Parallel Information Extraction on Shared Memory Multi-processor System

Jiulong Shan, Yurong Chen, Qian Diao and Yimin Zhang
Intel China Research Center
Intel Corporation
8/F, Raycom Infotech Park A, NO. 2, KeXueYuan South Road
Beijing, 100080, China
Tel: +86-10-82611515-1327
Contact Email: jiulong.shan@intel.com

Abstract

Text Mining is one of the best solutions for today and
the future’s information explosion. With the development
of modern processor technologies, it will be a mass market
desktop application in the many-core era. In Text Mining
system, Information Extraction is a representative module
and is the most compute intensive part. In this paper, we
study the performance of parallel Information Extraction
on shared memory multi-processor systems in order to gain
some insights of such applications on the future’s many-
core architecture. In implementation, Conditional Random
Fields (CRFs) algorithm is selected as the core of module
Information Extraction. Based on the newest CRFs toolkit
FlexCRFs, we make several serial optimizations and then
parallelize it with MPI and System V. IPC/shm. We also
conduct a detailed performance analysis of this parallel ap-
plication on the target system.

1 Introduction

These days, everyone in the world faces an information
overload in their everyday life, in which the most general
and important one is text information.

One common scenario for this is that when entering a
query in a search engine (such as Google, Yahoo or Baidu),
a person will face thousands of return hits. Due to time
limitations, he can only read several high-ranked hits rec-
ommended by the engine. Sometimes, this will miss some
important information and cause an information gap.

To fill this gap, Text Mining will be a good choice. Text
Mining is the nontrivial extraction of implicit, previously
unknown, and potentially useful information from a large
amount of textual data. By using those state-of-the-art al-
gorithms, we can have computers help humans to extend

their reading ability.

Meanwhile, the development of Internet’s bandwidth
and modern processor technologies [10] will make it feasi-
ble to download all the pages and to deal with them locally
on our desktop. This trend leads to our research work on
the Personal Text Mining System.

As shown in Fig. 1, we designed the Personal Text Min-
ing System to help provide the following solutions. First the
computer can download all the related hits from the corre-
sponding web servers automatically. After that, with some
post-processing, it can display all the information in a more
readable way. For example, by using clustering we can
find the hidden topics behind those hits and by using multi-
document summarization we can provide a brief summary
for each topic.

Read in Information Extraction Indexing Summarization

Models shd_res

Clustering

I
. IE_ [Indexing [}—w{ Clustering - Summ.]

ne_res index_res cluster_res summ_res

== /O Flow —m Execution Flow — Data Flow

Figure 1. Architecture of Personal Text Min-
ing System

In Personal Text Mining System, Information Extrac-
tion (IE) is the basis of all other advanced modules. It in-
cludes two sub-tasks: Sentence Boundary Detection (SBD)
and Name Entity Extraction (NE). First of all, it segments
the input raw documents into individual sentences (sbd_res)
for further use and extracts the name entities (ne_res) from
them. After that, the extracted name entities can help put
more emphasis on those key terms while doing clustering
and summarization. Also, it can provide indicative labels
for each topic. In implementation, Conditional Random

Fields (CRFs) [12] algorithm is chosen as the core of mod-
ule IE.

In the whole system, IE is a representative module. It
includes most of the operations needed for Text Mining ap-
plications, such as: dealing with stemming and acronym,
sequence vectorization and dictionary finding. Also, IE is
the most computate intensive part in our Personal Text Min-
ing System, consuming about half of the runtime.

So, in this paper we present the optimization and par-
allelization of module IE and characterize its performance
on two shared memory multi-processor systems. We first
identify the hotspots of this module, perform data structure
refinements for serial optimization and then choose MPI as
the parallel programming language. The above efforts make
module IE more powerful for handling larger datasets in a
short time scale. To sum up, this work studies the problem
of how to perform Information Extraction more efficiently
on modern shared memory multi-processor system and try
to provide some useful insights of such applications on the
future’s many-core architecture for application implemen-
tation and architecture design.

The remainder of this paper is organized as follows: Sec-
tion II describes the algorithm, implementation and quality
of CRFs based Information Extraction. Section III presents
the application’s optimization and parallelization. Experi-
ment and performance analysis are studied in Section IV.
Section V, concludes the work of this paper and outlines the
future work.

2 CREFs based Information Extraction

2.1 Conditional Random Fields

rithm

Algo-

In text processing, sentence boundary detection and
name entity extraction are two typical tasks of Informa-
tion Extraction. CRFs brings together the pros of genera-
tive probabilistic model and classification model. Lafferty
etal. [12], Sha & Pereira [14] and Liu et al. [13] showed that
CRFs beats related classification models as well as genera-
tive models on part-of-speech tagging task, shallow pars-
ing task and sentence boundary detection task, respectively.
Therefore, we choose it as the core of module IE.

CREFs contains two separate parts: training and decoding.

A CRFs model is trained by maximizing the log-
likelihood for a metric of input sequence = and label se-
quence y. Generally, the training process needs about
dozens of hours to generate a CRFs model. Once a model is
generated, it will not be changed during the decoding pro-
cess. Therefore, we can regard it as an offline module and
focus on the decoding part.

CRFs decoding is also working on the sequence level.
It processes the input document sequence by sequence and

finds the most likely state sequence 3’ corresponding to the
given observation sequence .

eXp()‘) F(yv 33))
Zx\(z)

In Equation (1), the CRFs’ global feature vector for input
sequence x and label sequence y can be denoted as:

= fy,,4))

ey

y = arg max
y

Zna) =) exp(kzﬂ)y) 3)

"

Because Z)(z) does not depend on y, and F(y,x) can
be decomposed into a sum of terms for consecutive pairs of
labels, so the most likely 4’ can be found with the viterbi
algorithm [6]. For a chain structure, the conditional proba-
bility of a label sequence can be expressed concisely in ma-
trix form. Then for a given sequence x, define the transition
matrix of position % as:

M;ly,y'] =exp(\- f(y,y z,1))
= Xp(z /\k : fk(y’y/’xv Z)) (4)
k

And in Equation (1), the conditional probability of a la-
bel sequence can be rewritten as:

HL+1 M []

5
HL+1M(()

Palylz) =

where yo = start and y,,+1 = stop, the normalization
(partition function) Zy(z) is the (start, stop) entry of the
product of these matrices:

Z)\(.’E):Ml(x)-Mg(JZ)...ML_H(I) (6)
The computational complexity of viterbi decoding in
CRFs is O(L - NL?), where L is the average sequence
length and N L is the number of different labels.
Pseudo codes of the CRFs based SBD and NE are listed
below (algorithm 1, 2 and 3). Because this work is mainly
based on the sequence level, so we only present these

pseudo codes on the same level.
2.2 System Development

The implementation of the module IE is based on an
open source software toolkit: FlexCRFs [11].

FlexCRFs is a CRFs toolkit for segmenting and label-
ing sequential data written in C/C++ using STL library. It
was implemented based on the theoretical model presented

Algorithm 1: CRFs based SBD
Begin
1: for each word w in the original document do
2: judge whether w is a potential sentence boundary;
3: if it’s a potential one then
4: generate the corresponding observation sequence;
5 perform viterbi decoding to make sure whether it
is a sentence boundary;
6: end if
7: end for
End

Algorithm 2: CRFs based NE
Begin
1: for each sentence s in the result of SBD do
2: make transformations to sentence s and generate the
corresponding observation sequence;
3: perform viterbi decoding on the observation se-
quence to find the name entities inside it;
4: end for

End

in [12] and [14]. Based on the kernel of FlexCRFs, we de-
veloped the components for SBD, NE and also several util-
ities to facilitate the required transformation.

In order to execute the decoding step, we have to make
some transformations on the original sequences to generate
the corresponding observation sequences. It can be seen
from later sections that this transformation consumes a large
portion of the whole decoding time.

3 Optimization and Parallelization
3.1 Experiment Setting

The following studies are conducted on a 16-way Intel
Xeon shared memory multi-processor system. It has 16 x86
processors running at 3.0GHz, 4 levels of cache with each
32MB L4 cache shared amongst 4 CPUs. The sizes of the
L1, L2 and L3 caches are 8K, 512K and 4MB respectively.
As for the interconnection, the system uses two 4x4 cross-
bars. We use mpich-1.2.5.2 (affiliated with gcc 3.3.3) com-
piler to generate the executables with option -O3, to enable
the high levels of compiler optimizations. To further study
the influence of cache settings, we also analyze the pro-
gram’s performance on another 4-way Intel Xeon (2.8GHz)
system with a smaller 2MB L3 cache and no combined L4
cache.

We use three different datasets. The first one is down-
loaded from the links of Google general search results with
query word “beijing”. It contains 805 web pages and after
filtering (web page cleaning, e.g. removing HTML tags and

Algorithm 3: CRFs based IE
Begin
1: read in the CRFs model for SBD and NE;
2: for each input document d do
3: apply Algorithm 1 on document d;
4: apply Algorithm 2 on the result of previous step;
5: end for

End

extra scripts) its size is about 11MB (denoted as “beijing”).
The other two are generated from the Reuters News Col-
lections [3]. One is the news archive of 19961126, which
contains 3030 XML files and the filtered size is 25MB (de-
noted as “1126”). Another one is created by ourselves by
merging several news articles into one document. There are
totaly 4102 documents and the filtered size is 141MB (de-
noted as “reuter”).

3.2 Workload Characterization

According to previous descriptions in Section II, module
IE can be roughly divided into two parts: Model Initializa-
tion (MI) and Document Processing (DP). The former one
reads in all the pre-trained CRFs model data and generates
the corresponding data structures in memory, while the lat-
ter one consequently performs SBD and NE on each raw
document.

By breaking down the runtime with different datasets,
we can easily observe that DP is the most time consuming
part (consumes about 90% of the total runtime). With the
increasing size of dataset, the runtime of DP increases dra-
matically, while that of MI remains the same and takes only
a small percentage. But, for small dataset, like “beijing”
and “1126”, the runtime of MI is still noticeable, especially
while running in parallel.

30%

20%

10% —h ‘
0% I 3 I —l

beijing 1126 reuter

O find
@ string
B _ GlI_memcpy

colockticks ratio (%)

Figure 2. Function Profiling of Module IE with
Different Datasets

With Intel VTune Performance Analyzer [5], we also
generate function level profiles of the whole module with
different datasets, as shown in Fig. 2. Inside them, “find”

is the search operation of STL’s map container; “string” is
the constructor of C++ class string and “__GI_memcpy” is
the memory copy function of libc. All these three functions
consume about 42% of the total runtime.

3.3 Key Observations

Based on the above workload analysis, together with an
understanding of the kernel functions, we can make the fol-
lowing observations:

First, this CRFs based IE is a memory intensive applica-
tion. This can be seen from Fig. 2 that the 3 top functions
are all memory related.

“_GI.memcpy” and “string” mainly occurred in the
transformation from original sequence to the observation
sequence, which use several buffers for temporal storage.
“find” is used to determine whether a sequence exists in a
pre-defined dictionary, which needs multiple string compar-
isons for each single call. So, the serial optimization should
be focused on these parts.

Second, the parallelization of CRFs based IE can be con-
ducted with different granularities, such as decoding level,
sequence level and document level.

This application is not computation intensive, but mem-
ory intensive. If working on the decoding level, it will ex-
pose more variables to be shared by all the processes and
thus cause extra synchronization cost. Also, considering the
I/0 synchronizations, it is better to choose document level
parallelization.

3.4 Serial Optimization

Several serial optimizations have already been done in
module IE. These optimizations are mainly related with the
STL containers.

In module IE, one common task is to deal with a set of
terms, such as maintaining a vector or map of all the related
terms, finding whether a term exists in a given set and mak-
ing some modifications to them. To achieve this and also for
programmability, in the original implementation of module
IE, some STL containers are widely used across the source
codes, like vector, list, set and map. As to some other recent
developed Text Mining Toolkits, it is also the same for us-
ing of STL containers, such as Lemur [1]. This raises some
performance issues and in our optimization the following
principles are adopted.

The first one is to use right STL container. Different STL
containers are designed for different scenarios. We should
choose the most suitable one in implementation.

In the original implementation of module IE, the se-
quence dictionary has about 120,000 items and is defined
as: map<string, element> dict. The container map is con-
structed as an rb-tree in memory. On average, a find oper-

ation will need about logN comparisons (N is the number
of items). For this case, there will be around 5 string com-
parisons for each find operation and the find operation is
invoked frequently.

Besides these unwanted comparisons, it will also cause
extra cache misses. Because the size of the dictionary is
larger than that of the L3 cache, so some of these “find”
operations need to access main memory. On a modern pro-
cessor it will surely cause lower performance.

After finding this, we use an extension STL container
hash_map to replace the occurrences of map. If we use large
enough buckets and suitable hashing function, all the items
can be distributed into each bucket evenly and thus can help
reduce the average number of comparisons. With this re-
placement, module IE can achieve a performance improve-
ment between 12% to 18% with different datasets.

The second one is to use non-STL data structure for re-
placement. In some scenarios, STL can help on the pro-
grammability, at the same time affect the performance a
lot. So in performance-oriented scenarios, some replace-
ment data structures should be created.

In the original version, a lot of variables are defined as
vector of string or map of string. From the profiles gener-
ated by VTune (shown in Fig. 2), we can see a large amount
of unnecessary string construction and memory copy oper-
ations. This is because, each time a string is inserted into a
vector or a map, it will invoke a corresponding construction
and a memory copy operations. Most of them are unneces-
sary and a waste of the runtime.

So, in optimization, we create class CompactStrings for
replacement. It manages an internal buffer which avoids
those unnecessary operations. Equipped with this and some
other string replacements, module IE can achieve 4X per-
formance improvement.

1400

)

i

(=]

o

(=]
T

O original
B opt1
B opti+opt2

runtime (s

b (0 Rl et e B P e B

beijing 1126 reuter

Figure 3. Performance Improvement of Serial
Optimization with Different Datasets

The aggregated performance improvement with different
datasets is shown in Fig. 3.

3.5 Parallel Implementation

3.5.1 Programming Model Selection

The first step of parallelization is to select a proper parallel
programming model. To make the decision, we check the
performance of Message Passing Model and Shared Vari-
able Model on some kernel codes separately [15].

Because the target machine is of shared memory archi-
tecture, the straight selection should be the shared variable
programming model, e.g. Pthread and OpenMP. But, as de-
scribed above, module IE uses STL containers extensively
as its primary data structure. Because STL has its own in-
ternal memory management policies, the frequent insert and
delete operations will invoke a lot of concurrent accesses to
the center heap which is shared by all threads. Therefore, in
thread-level parallelization, this will definitely cause con-
tentions and affect the scalability. Although some recent
developed heap aware allocators [4] [2] can reduce the im-
pact of this problem, it still exists.

Message passing programming model, like MPI, pro-
vides process level parallelization. Thus, it will not have
this heap contention problem naturally. The drawback of
MPI on shared memory architecture is that it does not sup-
port data sharing between processes and will cause dupli-
cate data allocations.

In our approach, we choose MPI as the base program-
ming language and use System V. IPC/shm [7] as a plus
to enable the inter-process data sharing. The experimental
results shown in section IV prove the efficiency of this ap-
proach.

3.5.2 Implementation Issues

The basic principle of parallelization is to assign all the pro-
cessing tasks to each processor evenly. According to the
description of Algorithm 3 and the observations above, for
MI, we can let different process read in different part of the
model separately; and for DP, the best way to parallelize it
is performing data parallelization in document level. The
corresponding parallel algorithm for IE is listed below:

Algorithm 4: Parallel CRFs based IE
Begin
1: read in different part of the CRFs model for SBD and
NE separately;
2: assign all the documents to each process evenly;
3: for each assigned input document d do
4: apply Algorithm 1 on document d;
5: apply Algorithm 2 on the result of previous step;
6: end for

End

After designing the parallelization scheme, we meet the
following issues in implementation.

One issue is the speedup downfall on the 16-way system
coming from duplicate data allocations.

When running the application in parallel, we observe a
dramatic speedup downfall from 2P to 4P case. After care-
fully examing the profiling data and the kernel data struc-
tures, we come to know that it is because of the duplicate
data allocation for the dictionary of CRFs model.

In traditional MPI programs, all the variables are allo-
cated privately even if they contain the same contents. For
the module IE, all the processes need to access the same
dictionary of CRFs model. The easiest way to achieve this
is to allocate a full copy of it in each process.

The required memory size for each copy of it is about
10MB, and thus in the 4P case it will need 40MB to ac-
commodate all of them. In our 16-way system, every 4 pro-
cessors share one L4 cache with the size of 32MB. So, if
the dictionary is allocated duplicately, in 4P case, its total
size will exceed that of L4 cache. Thus, some of the data
accesses can not be satisfied in L4 cache and will be for-
warded to main memory, which consumes more time.

At the same time, for 2P case, all the data (20MB) can
be stored inside L4 cache and does not need main memory
access. This explains the speedup downfall from 2P to 4P
case.

To fix this problem, we create a process level shared
memory with the help of IPC/shm and then map it to all
the processes. Thus, there exists only one copy of the dic-
tionary and it can be accommodated in L4 cache. Table 1
shows the effects on speedup of this approach (speedup of
the 4P case is increased from 3.38X to 3.92X).

Table 1. Performance Improvements of
IPC/shm Approach for Dataset reuter” on
the 16-way System

un- 1P 4P optimized 1P 4P
optimized

runtime (s) 146.27 43.27 runtime (s) 142.43 36.05
speedup 1 3.38 speedup 1 3.95

Another issue is the performance dropdown derived from
frequent I/O requests on small files.

While processing the input documents, each process
needs to read them in line by line. If the sequences are read
in from disk separately, it will require more I/O accesses
and then consume more time. Furthermore, while running
in parallel, multiple concurrent I/O accesses will cause re-
source contentions and further decrease the performance.

First, this problem can be relieved by buffered 1/O, to
read the whole document into a pre-allocated buffer at one

time and then read line by line from the buffer. Second,
we can accumulate some small input files into a bigger one
while downloading them from the Internet. Both of these
two efforts aim at diminishing the number of I/O operations
and the effects of them can be seen from the speedup results
of different datasets (as shown in Fig. 7).

To ease the problem of concurrent I/O accesses in multi-
process case, we can adopt the techniques of parallel I/O [9]
to do the help.

The last one is the load imbalance problem.

Because the processing time of each document is not
proportional to its size, it is impossible to distribute the
workloads statically. Table 2 shows the load imbalance ra-
tios of static scheduling for dataset “beijing”. In it, the load
imbalance ratio equals the maximum runtime difference di-
vided by the smallest runtime.

Table 2. Load Imbalance Ratios for Dataset
“beijing” on the 16-way System

Speedup 1P 2P 4P 8P 16P

original 0.00% 48.89% 79.28%

optimized 0.00% 0.01% 0.03% 0.15% 3.35%

125.34% 163.42%

To solve it, we create a process level TaskQ [16] to dis-
tribute the tasks evenly. In implementation, by fully taking
the advantage of the target shared memory architecture, we
first create a shared task queue with the help of IPC/shm
and then use IPC/sem [7] to synchronize the queue’s ac-
cessing. With this approach, the load imbalance ratio can
be decreased to within 5%.

4 Experiment and Performance Analysis

To characterize the performance of parallel IE running
on shared memory architecture, we investigate the applica-
tion from different aspects, including the memory hierarchy
performance metrics and scalability performance (all the
data shown in this section are collected by using VTune).

4.1 Memory Hierarchy Performance

4.1.1 Bandwidth and Memory Latency

Table 3 shows the FSB bandwidth utilization rate with dif-
ferent processor numbers on the two target shared memory
multi-processor systems (with dataset “reuter”).

Generally speaking, memory bandwidth is a key factor
which may limit the speedup on multi-processor systems,
especially for the shared-bus SMP system. From the re-
sults we can see, on both systems, the bandwidth require-
ment goes up steadily and is far from saturation (2.1GB/s

Table 3. FSB Bandwidth of module IE on both
systems for Dataset "reuter” with Different
Processor Numbers

MB/s 1P 2P 4P 8P 16P
4-way 91.4 177.9 3532 N/A N/A
16-way 84.2 166.8 339.4 679.2 1363.6

for the 4-way system and 25.6GB/s for the 16-way system).
Similarly, in Table 4, the memory latency on both systems
remains flat with different processor numbers. In another
aspect, it also confirms that the bandwidth is not saturated
on both systems.

Table 4 also shows the memory latency of the 4-way sys-
tem is larger than that of the 16-way. Partly, this is a benefit
from the larger L3 cache and the shared L4 cache of the
16-way system.

Table 4. Memory Latency of module IE on
both systems for Dataset “reuter” with Differ-
ent Processor Numbers

clockticks 1P 2P 4P 8SpP 16P
4-way 35894 372.15 387.75 N/A N/A
16-way 191.60 19491 210.17 196.95 192.33

4.1.2 Cache Misses

Fig. 4 shows the runtime comparison with dataset “reuter”
on both systems. Why are the runtimes on the 4-way system
longer than that on the 16-way system? The cache miss rate
results shown in Fig. 5 and 6 reveal the reason.

250
200
)
2 150 O 4-way
% 100 B 16-way
50

1P 2P 4P

Figure 4. Runtime Comparisons of Module IE
for Dataset “reuter” between the 4-way and
the 16-way System

Fig. 5 depicts the cache miss rates for the whole cache
hierarchy on the 16-way system. It shows a relative high

L2 cache miss rate, around 20%. This mainly comes from
in-continuous data access caused by the “find” operation of
hash_map.

25%

E 20y

°

E 15%, 0O L1 Miss
E @ L2 Miss
5 10% B L3 Miss
=

8

5%

0%
1P 2P 4P 8P 16P

Figure 5. Cache Miss Rate of module IE for
Dataset “reuter” on the 16-way System with
Different Processor Numbers

35%
30%
25%
S0, Josssearass

15% kv
5%
0%

113 L1 Miss
B L2 Miss
B L3 Miss

cache miss ratio (%)

1P 2P 4P

Figure 6. Cache Miss Rate of module IE for
Dataset “reuter” on the 4-way System with
Different Processor Numbers

Fig. 6 shows the cache miss rates on the 4-way system.
The L1 and L2 cache misses are almost the same as those of
the 16-way system. The noticeable difference comes from
the L3 cache miss rate, where L3 cache misses nearly triple
on the 4-way system. This is caused by the smaller L3 cache
size.

Typically, the penalty of L3 cache miss costs several hun-
dreds of cycles to fetch the data from the main memory.
Thus, on one hand, the higher L3 cache miss rate will incur
more memory accesses than that of the 16-way system and
cause performance dropdown. On the other hand, in the 16-
way system each 4 processors share a large 32M combined
L4 cache. This L4 cache can fill part of the L3 cache miss
with smaller access latency, and reduce the penalty of L3
cache miss. These two aspects explain the runtime differ-
ences between the two target systems.

4.2 Scalability Performance

With the support of memory performance data, Fig. 7
depicts the overall speedups of DP only (a) and MI + DP
(b) on the 16-way system for all the three datasets.

16 A

14 | :
a
é 10 v —+— beijing
5]

6 +— reuter

4 F

2 b

0

1P 2P 4P 8P 16P
(a) Speedup of DP only

16

14 A

12
(=%
§ 10 oo L [g
g 8 F P —a— 1126
@ gt : +— reuter

4 =

2 -

0

1P 2P 4P 8P 16P
(b) Speedup of MI + DP

Figure 7. Speedup of Module IE on the 16-way
System with Different Datasets

When only considering DP, the speedup curve of those
two small datasets “beijing” and “1126”, goes up linearly on
2, 4 and 8 processors, but starts deteriorating when all the 16
processors are used. This slowdown mainly comes from the
reading requests for small files. Linux system reads in files
from disk in blocks and also uses some read-ahead buffers
to accelerate the process. If the size of each file is too small,
it can not fully utilize the capacity of Linux and thus results
in low efficiency [8].

For dataset “beijing” the average document size is
around 14KB, and that of dataset “1126” is 8.5KB. The cost
for each file loading (disk accessing) can not be concealed
by the runtime of processing. On the contrary, dataset
“reuter”” has an average document size of 35KB and thus the
file loading time can almost be neglected comparing with
the processing time. In this experiment, the correspond-
ing speedup performance of dataset “reuter” is near linear
(15.6X for 16P case). This further explains the bad effects
of frequent I/O requests for small files on parallel applica-
tions.

When counting in MI, the speedup performance of
dataset “beijing” and “1126” are not so good (only ~6X

for 16P case). This is because the runtime of MI takes a
noticeable portion in multi-processor case. The operations
in MI are tightly coupled and only have a small amount
of dividable sub-tasks for distribution. Although, we have
also made parallelization on MI, the speedup of MI is still
very low (no more than 1.3X). However, this can be ignored
when the input dataset is large enough (such as dataset
“reuter”).

5 Conclusion

Text Mining is a potential mass market desktop applica-
tion in the many-core era. In it, Information Extraction is a
basis module and can help improve the quality of other tasks
in our Personal Text Mining System, such as clustering and
summarization. In this paper, we present the optimization
and parallelization of CRFs based IE and study its perfor-
mance on shared memory multi-processor systems. The ex-
perimental results show that parallel IE scales pretty well
on the target systems.

Besides the scalability performance, we can also draw
the following conclusions.

First, from the programmer’s perspective, we should
choose the right programming model, data structures and
use them efficiently to avoid unnecessary performance
drops. In this work, we use MPI and System V. IPC/shm
to support process level parallelism on shared memory ar-
chitecture, which can avoid the heap contention problem of
thread level parallelism. In the future’s many-core system,
there should a unified programming model, which is adapt-
able to the application’s execution pattern.

Second, in regarding to the system, it proves that the
larger L3 cache and the combined L4 cache can help im-
prove the performance of such parallel applications. This
can give hints to the architects of many-core system. On one
hand, the larger cache can reduce the cache misses dramat-
ically; on the other hand, the shared L4 cache (Last Level
Cache) not only can reduce the penalty of L3 cache misses,
but also can exploit the data-sharing behavior and reduce
the bandwidth demands.

For future work, we will continue on study the perfor-
mance characteristics of module IE as well as the other
modules in our Personal Text Mining System. Also, sys-
tem level parallelization and scheduling will be studied.

References

[1] Intel Vtune Performance Analyzer. In
http://developer.intel.com/software/products/vtune/.

[2] LeapHeap. In http:// www.leapheap.com.

[3] Reuter News Collections. In http.//www.reuters.com.

[4] The Hoard Multiprocessor Memory Allocator. In http://
www.hoard.org.

(]
(6]

(7]
(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

The Lemur Toolkit for Language Modeling and Information
Retrieval. In http://www.lemurproject.org.

M. Bebbington. Tutorial - Viterbi Algorithm. In Proc. of
the First Workshop on Hidden Markov Models and Complex
Systems, 2005.

M. Beck, H. Bohme, and M. Dziadzka. Linux Kernel Pro-
gramming. Addison-Wesley, 2002.

R. Bryant, R. Forester, and J. Hawkes. Filesystem Perfor-
mance and Scalability in Linux 2.4.17. In USENIX Annual
Technical Conference, 2002.

G. E. Fagg. Message Passing with MPI Parallel IO. Techni-
cal report, ARC Georgetown University, 2003.

P. Gelsinger. Microprocessors for the new millennium:
Challenges, opportunities and new frontiers. In ISSCC Tech.
Digest, pages 22-25, 2001.

X. P. Hieu and M. L. Nguyen. FlexCRFs: A
Flexible Conditional Random Fields Toolkit. In
http://www.jaist.ac.jp/ hieuxuan/flexcrfs/flexcrfs.html.

J. Lafferty, A. McCallum, and F. Pereira. Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and La-
beling Sequence Data. In Proc. ICML-01, pages 282-289,
2001.

Y. Liu, E. Shriberg, A. Stolcke, and M. Harper. Using Con-
ditional Random Fields for Sentence Boundary Detection in
Speech. In Proc. of the 43rd Annual Meeting of the ACL,
pages 451-458, 2005.

F. Sha and F. Pereira. Shallow Parsing with Conditional Ran-
dom Fields. In Proc. of the 2003 Human Language Tech-
nology Conference and North American Chapter of the As-
sociation for Computational Linguistics (HLT/NAACL-03),
2003.

J. Shan. Scalability Issues of STL Containers in Multithread
Programs. Technical report, ICRC, Intel Corp., 2005.

E. Su, X. Tian, and M. Girkar. Compiler Support of the
Workqueuing Execution Model for Intel SMP Architectures.
In Proc. of the Fourth European Workshop on OpenMP
(EWOMP 2002), 2002.

