcuoglu, Salim Hariri, Min-You Wu,
“Performance Effective and Loq-Complexity Task
Scheduling for Heterogeneous Computing”. IEEE
Transactions on Parallel and Distributed Systems,
Vol. 13, No. 3. March 2002.

[19]. http://www.globus.org/alliance/publications/papers.
php

[20]. http://www.cs.wisc.edu/condor/publications.html
[21]. http://www.cs.virginia.edu/~legion/papers.html
[22]. Noriyaki Fujimoto and Kenichi Hagihara. Near-

Optimal Dynamic Task Scheduling of Precedence
Constrained Coarse-Grained Tasks onto a
Computational Grid. The 2nd International
Symposium on Parallel and Distributed Computing
(ISPDC 2003), pp.80-87, IEEE Press, Ljubljana,
Slovenia, October 16-18, 2003

[23]. Cyril Banino, Olivier Beaumont, Larry Carter,
Jeanne Ferrante, Arnaud Legrand, Yves Robert.
Scheduling Strategies for Master-Slave Tasking on
Heterogenous Processor Platforms. IEEE
Transactions on Parallel and Distributed Systems,
Vol. 15, No. 4. April 2004.

[24]. Sivakumar Viswanathan, Bharadwaj Veervalli,
Dantong Yu, and Thomas G. Robertazzi. Design and
Analysis of a Dynamic Scheduling Strategy with
Resource Estimation for Large-Scale Grid Systems.
Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04).

[25]. http://setiathome.ssl.berkeley.edu/
[26]. Shoukat Ali, Tracy D. Braun, Howard J. Siegel,

Anthony A. Maciejewski, Noah Beck, Ladislau
Boloni, Muthucumaru Mahehwaran, Albert I.
Reuther, James P. Robertson, Mitchell D. Theys and
Bin Yao, “Characterizing Resource Allocation
Heuristics for Heterogeneous Computing Systems”.
Computer Architecture, Elsevier, 2004

