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Abstract

Scientific datasets are often large and distributed in flat
files across several storage nodes. Scientists frequently
want to analyze subsets of these datasets. A data source
abstraction that provides an object-relational view of data
while hiding the details of storage and transport mecha-
nisms and dataset layouts is useful in this regard. In this
abstraction, Basic Data Sources (BDS) interpret flat files
as a set of records and are the building blocks of the view
mechanism. Derived Data Sources (DDS) may be built on
top of BDSs and provide more complex objects that serve
the scientists’ needs. The simplest DDS is one that supports
a join based view over BDSs. We investigate issues involv-
ing building such DDSs for scientific applications and con-
sider distributed versions of the indexed join and the Grace
Hash join algorithms. We construct cost models that cap-
ture their performance in a restricted space of dataset and
system parameters and compare them analytically and ex-
perimentally.

1 Introduction

The availability of cheap commodity hardware and faster
networks allow for large-scale numerical simulations that
can generate terabyte-scale, massive scientific datasets.
Such datasets can also arise in imaging or sensor data as-
sociated with geophysical sensors, satellites, digital mi-
croscopy, and imaging devices used in materials science.
Because of their sheer size, scientific datasets are often
managed on storage clusters with distributed storage nodes.
They are usually stored in flat-files with application specific
formats when they are generated from simulations or cap-
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tured via sensors. A logical object or object-relational view
on the data files can benefit scientists in writing analysis al-
gorithms, since the scientists do not need to know about the
underlying storage mechanisms and file formats.

One way to offer such an abstraction is to load the data
into an object-relational database management system and
define views using its mechanisms. This entails a high cost
of ingestion for large datasets. As shown in [12], ingest-
ing a 10 GB dataset may take upto 4 hours in systems like
Postgres [16]. The alternative is a layered approach [13, 3]
wherein each layer provides a more complex view over the
objects underneath it. This avoids the cost of ingestion,
but requires services to interpret the application-specific file
formats and manage views on data files. These services, re-
ferred to as extractor functions, can be implemented man-
ually, or generated automatically from layout description
languages [17]. An extractor function reads a file segment
(also called a chunk) and generates a set of objects or a set
of tuples (i.e., an object-relational sub-table). In this paper,
we define a Basic Data Source (BDS) as consisting of an
extractor and a group of file segments. That is, a BDS gen-
erates a set of sub-tables. A client may wish to correlate
data from different BDSs or aggregate data from BDSs for
certain analysis operations. Derived Data Sources (DDS),
thus, provide more complex views and are layered on BDSs
or other DDSs.

Such abstractions, while useful for building applications,
can be challenging to optimize. In this work, we present a
view creation framework and the services involved in the
framework. This paper focuses on a specific kind of DDS
that provides a join-based view over BDSs. We compare
the Indexed Join(1J) and Grace Hash(GH) algorithms for
implementing a join-based DDS on a PC cluster system.
We construct cost models that capture the performance of
both algorithms in a restricted space of dataset and system
parameters and compare them analytically and experimen-
tally. These cost models will enable us to choose the appro-
priate algorithm in a given circumstance.
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2 Application Characteristics and Require-
ments

In this paper, we use oil reservoir management stud-
ies [9] as one of the motivating applications for our work.
Several other applications such as satellite data processing,
image data analysis, and seismic data analysis applications
also have similar characteristics.

In oil reservoir management studies, the objective is to
understand subsurface properties, long term changes in the
reservoir, and identify efficient oil production strategies.
This involves generating accurate reservoir models and in-
vestigating different placements of injection and production
wells. A study would require searching through a space of
physical parameters (i.e., reservoir characteristics) and op-
eration parameters (i.e., the number and location of wells)
using optimization methods and numerical simulations of
the reservoir models. Datasets generated in this fashion are
analyzed for economic aspects (e.g., production profits, re-
turn on investment) of the reservoir as well as changes in
physical properties of the field [9].

Since the domain of parameters is quite large, reservoir
simulations can generate terabytes of data. The simula-
tions may be run at different grid resolutions on parallel
machines, may partition the grid points in different ways,
and simulate different properties of the grid. The output of
these simulations may be thought of as a table with coordi-
nate attributes and other properties like saturation of oil, ve-
locity vector, water pressure, etc (a total of 21 attributes for
each dataset). The output datasets can be partitioned across
multiple storage nodes as a result of parallel execution and
written into contiguous file segments in application-specific
formats. The file segments are referred to as chunks and are
the smallest unit of retrieval from the file system. Figure 1
shows a simplified instance of oil reservoir datasets.

Since the data chunks are stored on disk in different lay-
outs, an extractor function is needed to interpret the chunks
and map them to a standard data structure, referred to here
as a sub-table. A sub-table may be thought of as a parti-
tion of the table structure that comprises the entire dataset.
It contains a subset of records and attributes of the dataset
table, and methods to iterate through records and attributes
in a record.

Metadata information associated with each chunk in-
cludes information about which table the chunk belongs to,
the location of the chunk in the storage system (i.e., off-
set in data file) and its size, what attributes it contains, a
list of extractors that can read and parse this chunk, and
the bounding box of the chunk. The bounding box in-
formation contains lower and upper bounds on coordinate
and scalar attributes that are stored in the chunk. The
lower-left chunk of table 77 may have the bounding box
[(0,0,0.2,0.3), (64, 64,0.8,0.5)]. The bounding box infor-
mation is useful in determining which chunks from differ-
ent tables should be correlated on certain attributes. This
bounding box can also be associated with the sub-table pro-
duced from the chunk.

To query and analyze a given dataset, a scientist may, for
example, wish to access water pressure (wp) and saturation
of oil(sotl) attributes of all grid points in reservoir 0. This
requires a view definition V; = 17 @y T3 (i.e., a join be-
tween 73 and 75 on attributes x and y), on which the above
query may be executed. A more complex query could be
of the form “Find all reservoirs with average wp > 0.5”.
A view definition, in such cases, may involve aggregation
operations such AV G or SU M and ability to define a table
as an attribute of another table. Thus, there is a need for
a view framework over multidimensional datasets stored in
collections of distributed files. In Section 4 we will broach
this topic.

3 Related work

There are several works [13, 3, 17] that allow for inter-
pretation of persistent versions of objects. These techniques
may be used to generate the extractors we refer to in this
paper. Abiteboul [1] applies standard database optimiza-
tion schemes over structured files. It provides a theoreti-
cal foundation for our work. Our work differs from theirs
in that we operate in a distributed setting and have to deal
with scheduling issues. OGSA-DQP [2] is a framework de-
signed to support object-relational view over disparate data
sources. We focus on ways to exploit dataset characteris-
tics to optimize query performance. Relational join algo-
rithms are a well investigated topic in databases and several
of them are evaluated in [7, 15]. We have used the parallel
version of the Grace Hash join algorithm [8].

I/O optimization in spatial-join operations has been in-
vestigated in [18, 4, 5]. Spatial joins are generally imple-
mented as indexed-joins. The Optimal Page Access Se-
quence (OPAS) involves minimizing the number of page
accesses in an indexed-join operation under buffer size con-
straints. In the general spatial-join operation there is no
Grace Hash alternative as the objects being joined are spa-
tial objects. The above works have suggested heuristics to
solve the OPAS problem, provided cost models for execu-
tion, and compared these models using simulation results.
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Our work is complementary in that their algorithms may be
used to schedule the sub-table pairs in the 1J algorithms. We
compare 1J and GH when the OPAS problem does not affect
1J.

Lee and Chang [10] concentrate on workload balancing
and CPU utilization under skew in the index. They claim
that hash join always outperforms indexed based join for
high number of remote joins for uniform distribution of
component sizes (in the page connectivity graph). In our
application scenario, all joins are remote joins and compo-
nent sizes are equal and yet we have identified cases when
the opposite is true. We model the impact of dataset char-
acteristics in more detail. Murphy and Rotem [11] have
tackled the same problem in the context of multiprocessors
with shared memory. They deal with general spatial join
problem and do not compare with hash based approach.

4 View Creation

In this work, we target hardware configurations with
coupled storage and compute clusters, in which compute
clusters are connected by a high bandwidth network or
switch to a cluster of storage nodes. Nodes in the storage
cluster possess local disks which house data chunks. Nodes
in the compute cluster have local memory for caching and
local scratch disk space for out-of-core operations, when
local memory is not sufficient for operations. With in-
creasing cost-effectiveness of off-the-shelf disks and stor-
age systems built from commodity components, we antic-
ipate that coupled compute-storage cluster platforms will
increasingly be deployed at supercomputer centers and re-
search institutions.

An overview of the view creation framework is shown
in Figure 2. The role of the Basic Data Source Service is

to provide a table view over the application-specific data
chunks of a dataset. BD.S; provides a virtual table 7; and
is associated with a set of the data chunks. BD.S;, upon
receipt of a chunk id j, produces a basic sub-table identified
by an id (¢, ). BDS instances execute on storage nodes and
accept requests for sub-tables correspond to local chunks.
A BDS accesses information about the location and size of
chunks from the MetaData Service.

A Derived Data Source Service provides more complex
querying capabilities and is composed of several services.
Derived Data Sources (DDS) provide more complex views
on the tables exposed by BDSs. The definition of such
views may involve selection, projection, aggregation and/or
join operations over these virtual tables 7;’s. The Query
Planning service (QPS) incorporates logic to choose be-
tween different Query Execution Systems (QES) based on
cost models. A QES implements specific algorithms for op-
erations such as join, projections, aggregations, or selec-
tions. The Caching Service can be used by the QES to store
and access frequently accessed objects. The MetaData Ser-
vice stores information about chunks and may also be used
by other services to store persistent information.

To illustrate the operation of the framework, we first look
at how range queries against BDSs are handled. Suppose
a query of the form “SELECT * FROM T WHERE z ¢
[0,256], y € [0,512]” is to be executed. The MetaData
Service may be queried using the range part of the query to
retrieve ids of all matching sub-tables of 7. This may be
done efficiently using index structures such as R-Trees [6].
Once the sub-table ids are identified, the BDS is asked to
generate each of the sub-tables.

Suppose a DDS exposes a view defined by “V; = T @y
T, WHERE z € [0,256], y € [0,512]”. In executing a
query of a form “SELECT * FROM V77, it is the task of the
QPS to choose the appropriate QES, based on dataset pa-
rameters, system parameters and the query, so as to achieve
best performance. This requires cost models that can esti-
mate performance of a QES in a specific scenario.

In this work, we concentrate on a DDS that supports
equi-joins and range selection operations. We examine two
algorithms, the page-level Index Join algorithm (IJ) and the
Grace Hash (GH) algorithm and develop cost models for
them. We will now briefly describe these two algorithms
and how we have implemented them.

4.1 Page-level Indexed Join

Page-level join indices are a special case of spatial join
indices [14]. If a relational table is stored as pages in the
database management system, a list of page pairs (¢, j) such
that page 7 and page j contain at least one record with the
same value of join attribute k. When these two tables are
required to be joined on the attribute, only these page pairs
are checked for matches.
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Basic sub-tables can be viewed as pages in a relational
database. Each basic sub-table is associated with a lower
and upper bound on its attributes. If an attribute is not
present in a sub-table, it is assumed to have a bound of
[—00, +00]. Sub-tables whose bounds overlap are candi-
date pairs and they are inserted into a page-level join index.
The bounding box of a pair of basic sub-tables is the union
of the bounding boxes of each sub-table. Note that this pro-
vides an upper bound on the extent of the resulting table
from joining the two sub-tables; if the pair of sub-tables is
ever joined on some attribute, then this bound can be up-
dated and made tighter. The page-index can be precom-
puted for common join attributes.

For a dataset, a partitioning of the grid may create differ-
ent page (sub-table) connectivity graph. Figure 3 shows an
example sub-table connectivity graph. A query of the form
“SELECT * FROM V;” (where V; = T & 15) would be
translated to this set of sub-table pairs. Any additional range
constraints may be applied at the sub-table level to prune
away unwanted edges (and nodes) in the sub-table connec-
tivity graph. Sub-table pairs are joined using an in-memory
hash join algorithm and the resultant tuples are generated.

In the 1J approach, each compute node runs a QES in-
stance that receives a pair of sub-table ids to join. The QES
instance checks with the local Cache Service Instance to
see if either of the sub-tables are present. If not, the QES
instance requests for the sub-tables from appropriate BDS
instances running on the storage nodes. It then performs a
hash join on the received pairs of sub-tables. The QES in-
stance directs the Caching Service Instance to store these
recently accessed sub-tables.

4.2 Grace Hash join

An alternative to the indexed-join approach is an output
partitioned approach like the Grace Hash algorithm. In this
approach, each storage node runs a QES instance that con-
tacts the local BDS instance to retrieve matching sub-tables
from the left (inner) table. A hash function (A1) is used to
map records to QES instances, executing on the compute
cluster. A compute node QES instance, upon receipt of a
record, applies another hash function (h2) to map the record

T Number of tuples in tables R and S

CR Number of tuples in an R sub-table
cs Number of tuples in an S sub-table
Te Number of edges in connectivity graph
RSg Record size of R
RSg Record size of S
a,b Left/right sub-tables in a component
Netpy(i,7) | Transfer bandwidth between ¢
storage and j join nodes
readlQOy,, | Disk read I/O bandwidth
writel Oy, | Disk read I/O bandwidth
N Number of storage nodes
n; Number of joiner nodes
Qpyild Cost per tuple for building hash-table
Qlookup Cost per tuple for looking up hash-table

Table 1. Dataset and System Parameters

to a bucket. Buckets are stored on local disks on the com-
pute nodes. The same procedure is repeated with the right
(outer) table. Each compute node QES instance then pro-
ceeds to join pairs of buckets independently. This is a mod-
ification to the algorithm described in [8] to do away with
network costs during the bucket joining phase. The number
of buckets is chosen so that each bucket fits in memory and
an in-memory hash join algorithm is employed. The Grace
Hash algorithm is insensitive to the way data is partitioned
across the storage nodes, but requires additional 1/O opera-
tions to split records into buckets.

5 Cost Models

In this section, we develop cost models for the IJ and GH
algorithms. These models consider both dataset parameters
and system parameters which are listed in Table 1. Both
algorithms employ an in-memory hash join algorithm as a
sub-routine. The in-memory hash join algorithm requires a
hash-table be built using the left (inner) relation with the at-
tribute of interest and that the resulting hash table be probed
with the records of the right (outer) relation. The cost of
computing the hash function and inserting the key into the
hash-table is modeled by apyi14. In our implementation of
the hash-table building step, we store a pointer to the rel-
evant record as the value. Therefore, this operation is in-
dependent of actual record size. For the same reason, the
lookup cost is independent of record sizes and is modeled
by constant aookup-

We will use R and S to denote the left and right tables.
We assume that both tables have equal number of rows and
the join selectivity is 1 at the record level. This means each
record in the left table has only one partner in right table.
This assumption is reasonable for the cases in which joins
would involve coordinate information such as (x,y). This
means for every record in the right table, only one lookup



operation has to be performed. In our cost models, we as-
sume that the cost of extracting a sub-table is much less than
the I/O cost of retrieving the corresponding chunk(s) from
the I/O sub-system.

5.1 Indexed Join Cost Model

For our datasets, we can assume a sub-table connectivity
graph for the view has been precomputed. Since this is a
one time process, we do not include the cost of this opera-
tion in our cost model. Upon receipt of a query, this index is
consulted to identify candidate sub-table pairs which must
be scheduled on QES instances in the compute nodes. In-
dependent components of this graph are identified as shown
in Figure 3. A component is a connected sub-graph that
contains no out-going edges.

The execution cost of 1J is a function of dataset param-
eters, system parameters and scheduling strategy and cache
replacement policy. In developing the cost model, we as-
sume that the tables are regularly partitioned on their coor-
dinate attributes. In our target applications, such a partition-
ing can be achieved by regularly partitioning the underlying
space. This assumption helps us derive average statistics
like the average degree of a node in the graph. Our second
assumption is that the number of components is much larger
than the number of joiner nodes.

We choose the cache replacement policy to be LRU,
since this is a reasonable policy in many cases and com-
monly used. We employ a two stage scheduling strategy. In
the first stage, each QES instance in the compute cluster is
assigned equal number of components. Then, local id pairs
is sorted in lexicographic order of ((i1, j1), (i2, j2)) where
(i1,71) is the left sub-table id and (ig, jo) is the right sub-
table id. This ensures that each QES instance in the compute
cluster gets the same amount of work.

The third assumption is that if a component consists of a
left sub-tables and b right sub-tables, the size of memory in
each join node it at least 2 - cg + b - ¢g. This assumption,
with the scheduling strategy, guarantees that no sub-table
will be evicted from local cache of a compute node while
it is still required for a future computation. Once we have
a cost model for this ideal case, it would not be difficult
to extend it for cache misses as that will only involve re-
retrieving some sub-tables from BDS instances. Here, we
compare the best performance of both algorithms.

From the discussion above, we may infer that the execu-
tion time of 1J can be broken down into a transfer cost and a
CPU cost. The transfer cost entails reading and processing
of chunks at the storage nodes and sending requested sub-
tables to compute nodes. Since no sub-table is retrieved
twice from storage, the transfer cost only depends on the
table sizes and network and disk bandwidths. The CPU
cost involves building hash-tables on the left sub-tables and
probing these with tuples from right sub-tables to produce
result tuples. A hash-table is created only once for every

left sub-table and cost of creating a hash-table is propor-
tional to the number of records in that sub-table. Probing
cost is dependent on the sub-table connectivity graph. If a
right sub-table is connected to 2 left sub-tables as in Fig-
ure 3, then each record in the right sub-table is involved
in 2 lookup operations. In general, the number of lookups
is proportional to the degree of nodes representing the right
sub-tables and the total number of records of T; received by
a single joiner node. These are represented by the following
equations.

Totalr; = Transferry + Cpury
T-(RSr+ RSs)
T =
ransferrs min (Netpw(ns,n;), readl Opy - 1s)
Cpury = BuildHTr; + Lookupry

BuildHTU = Apuild T/nj
Lookupry; o< AverageDegreeRSubTable -
Numberof RRecordsinJoiner Node

n
Ulookup TZS T/nj

= ookup neCS/nj

Earlier works have targeted the edge-ratio ( n.-cg-cs /1>
) as the dataset parameter of importance. Edge-ratio is im-
portant to assess the efficacy of scheduling page joins with
respect to cache misses. We instead focus on analyzing the
computation vs communication cost under certain assump-
tions.

5.2 Grace Hash Cost Model

Our version of GH is modified so that each joiner node
performs its bucket joins independently. This minimizes
network costs during the bucket joining phase. The exe-
cution time has three components. The transfer component
is the same as that in IJ. The amount of data received per
node will be the size of several components. All this data
cannot be stored in memory simultaneously and hence are
written to buckets in local disks. Bucket pairs are then read
in and an in-memory hash join is performed on each pair.
These costs are proportional to the amount of data pro-
cessed per joiner node. GH is insensitive to the sub-table
connectivity graph. Finally, there is the cpu cost involved
in building hash-tables on buckets and probing them. Both
these costs are proportional to the total number of tuples per
joiner node.

Totalecyg = Transfercuy + Writegu +
Readeu + Cpugn
T-(RSr + RSs)
min(Netpw(ns,n;), readlOpy - Ns)
T - (RSr + RSs)
writel Oy - Ny

Transferau =

Writeaqug =



T-(RSr+ RSs)
readlOpy - M5

Quitd T/1nj + Qrookup T/M;

Readcy =

Cpucnu

6 Experimental Evaluation

The datasets used in our experiments were generated to
exhibit similar characteristics to those of oil reservoir sim-
ulation datasets. There are two virtual tables in the dataset.
Table T} has four attributes (z, y, 2, 0ilp) and table T, con-
sists of (z,y, z, wp) where oilp is the oil pressure at a grid
point and wp is the water pressure value. The two tables
are partitioned along the z, y, and z attribute dimensions.
These partitions are distributed along storage nodes in a
block-cyclic manner. We varied factors cg and cg by vary-
ing the partition sizes in powers of 2. Varying partition
sizes also affected the sub-table connectivity graph affect-
ing the number of edges n.. If the size of the entire grid is
[(0,0,0), (gz, gy, g-)] and the partition sizes are (ps, py, p-)
and (gz, gy, g-), the size of a component, number of com-
ponents and number of edges in a component are calculated
as:

C = (maz(ps,qs), maz(py, gy), maz(p:,qs))
Ne = (9« "Gy -9:)/(Cy - Cy - C.)
EC mc.mc(px, Qm) m?x(plﬂ qy)
min(pz,qz) ' min(py, ¢y)
min(p, q.)

Queries executed are of the form “SELECT * FROM
V1”7, where Vi = T @,y T>. Therefore all records in the
view have to be generated. The dataset parameters in our
cost model are calculated as:

ne = Nc¢-Ec
T = 929y 9
Cr = Pz Py Dz
s = 4z Gy Qs

The hardware configuration used for the experiments is a
Linux cluster. Each node has a PIII 933MHz CPU, 512MB
main memory, and three 100GB IDE disks. The nodes are
inter-connected via Switched Fast Ethernet. In our experi-
ments, we used some of the cluster nodes as storage nodes
and some as compute nodes for the join algorithm. We used
a maximum of 10 nodes in the experiments.
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6.1 Cost Model Validation

The first set of experiments look at the accuracy of our
cost models. The dataset characteristics we focused on were
ne - ¢g, T and record size and the system characteristic we
concentrated on was the number of join nodes i.e. n;.

We first varied n, - cg by keeping a constant grid size
and varying the partition sizes for 7 and T,. Figure 4
shows the execution times of both algorithms under varying
ne - cg. As expected, the CpuCosty; increases with this
factor whereas GH is insensitive to this factor. GH pays the
penalty of extra I/O operations because of writing/reading
buckets, and this impacts the performance when the value
of ne - cg is small. This set of experiments was performed
with 5 storage nodes and 5 compute nodes. We maintained
a constant edge ratio in all of the runs. The edge ratio is
calculated as n, - cg - cg/T>.

Figure 5 compares both approaches while varying the
number of compute nodes. In this, we chose a dataset with
low n, - cg value which is why 1J outperforms GH. We
observe that the gap in performance decreases as there are
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more compute nodes available. This is not surprising as the
difference in execution times is inversely proportional to the
number of compute nodes.

In Figure 6, we varied the grid size which is equivalent
to varying T', the total number of tuples involved in the join
operation. We used a maximum of 2 billion tuples in this
experiment. As expected, both approaches scale linearly
with this factor. Since the difference in execution times
also grows linearly, a good choice can make a big difference
when tables involved are very large. In Figure 7, we varied
the number of attributes in both tables. Each attribute was
of size 4 bytes. Varying the record size only affects transfer
and read/write costs.

The experimental results show that the models fit actual
execution times closely and predict the crossover point (Fig-
ure 4) accurately. In the next set of experiments, we inves-
tigate the implications of the cost models.

6.2 Discussion of Cost Models

The system parameters au,iiq and aqeokyp are CPU de-
pendent. We could write these in terms of the unit of pro-
cessing such as FLOPS, represented by a parameter F':
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puita = 71/F and qgookup = v2/F. Here, 71 and 7o
are the number of operations needed to compute each pa-
rameter. If we make the additional assumption of 1O, =
readlOp, = writelIOy,, and the variable mg = T'/cg
representing the number of sub-tables from table .S, then
we should use 1J when:

Total;; < Totalgu
Cpury < Writegu + Readcu +
CpucH
2-(RSr+ RS
alookupne/ms < % + Nlookup
10v . 2(R5R+R55)
F Y2 (ne/ms — 1)

Existing trends indicate that processing power increases
at a much faster rate than I/O bandwidth. It can also be
anticipated that memory space per node on future configu-
rations would be more. Therefore, for the same dataset, IJ
will offer more and more improvement over Grace Hash. To
demonstrate this, for a particular dataset instance, we varied



the processing rate by repeating the hash building and prob-
ing instructions multiple times in both algorithms. To simu-
late halving the computing power, we performed the build-
ing hash-table operation on left sub-tables (or left buckets)
twice and carried out two lookups per record. This is admit-
tedly a rudimentary technique, but as Figure 8 shows, the
trend predicted by our cost model is accurate. For higher
computing powers, we observe that IJ outperforms Grace
Hash as expected.

In another experiment (Figure 9), we explored the case
when a single Network File System (NFS) storage server
serves all the I/O needs of both algorithms. In these experi-
ments, compute nodes are assumed to not have local disks.
Results obtained show that GH suffers considerably more
than IJ from the shared nature of storage, so much so that
increasing the number of compute nodes worsens perfor-
mance. This is expected as only GH writes buckets to disk.
1J is definitely the better choice under such scenarios.

It should be noted that IJ will not always outperform GH.
1J suffers from the optimal page access sequence (OPAS)
problem [18, 4, 5] under high edge ratio values. Intuitively,
when the edge ratio is very high, the number of compo-
nents will be low. This means edges belonging to the same
component may be scheduled on different compute nodes
causing multiple transfers of the same sub-table over the
network. If the number of components were low, then the
size of a single component would be large. Therefore, even
if a component was scheduled on a single node, there may
be local cache misses which might again lead to multiple
transfers.

7 Conclusions

We described a framework to create join-based views
over scientific datasets. The indexed join (IJ) and Grace
Hash join (GHJ) algorithms were analyzed to identify the
scenarios in which they may be utilized in view creation.
The 1J algorithm is found to be sensitive to the way datasets
are partitioned and was able to benefit from it in certain
cases. GHIJ is, on the other hand, generally impervious
to dataset partitions. We developed a suite of cost mod-
els, which can be used to choose the appropriate algorithm
for a given situation. As part of our future work, we plan to
investigate other aspects of view creation, including aggre-
gation operations and caching strategies.
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