
Ant Colony Optimal Algorithm: Fast Ants on the Optical Pipelined R-Mesh

Ken D. Nguyen and Anu G. Bourgeois

Department of Computer Science
Georgia State University

P.O. Box 3994
Atlanta, Georgia 30302-3994

Email: {knguyen, abourgeois}@cs.gsu.edu

Abstract

In this paper, we demonstrate how to implement and
improve two Ant Colony Optimization (ACO) algorithms
on the Optical Pipelined Reconfigurable Mesh (PR-Mesh):
the generic ACO and the Fast Ant Colony Optimiza-
tion (FACO) algorithm. The run-time complexity of our
improved generic ACO algorithm, with x generations
each generation having m ants, on an nxn PR-Mesh is
O((x ·m + n)logn), which outperforms the currently best
known electrical model implemented in [3] with run-time
complexity of O(x · (m + n)logn).

Our FACO algorithm on PR-Mesh yields O((( z
n·log2n )+

n
logn ) · loglogn) run-time complexity for n2 jobs while the
existing FACO algorithm on the electrical model yields
a run-time complexity of O((z + n)log∗n) but can only
handle log2n jobs, where z is the total number of ants
from all generations.

In addition, we propose a theoretical FACO algorithm
on a three dimensional PR-Mesh solving n2 jobs in O(x ·
(m + n) · logn) time.

I. Introduction

The Ant Colony Optimization (ACO) algorithm is a
greedy approach. It has been used to solve many com-
binatorial NP problems such as the Traveling Salesman
Problems (TSP) [1], the Flow-Shop problems [2], the
Single Machine Total Tardiness problem (SMTTP) [3],
the Resource Constrained Project Scheduling problem [4],
the Quadratic Assignment problem (QAP) [5] [6], graph
coloring [7], and routing in communication networks [8]
[9], etc.

The ACO algorithm was introduced by Marco Dorigo
[10] in his dissertation in 1992 and is described by the

behavior of ants finding food. In general, ants from a
colony will dispatch searching for food in any random
path. Each ant will leave some pheromone on its path to,
and from, the food source. The amount of pheromone can
be different depending on the goodness of the food found.
A portion of pheromone on the path will be evaporated
after a period of time. All following ants leaving the colony
will follow the path(s) that has the strongest pheromone.
A generation of ants is defined by the order in which
they are leaving the colony. All ants in a generation are
working independently. Since the ants keep following the
strongest pheromone path(s), only the best found path(s)
will remain. Because of the nature of the ACO algorithm,
it is best to implement the algorithm on a parallel computer
model, where each ant can be simulated by a processing
element (PE) and the pheromone values on the path(s) are
represented by a two dimensional matrix. There are many
approaches to implement the ACO. For example, Delisle
P. et al. [17] implemented the ACO on OpenMP machines
with a run-time complexity of O(n2), where n is the num-
ber of jobs, Merkle and Middendorf [3] implemented the
ACO algorithm on the electrical Reconfigurable Mesh (R-
Mesh) with a run-time complexity of O(x·(m+n)·log∗n),
where x is the number of generations and each generation
has m ants. Merkle and Middendorf’s implementation is
currently the fastest among all implementations due to
the characteristics of the reconfigurable mesh. However,
all ACO algorithm implementations on electrical models
are constrained by the communication delays between
processing elements.

In this paper, we present several techniques to im-
plement the ACO algorithm and its fast version FACO
on the Optical Pipelined Reconfigurable Mesh (PR-Mesh)
model efficiently and effectively. With our new approach
on the PR-Mesh model, the run time complexity of FACO
algorithm is improved significantly. The FACO algorithm



can be scaled-up, scaled-down or extending to a three
dimensioned PR-Mesh depending on the number of jobs
and available resources.

The R-Mesh model Merkle and Middendorf used and
the PR-Mesh model utilized in this work belong to the
same architecture class called Reconfigurable Architec-
tures. Traditionally, a reconfigurable architecture is one
that can dynamically alter the structure connecting its
components at every step of a computation leading to a
change in its functionalities and capabilities.

This paper is organized as follows: Section II describes
the Reconfigurable Mesh models and their operations, Sec-
tion III describes the existing ACO and FACO algorithms
and their implementations on an R-Mesh, Sections IV and
V describe our implementations of the ACO and FACO
algorithms on the PR-Mesh model, Sections VI and VII
describe new techniques to improve the performance and
extend the capability of the FACO algorithm, and the last
section summarizes our work.

II. Reconfigurable Mesh Models

The common characteristic of all reconfigurable models
is the capability to reconfigure themselves at every step
of computation. All components connected to a bus can
receive data in constant time. The feature that leads to
different reconfigurable models is the types of the buses
connecting the components in each model. The model
using electrical buses can configure cycles while the one
using optical buses cannot. On the other hand, the model
using optical buses can transmit multiple messages to
multiple destinations on a single bus simultaneously, while
the other cannot. The following sections describe more
about these two models.

A. Optical Pipelined Reconfigurable Mesh

A optical PR-Mesh [12] is a two dimensional grid
of processors, in which each processor has four ports
connected by optical buses. Eight buses connect the four
ports of a processor to its neighbors as in Figure 1.
Each processor controls a set of local switches that al-
lows the processor to segment or fuse the buses at each
interconnection. The local fusing configures a linear bus
connecting neighboring processors. Each such linear bus
exactly resembles a Linear Array with a Reconfigurable
Bus Systems (LARPBS) [14].

An LARPBS is an array of N processors
p0, p1, . . . , pn−1 connected by an optical bus. The optical
bus is constructed from three identical waveguides:
the message, select and reference waveguides. The
waveguides are divided into two segments: receiving
segment and transmitting segment. The message
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Fig. 1. PR-Mesh processor connections

waveguide is used for sending data, the select and
reference waveguides are used for sending addressing
information. Each processor pi is connected to the optical
bus with two directional couplers. One coupler is used for
writing data on the transmitting segment (upper segment)
of the bus and the other one is used for reading the data
from the receiving segment (lower segment) of the bus.
Thus, the LARPBS uses six couplers for each processor
pi to connect to the three waveguides. Two consecutive
processors are connected by an optical fiber segment of
one unit pulse-length,∆, as in Figure 2,(for simplicity,
the figure omits the data waveguide, which resembles the
reference waveguide). The optical signals are propagated
unidirectional from left to right on the transmitting
segment and from right to left on the receiving segment.

The LARPBS has a set of conditional-delay switches
on the transmitting segment of the select bus and a set
of fixed-delay switches on the receiving segment of the
reference bus. The LARPBS uses the coincident pulse
technique [15] to route messages by manipulating the
select and reference signals, through the switches, on
separate bus so that they will coincide at the desired
destination processor(s). Each processor has a select frame
and a reference frame of N-bit each, which can be used to
send a message by injecting, up to N slots, its pulse signals
into the frames. When processor pi detect a coincidence of
the select and reference pulses on the receiving segment,
it reads the data frame. Any subsequence coincidences at
processor pi in the same bus cycle will be ignored.

In addition, the LARPBS contains a set of segment
switches on the transmitting and receiving segment of
the bus. When all the segment switches are set to
straight, the bus system operates exactly like a regular
pipelined bus system. Setting the switches at pi to cross,
the bus is segmented into two separate bus systems,
one consists of p0, p1 . . . , pi and the other consists of
pi+1, pi+2, . . . , pn−1.
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Fig. 2. A five-processor LARPBS model
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Fig. 3. local possible connections of ports
within a PE(right), R-Mesh (left)

B. Electrical Reconfigurable Mesh De-
scription

An electrical Reconfigurable Mesh (R-Mesh) [11] is
a two dimensional grid of PEs connected by electrical
buses. Each processor can locally configure any or all of
its ports to the connecting buses, as in Figure 3, within one
time step. Signals propagating on a bus are nondirectional.
Thus, the R-Mesh can form cycles. Due to the nature of
the bus, to avoid collision, the COMMON write rule is
used for concurrent write operations.

III. ACO and FACO on R-Mesh

Generally, permutation problems require one to find
the optimal permutation from a set of n given items.
These items represent the distances between cities as in
the Travelling Salesman problems (TSP) [1] or the jobs
as in Single Machine Total (Weighted) Tardiness prob-
lems (SMTWTP) [3]. A generic ant colony optimization
algorithm uses an nxn pheromone matrix to find the
permutations of the items. In this section we describe
Middendorf’s implementation of a generic ant algorithm
(ACO) and its fast version (FACO) on the R-Mesh model.

A. ACO algorithm on R-Mesh

In [3], Middendorf embedded the nxn pheromone ma-
trix M into an nxn R-Mesh. Each processor pij contains
a pheromone value τij and a heuristic value ηij , (i, j ∈
[1, n]). The ants are pipelined through the R-Mesh from the
first row. Each ant selects an unselected item from row i as

it goes through the R-Mesh. The information about which
items have not been selected is kept in a selectable set S
in the ant’s memory. The next item is always chosen from
S according to the Pseudo-Random-Proportional Action
Choice Rule [3], using probability q0, where 0 ≤ q0 ≤ 1
is a parameter for the algorithm. An ant chooses item j
that has not been selected so far which maximizes

τα
ij · ηβ

ij (1)

where α nd β are constants that determine the relative
influence of the pheromone value on the ant’s decision
in selecting the next item. The probability of item to be
selected is 1 − q0. This probability is computed as qij

qij =
τα
ij · ηβ

ij∑
h∈S τα

ij · ηβ
ij

(2)

(Most often, heuristic values ηij are not used). An ant
stops its journey when it reaches row n, at which point
its solution is found. On a system of m ants, the last
ant reaches row i after n + (m − 1) steps. When all ants
have found their solutions, their solutions will be compared
to existing solutions in order to determine which ants
can update the solutions. The selected ants update their
solutions and the pheromone on their paths. This completes
an ant generation. The algorithm will run for x generations,
x ≥ 0.

In general, an ant selects an item in row i as follows:
when the ant is in row i − 1, pi−1,j knows whether item
j has been selected in one of the rows 1 . . . (i− 1) or not,
pi−1,j sends this information to pi,j as the ant moves to
row i. This step can be done in time O(1) by configuring
pi−1,j {NS, E, W}. Next, the ant selects an item in
row i by computing the prefix-sums of τij · ηij , where
τij · ηij = τij1 · ηij1 + τij2 · ηij2 + · · · + τijk

· ηijk
, k ∈

[1, n − (i − 1)], which is the prefix-sums of τij · ηij of
all elements in S, S = {j1, j2, . . . , jn−(i−1)}, j1 < j2 <
· · · < jn−(i−1), across row i. The first PE in row i then
randomly chooses a value z, z ∈ [0,

∑
j∈S τα

i,j · ηβ
i,j), and

broadcasts z to all PEs in the row. pi,j is selected when
z ∈ [

∑
l<j,l∈S τα

ij · ηβ
il,

∑
l≤j,l∈S τα

ij · ηβ
il, ). The prefix-

sums can be done in time O(logn) using binary tree
reduction method [11](page 5), and the selected PE can
be determined by comparing the prefix-sums of pi−1,j and
pi,j in time O(1). When all the ants in a generation have
found their solutions, which ant is allowed to update the
pheromone is determined. The selected ants store their
solutions and the pheromone value is evaporated from
every PE before the next generation of ants starts. The
amount of pheromone evaporated is defined follow:

τij = (1 − ρ) · τij (3)



where ρ is any predefined factional parameter for
pheromone evaporating function. To force ants from fol-
lowing generations to follow the near best found solutions,
an elitist ant is designated to update the pheromone accord-
ing to the best found solution in each generation.

Since each step of the algorithm can be carried out
in constant time, except the prefix-sums computation, the
algorithm run time is O(x · (m+n) · logn), where x is the
number of generations.

B. FACO algorithm on the R-Mesh

The fast version of ACO algorithm is the result of
abandoning the generational pheromone update and simpli-
fying the probability distribution. First, instead of updating
the pheromone at the end of each generation, an ant is
allowed to update the pheromone when some criteria is
met [18]. In particular, an ant waits until the following
�(m − 1)/2� ants have found their solutions. The ant is
allowed to update the pheromone only if its solution is
better than the m′ − 1,m′ ≤ m, best solutions that have
been found by the preceding �(m − 1)/2� ants and the
following �(m − 1)/2� ants. If multiple ants with equal
solutions, only the (m/m′)th ant is allowed to update.
Evaporation is done when an ant updates the pheromone.
Therefore, the running time of the updated ACO algorithm
is O((x ·m + n) · logn) instead of O(x · (m + n) · logn).
Secondly, each item per row is assigned two bit-values h
and l, where h > l > 0, for low and high probabilities
of being selected next. These values are determined by a
threshold function t. For each item j ∈ S, define

g(τα
ij · ηβ

ij) =
{

h if τα
ij · ηβ

ij > t

l otherwise
(4)

In pij , for each j ∈ S, a bit lij is set to 1 if g(τα
ij ·ηβ

ij) = l,
otherwise, a bit hij is set to 1. Next, the number of PEs
with bit l set to one ,nl, and the number of PEs with bit
h set to one, nh, in each row are determined. A random
number z, z ∈ [0, nl · l + nh · h), is selected as in the
generic ACO algorithm. If z ∈ [(p − 1) · l, p · l), the pth

PE in the row with an l bit set to 1 is selected. If z ∈
[nl · l + (p− 1) ·h, nl · l + p.h) then the pth PE in the row
with an h bit set to 1 is selected. The t, h, and l values
could be changed during the run of the algorithm.

Similarly, the Pseudo-Random-Proportional Action
Choice Rule is modified as follows: let tτ > 0 be a
pheromone threshold and hτ > lτ > 0. For each item
j ∈ S define

g(τij) =
{

hτ if τα
ij > tτ

lτ otherwise
(5)

an ant will select the item that maximizes the value of
g(τij) · ηβ

ij .

Fig. 4. Embedding a row of the pheromone
matrix in a submesh of the R-mesh

C. Implementation of FACO algorithm on
the R-Mesh and its Run Time

Middendorf proposed [3] to use an nlog2n x (n/log2n)
R-mesh. Then a row of pheromone matrix forms a
log2nx(n/log2n) submesh as in Figure 4. The sums nl

and nh can be computed in O(log∗n) as stated in [16]
and [3]. After selecting a random number z, the pth PE
with bit l set to one is selected. By [3] and [16], the sum of
all l bits in the first i·log2n columns, i ∈ [1, (n/log4n)], of
all sub-meshes can be found in time O(logn∗n). The pth

PE with l-bit is set is determined using the same technique.
Therefore, the total time to select an item is O(log∗n).

At every step, there will be at most n + m/2 ≤ 3
2n

solutions need to be stored. In order for an ant to update its
solution, it must know the rank of its solution. Therefore,
the stored solutions must be ranked by their goodness. The
rank of the new solution can be computed in O(log∗n) by
comparing the solution to the stored solutions in parallel,
and a bit is set when it is worse. Addition of the resulting
bits gives the rank of the new solution. The pheromone
can be updated in O(1) as the ant updating the solution
using the Formula 3.

Therefore, this FACO algorithm run-time complexity is
O((z + n) · log∗n), where z is the number of ants on
an nlogn2 x n/log2n R-mesh. This run time can only
be achieved if the number of different weights is at most
log2n [3]. In the next section, we describe techniques to
implement the ACO on PR-Mesh model.

IV. ACO algorithm on PR-Mesh (ACO-PR)

As stated in Section II the optical model cannot con-
figure any cycles. To implement the ACO algorithm on a
PR-Mesh, we have to ensure that none of the steps in the
algorithm configures a cycle in the PR-Mesh. When an
ant moves from row i − 1 to row i, pi−1,j passes this
information to pi,j using only column j and forms no
cycles. pi,j broadcasts its new information to all PEs in row
i, which does not form any cycle either. Next, the prefix-
sums of row i is computed using binary tree reduction on



row i, which also uses no cycle. The first PE in row i
chooses the z value and broadcasts it to all PEs in row
i, and pi,j determines whether it is selected or not using
only row i for communication. The last step, when all ants
have found their solutions, the new found solutions must
be routed to the PEs that holding the previously found
solutions to determine whether any ant has found a better
solution. Let us assume the m best solutions found so far
are positioned in the last row of the PR-Mesh. If we keep
each ant in a column, i.e. ant k, 1 ≤ k ≤ m moves from
row 1 to row n using only column k, then ant k will store
its solution to pn,k when it reaches row n. Obviously, the
ACO algorithm can be implemented on a nxn PR-Mesh
with run time O(x · (m + n) · logn).

In the next section, we show how to determine the
goodness of a solution and update the pheromone in
constant time. Using that technique, each ant can update
its solution and the pheromone immediately if its solution
is better than previously found solutions. The run time will
be reduced to O((x · m + n) · logn).

V. FACO algorithm on PR-Mesh (FACO-PR)

The FACO algorithm can be simulated in the PR-Mesh
as follows: instead of finding the sums of of l bits nl

and h bits hl of each row, we compute the prefix-sums of
these bits. The prefix-sums can be computed in time O(1)
[11](page 374). After computing the prefix-sums, the pth

PE with l bit or h bit set to 1 is the one has the prefix-
sums equals to p. This information is obviously can be
determined in time O(1).

Updating the solutions in PR-Mesh is as follows: first,
we use the last two rows of the PR-Mesh to store 3

2n
possible solutions. These two rows are connected in a
snake-like array, where the last PE of the mesh, pn,n, is
the head of the bus and the last PE of row (n-1), p(n−1),n,
is the tail of the bus, actually, we only use the lower half,
pn−1,0, . . . , pn−1,�n/2�, of row (n-1). We call this bus the
solution bus. Whenever an ant finds a solution, this solution
is broadcasted to all the PEs in the solution bus. Each PE in
the first 3

2n of the bus, starting from the bus head, holding
a solution will set a bit to 1 if its solution is better than
or equal to the new solution, otherwise set its bit to 0.
The sum of these bits is the rank of the new solution.
Each PE that set a bit to 0 (holding worse solution) in the
previous step increases its rank by 1. Then all the solutions
are routed to their locations based on the rank. The best
solution will have the lowest rank. The sum of these bit
can be added in O(1) time [11](page 374). The routing
can be done in O(1) time [11](page 369).

Evaporating the pheromone is done similar to the orig-
inal algorithm. The updating ant sends a signal to all PEs
in its path to evaporate the pheromone. Since the goodness

of each solution can be determined in constant time, we
can allow the solution and the pheromone to be updated
as soon as the solution emerges to make it available for
m−1 ants in the pipeline. In addition, we only need store
at most m solutions, which can be stored in the last row
of the PR-Mesh.

Since each step of the FACO algorithm on PR-Mesh
runs in O(1) time, the algorithm yields (z − 1 + n) steps
or O(z + n), for z is the total number of ants leaving
the colony, which is better than the one running on the
R-Mesh by log∗n factor. O(z + n) is the lower bound
for ACO algorithm on the pipelined reconfigurable mesh,
and this is not hard to verify. By the nature of the ACO
algorithm, the decision of choosing the next move of an
ant depends on the locations it has visited. It can not visit
a location twice nor it can visit location i before visiting
location i − 1. Therefore, the ant takes exactly n steps to
find its solution. In addition, an n states pipeline with z
jobs take at least n + (z − 1) time slots to finish. Thus,
the run time of the FACO algorithm on the PR-Mesh is
optimal.

VI. FACO Algorithm on sub-PR-Meshes
(FACO-PR-Sub)

Since the ACO algorithm practices the greedy approach,
where each ant chooses the best possible path adjacent
to its current location, the over all solution may not be
optimal. In this section we present a divide and conquer
approach, in which the solution will be the optimal of sub-
problems and each sub-problem is solved by applying the
FACO-PR algorithm.

A. Selection on PR sub-mesh

In the ACO algorithm, an ant chooses the next item
by selecting an item in the next row that maximizes the
pheromone and heuristic values τα

ij · ηβ
ij (similarly for the

ants in the FACO algorithm). If all the items are equally
likely to be selected, the probability of this selection
behavior can be represented as: P =

∏n−1
j=0

1
n−j = 1

n! . To
speedup the algorithm, we propose the following: First,
we divide the nxn PR-Mesh into blocks (sub-mesh) of
size n

lognx n
logn , giving log2n such blocks. The solution

for each block is carried out the same as described in the
FACO-PR algorithm. Next, the solution for all the blocks
is determined using one of the following two methods.
(i) sum the sub-solutions of all blocks in the same block-
row, then find the maximum of all the block-rows (Max
Row method). (ii) find the maximum sub-solutions of each
block-column, then add all the maximum values to obtain
a solution (Max Column method). The two methods share
almost the same behavior. The selection probability for all
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the disjoint blocks is Pb =
∏ n

logn−1

j=0
1

n
logn−j = ( logn

n )!. In
addition, the probability of picking the best sub-solution
block out of a block-column, or block-row, is 1

logn , and

Pc = ( 1
logn · 1

logn . . . 1
logn ) = ( 1

logn )
1

logn = 1
(logn)logn

for logn block-columns. Therefore, the new selection
probability is P = Pb · Pc = logn!

(logn)logn·n!
.

Since the solution of the problem closely depending on
the distribution of the items, it is not clear which selection
method, the original one or the proposing ones, yields
better solution. Based on our simulation (see Figure 5) of
the three selection methods, where the pheromone values
are randomly generated and distributed, the Max Column
method resembles the original selection method. Next, we
will describe the Max Column method in details, (the Max
Row Method is similar).

B. Applying Max-Column Selection
Method on PR-Mesh

Ants used in the ACO models are control logics and
often represented as iterations of running an algorithm;
therefore, requiring more ants may not impose any physical
restriction on the algorithm. Initially, we partition an
nxn PR-Mesh into log2n sub-meshes, or blocks, of size

n
lognx n

logn . The nxn PR-Mesh M can be viewed as a
lognxlogn matrix, where each element is a n

lognx n
logn sub-

mesh as in Figure 6. Assuming we have at least z ants,
z ≥ log2n. We designate the last row of the nxn PR-Mesh
as the solution bus as in Section V. First we distribute
z/log2n ants to each block. The ants are pipelined through
the sub-mesh in the same way as described in Section
V. After an ant finds its solution in its block bi,j , where
i, j ∈ [1, logn], the best of all the solutions found by these

n,n
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b

b b 1,n1,1
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bn,1 b
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Fig. 6. An nxn PR-Mesh partitioned into
lognxlogn blocks

block-columns is determined. In order to find the best sub-
solution of a column, all sub-solutions s1, s2, . . . , slogn of
block-columns are routed to the last row of block blogn,j

of each block-column j, where pn,i is the destination of
si.

Next, in each block blogn,j the solutions are broadcasted
to all other PEs through the columns of the block. pi,i

of the block broadcasts its solution along row i, any PE
holding a worse solution sets its bit to 1. The bitwise-or
over every column bit of the blocks is computed. A result
zero of a column signifies the solution in that column is
the best solution. Each one of these steps take O(1) time.
Next, the solution to the problem is determined by adding
all the best sub-solutions. This solution is then routed to
the solution bus for ranking and storing as described in
the previous section. The run time of every step involved
in this method is either constant or similar to the FACO-
PR, except the summing of partial solutions. The sum of
these logn solutions can be computed in O(loglogn) time
using binary-tree reduction. It takes O( n

logn ) time to fill
the pipeline. Therefore, the run time of the FACO-PR-Sub
is O((( z

log2n ) + n
logn ) · loglogn).

VII. FACO Algorithm on 3D PR-Mesh

Combinatorial problems that have their weights chang-
ing dynamically during the execution of an algorithm and
require iterating over the solutions many times for the
solutions to converge to an optimal solution tend to use a
large number of ants to solve. In this section, we describe a
technique to extend the FACO-PR-Sub to multidimensional
PR-Mesh to solve such problem effectively.

A. n Jobs FACO Algorithm on 3D PR-
Mesh (FACO-PR 3D)

In general, if the number of ants used in the ACO
algorithms is relatively large, the FACO can be extended
to run on a k-dimensional PR-Mesh. In particular, we will
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describe a technique to extend the FACO to run on an
nxnxn PR-Mesh in logarithmic time.
A 3D PR-Mesh can be viewed as n of nxn PR-Meshes

(n slices) connected by the optical buses in the third
dimension k, where all the last rows of these slices form
an nxn solution mesh (see Figure 7). Let row nth of each
slice holds the best n solutions found so far - we call
these rows as solution buses. The FACO algorithm can
be implemented as follows: First, let the ants pipelining
through the slices as in the 2D PR-Mesh. After n steps,
there will be n ants arriving to the last row with their
solutions, one in every slice. For the first arriving n
solutions, we must sort them by their ranks. This can be
achieved by using Leighton’s column sort algorithm on
an nxn mesh, as described in [11] (page 377), in O(1)
time. After sorting, these solutions are broadcasted to all
other slices. On every subsequence step, the ranks of n
new solutions are determined and routed to their positions
in the solution buses. To extract the best n solutions we
perform the following stages.

First, the solutions in pn,j,1 are swapped with the solu-
tions in pn,j,n if j is even. Second, pn,j,1, pn,j,2, . . . , pn,j,n

are connected to form a bus going across all slices. pn,j,k

is the head of the bus if j is odd, otherwise, pn,j,n is the
head of the bus. All PEs holding new solutions and head
PEs are set to active. All active PEs have their solutions
ranked and routed to their positions. At this moment, all
the new solutions are packed to the head of the buses. Next,
the solution mesh is configured into a snake-like bus,(see
Figure 8), where pn,1,1 is the head of the bus. The best n
solutions are routed to the head of the bus by computing
the prefix-sum of the inactive PEs and letting all active
PEs send their solutions to the PEs of distances equal to
their prefix-sums toward the head of the bus. The final step
is to propagate the best n solutions to each solution bus in
the solution mesh. This is done in two steps:pn,1,k sends
its solution to pn,k,k and pn,k,k broadcasts its value across
slices pn,k,1, pn,k,2, . . . , pn,k,n. All of these steps run in
O(1) time.

The pheromone is updated in each slice similar to the

Head of the bus

Fig. 8. An nxn PR-Mesh configured int a
snake-like linear bus

earlier described algorithm. pn,k,k updates slice k if the
its solution is new. Next, n2 buses connecting PEs in the
first slice to the last slice are formed to broadcast the new
pheromone values to all the slices.

As a result, the run time for this algorithm is O(( z
n ) +

n), where z is the total number of ants. Using the same
method described in Section VI, the run time of this algo-
rithm can be lowered to O((( z

n·log2n ) + n
logn ) · loglogn).

B. nxn Jobs Ant Colony Algorithm on 3D
PR-Mesh (FACO-PR 3Dx)

To solve a problem with n2 jobs using the PR-Mesh
as described in Section V we will need an n2xn2 PR-
Mesh to store the pheromone values. In this section, we
will use the result of the previous section to solve this
problem efficiently. Let the n2 jobs be distributed along
the j and k directions of the 3D-PR-Mesh such that each
slice containing n jobs. The solutions are computed in both
directions i and j as in Figure 7. This algorithm requires at
least n+1 ants. Each ant steps down from the first row to
the last row of its slice and selects an item similar to the the
general ACO described in Section III-A simultaneously.
We call the ant from the first slice the leader ant. When
the leader ant is on row i and selecting item j, the weight
of that item wj is sent to the crossed slice j (containing
p1,j,1, p2,j,1, . . . , pn,j,n) . This is possible since each PE
has many separate buses, (see Figure 1). For clarity, we can
visualize the first slice as an additional nxn mesh attaching
to the nxnxn cube. The solution of slice j is the sum of its
solution and the weight wj of the leader ant. After n steps,
the leader ant tailors its solution by summing the solutions
of all n crossed slices in O(logn) time. The pheromone
is updated on each crossed slice as described in previous
sections.

At the end of each generation, the maximum values
τij and ηij , (i, j ∈ [1, n]) must be routed to the first slice
for the leader ant to work properly. This step is done as
follows: First, each pi,j on slice 1 becomes the head of a
bus connecting all other pi,j from all other slices. Next,
the max values are computed and routed to the heads of



TABLE I. Algorithms’ Run times
Algorithm Run Time

ACO O(x · (m + n) · logn)

ACO-PR O((z + n) · logn)

FACO O((z + n) · log∗n)

FACO-PR O(z + n)

FACO-PR-Sub O(( z
log2n

+ n
logn

) · loglogn)

FACO-PR 3D O(( z
n·log2n

+ n
logn

) · loglogn)

FACO-PR 3Dx O(x · (m + n) · logn)

the buses. Each bus works independently. These steps can
be done in O(1) time [11] (page 376).

The total run time to compute the first solution is O(n+
logn). The run time of the 3D PR-Mesh is O(x · (m+n) ·
logn), where x is the number of generations each having
m ants. This run time can be further reduced by applying
the partitioning technique in Section VI to the algorithm.

VIII. Conclusion

In this paper, we show that the Ant Colony Optimization
(ACO) and its simplified version Fast Ant Colony Opti-
mization (FACO) algorithms with z ants can be simulated
on the Optical Pipelined Reconfigurable Mesh (PR-Mesh)
with better time complexity than the electrical reconfig-
urable mesh. Unlike the electrical model, which restricts
the number of different weights to be at most log2n, the
optical model imposes no restriction on the weights. In
particular, we present techniques to implement the FACO
algorithm on the PR-Mesh with run time O(( z

log2n + n
logn )·

loglogn) and O(( z
n·log2n+ n

logn )·loglogn) on 2D PR-Mesh
and 3D-PR-Mesh (FACO-PR-Sub and FACO-PR 3D), and
a version of the FACO algorithm with n2 jobs on a 3D-PR-
Mesh (FACO-PR 3Dx) in O(x · (m + n) · logn). The run-
time complexity comparison of the two models is given
in Table I, and the characteristics of the algorithms on
these models are given in Table II, (note: x is the number
of generations, m is the number of ants per generation,
z = x · m, and italicized algorithms are on the electrical
reconfigurable mesh).
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