
About the efficiency of partial replication to implement Distributed Shared
Memory

Jean-Michel Hélary
IRISA

Campus de Beaulieu, 35042 Rennes-cedex, France
helary@irisa.fr

Alessia Milani
DIS, Universitá di Roma

La Sapienza
Via Salaria 113, Roma, Italia

Alessia.Milani@dis.uniroma1.it

Abstract

Distributed Shared Memory abstraction (DSM) is tra-
ditionally realized through a distributed memory consis-
tency system(MCS) on top of a message passing system.
In this paper we analyze the impossibility of efficient par-
tial replication implementation of causally consistent DSM.
Efficiency is discussed in terms of control information that
processes have to propagate to maintain consistency. We
introduce the notions of share graph and hoop to model
variable distribution and the concept of dependency chain
to characterize processes that have to manage information
about a variable even though they do not read or write that
variable. Then, we consider PRAM, a consistency criterion
weaker enough to allow efficient partial replication imple-
mentations and strong enough to solve interesting problems.
Finally, we illustrate the power of PRAM with the Bellman-
Ford shortest path algorithm.

1. Introduction

Distributed Shared Memory (DSM) is one of the most in-
teresting abstraction providing data-centric communication
among a set of application processes which are decoupled in
time, space and flow. This abstraction allows programmers
to design solutions by considering the well-known shared
variables programming paradigm, independently of the sys-
tem (centralized or distributed) that will run his program.
Moreover, there are a lot of problems (in numerical analy-
sis, image or signal processing, to cite just a few) that are
easier to solve by using the shared variables paradigm rather
than using the message passing one.

Distributed shared memory abstraction is traditionally
realized through a distributed memory consistency sys-
tem(MCS) on top of a message passing system providing a
communication primitive with a certain quality of service in

terms of ordering and reliability [2]. Such a system consists
of a collection of nodes. On each node there is an appli-
cation process and a MCS process. An application process
invokes an operation through its local MCS process which
is in charge of the actual execution of the operation. To im-
prove performance, the implementation of MCS is based on
replication of variables at MCS processes and propagation
of the variable updates [4]. As variables can be concur-
rently accessed (by read and write operations), users must
be provided with a consistency criterion that precisely de-
fines the semantics of the shared memory. Such a crite-
rion defines the values returned by each read operation ex-
ecuted on the shared memory. Many consistency criteria
have been considered, e.g., from more to less constraining
ones: Atomic [7], Sequential [6], Causal [8] and PRAM
(PipelinedRAM) [16]. Less constraining MCS are easier
to implement, but, conversely, they offer a more restricted
programming model. The Causal consistency model has
gained interest because it offers a good tradeoff between
memory access order constraints and the complexity of the
programming model as well as of the complexity of the
memory model itself. To improve performance, MCS en-
forcing Causal (or stronger) consistency have been usually
implemented by protocols based on complete replication of
memory locations [1, 9, 14], i.e. each MCS process man-
ages a copy of each shared variable. It is easy to notice
that in the case of complete replication, dealing with a large
number of shared variables avoids scalability. Thus, in large
scale systems, implementations based on partial replication,
i.e. each process manages only a subset of shared variables,
seems to be more reasonable. Since each process in the
system could be justifiably interested only in a subset of
shared variables, partial replication is intended to avoid a
process to manage information it is not interested in. In
this sense, partial replication loses its meaning if to provide
consistent values to the corresponding application process,
each MCS process has to consider information about vari-

ables that the corresponding application process will never
read or write. Some implementations are based on partial
replication [15, 12], but they suffer this drawback.

In this paper we study the problem of maintaining con-
sistency in a partial replicated environment. More pre-
cisely, according to the variables distribution and to the con-
sistency criterion chosen, we discuss the possibility of an
efficient partial replication implementation, i.e., for each
shared variable, only MCS processes owning a local copy
have to manage information concerning this variable. Our
study shows that MCS enforcing Causal consistency crite-
rion (or stronger consistency criteria) have no efficient par-
tial replication implementation. Then, it is shown that the
PRAM consistency criterion is weak enough to allow effi-
cient partial replication implementation.

The rest of the paper is organized as follows. In Section
2 we present the shared memory model. In Section 3, we
discuss partial replication issues and we present our main
result, namely a characterization for the possibility of effi-
cient partial replication implementation. Finally, section 4
is devoted to the PRAM consistency criterion and section 5
to the solution of Bellman-Ford algorithm in such a MCS.

2. The Shared Memory Model

We consider a finite set of sequential application pro-
cesses Π={ap1, ap2, . . . apn} interacting via a finite set of
shared variables, X={x1, x2, ...xm}. Each variable xh can
be accessed through read and write operations. A write
operation invoked by an application process api, denoted
wi(xh)v, stores a new value v in variable xh. A read
operation invoked by an application process api, denoted
ri(xh)v, returns to api the value v stored in variable xh

1.
Each variable has an initial value ⊥.

A local history of an application process api, denoted
hi, is a sequence of read and write operations performed by
api. If an operation o1 precedes an operation o2 in hi, we
say that o1 precedes o2 in program order. This precedence
relation, denoted by o1 �→i o2, is a total order. A history
H=〈h1, h2, . . . hn〉 is the collection of local histories, one
for each application process. The set of operations in a his-
tory H is denoted OH .

Operations done by distinct application processes can be
related by the read-from order relation. Given two opera-
tions o1 and o2 in OH , the read-from order relation, �→ro,
on some history H is any relation with the following prop-
erties [8]2:

1Whenever we are not interested in pointing out the value or the vari-
able or the process identifier, we omit it in the notation of the operation.
For example w represents a generic write operation while wi represents a
write operation invoked by the application process api, etc.

2It must be noted that the read-from order relation just introduced is the
same as the writes-into relation defined in [8].

• if o1 �→ro o2, then there are x and v such that o1 =
w(x)v and o2 = r(x)v;

• for any operation o2, there is at most one operation o1

such that o1 �→ro o2;
• if o2 = r(x)v for some x and there is no operation o1

such that o1 �→ro o2, then v = ⊥; that is, a read with no
write must read the initial value.

Finally, given a history H , the causality order �→co, [8],
is a partial order that is the transitive closure of the union of
the history’s program order and the read-from order. For-
mally, given two operations o1 and o2 in OH , o1 �→co o2 if
and only if one of the following cases holds:

• ∃ api s.t. o1 �→i o2 (program order),
• ∃ api, apj s.t. o1 is invoked by api, o2 is invoked by

apj and o1 �→ro o2 (read-from order),
• ∃ o3 ∈ OH s.t. o1 �→co o3 and o3 �→co o2 (transitive

closure).
If o1 and o2 are two operations belonging to OH , we say

that o1 and o2 are concurrent w.r.t. �→co, denoted o1 ||co o2,
if and only if ¬(o1 �→co o2) and ¬(o2 �→co o1).

Properties of a history

Definition 1 (Serialization). Given a history H , S is a seri-
alization of H if S is a sequence containing exactly the op-
erations of H such that each read operation of a variable x
returns the value written by the most recent precedent write
on x in S.

A serialization S respects a given order if, for any two
operations o1 and o2 in S, o1 precedes o2 in that order im-
plies that o1 precedes o2 in S. Let Hi+w be the history
containing all operation in hi and all write operations of H .

Definition 2 (Causally Consistent History [8]). A history
H is causally consistent if for each application process api

there is a serialization Si of Hi+w that respects �→co.

A memory is causal if it admits only causally consistent
histories.

3. The problem of efficient partial replication
implementation of causal memories

In this section we analyze the efficiency of implement-
ing causal memories when each application process api

accesses only a subset of the shared variables X , denoted
Xi. Assuming a partial replicated environment means that
each MCS process pi manages a replica of a variable x iff
x ∈ Xi. Our aim is to determine which MCS processes
are concerned by information on the occurrence of opera-
tions performed on the variable x in the system. More pre-
cisely, given a variable x, we will say that a MCS process

pi is x-relevant if, in at least one history, it has to trans-
mit some information on the occurrence of operations per-
formed on variable x in this history, to ensure a causally
consistent shared memory. Of course, each process manag-
ing a replica of x is x-relevant. Ideally, we would like that
only those processes are x-relevant. But unfortunately, as
will be proved in this section, if the variable distribution is
not known a priori, it is not possible for the MCS to ensure
a causally consistent shared memory, if each MCS process
pi only manages information about Xi. The main result of
the section is a characterization of x-relevant processes.

To this aim, we first introduce the notion of share graph,
denoted SG, to characterize variable distribution and then
we define the concepts of hoop and of dependency chain to
highlight how particular variables distribution can impose
global information propagation.

3.1. The share graph, hoops and depen-
dency chains

The share graph is an undirected (symmetric) graph
whose vertices are processes, and an edge (i, j) exists be-
tween pi and pj iff there exists a variable x replicated both
on pi and pj (i.e. x ∈ Xi∩Xj). Possibly, each edge (i, j) is
labelled with the set of variables replicated both on pi and
pj . From this definition results that two processes can com-
municate (through a shared variable) if and only if they are
linked by an edge in the share graph.

Figure 1 depicts an example of share graph representing
a system of three processes pi, pj and pk interacting through
the following set of shared variables X = {x1, x2}. In par-
ticular, Xi = {x1, x2}, Xk = {x2} and Xj = {x1}.

x1

x2
pi pk

pj

x1

x2
pi pk

pj

Figure 1. A share graph

It simple to notice that each variable x defines a sub-
graph C(x) of SG spanned by the processes on which x
is replicated (and the edges having x on their label). This
subgraph C(x) is a clique, i.e. there is an edge between
every pair of vertices. The ”share graph” is the union of all
cliques C(x). Formally, SG =

⋃
x∈X C(x).

In the example depicted in Figure 1, we have the follow-
ing cliques:

i) C(x1) = (Vx1 , Ex1) where Vx1 = {pi, pj} and
Ex1 = {(i, j)},

ii) C(x2) = (Vx2 , Ex2) where Vx2 = {pi, pk} and
Ex2 = {(i, k)}.

Given a variable x, we call x-hoop, any path of SG, be-
tween two distinct processes in C(x), whose intermediate
vertices do not belong to C(x) (figure 2). Formally:

Definition 3 (Hoop). Given a variable x and two processes
pa and pb in C(x), we say that there is a x-hoop between
pa and pb (or simply a hoop, if no confusion arises), if there
exists a path [pa = p0, p1, . . . , pk = pb] in SG such that:

i) ph 	∈ C(x) (1 ≤ h ≤ k − 1) and
ii) each consecutive pair (ph−1, ph) shares a variable xh

such that xh 	= x (1 ≤ h ≤ k)

x
2

x

x
1

p
a

p
1

p
b

p
h

p
k-1

x
h

x
h+1

x
k-1

x
k

C(x)

x
2

x

x
1

p
a

p
1

p
b

p
h

p
k-1

x
h

x
h+1

x
k-1

x
k

C(x)

Figure 2. An x-hoop

Let us remark that the notion of hoop depends only on
the distribution of variables on the processes, i.e. on the
topology of the corresponding share graph. In particular, it
is independent of any particular history.

Definition 4 (Minimal Hoop). A x-hoop [pa =
p0, p1, . . . , pk = pb] is said to be minimal, iff i) each edge
of the hoop is labelled with a different variable and ii) none
of the edge label is shared by processes pa and pb.

The following concept of dependency chain along an
hoop captures the dependencies that can be created between
operations occurring in a history, when these operations are
performed by processes belonging to a hoop.

Definition 5 (Dependency chain). Let [pa, . . . , pb] be a x-
hoop in a share graph SG. Let H be a history. We say that
H includes a x-dependency chain3 along this hoop if the
following three conditions are verified:

• OH includes wa(x)v, and
• OH includes ob(x), where ob can be a read or a write

on x, and
• OH includes a pattern of operations, at least one

for each process belonging to the hoop, that implies
wa(x)v �→co ob(x).

More precisely, we also say that wa(x)v and ob(x) are
the initial and the final operations of the x-dependency
chain from wa(x)v to ob(x). Figure 3 depicts such a de-
pendency chain.

3simply x-dependency chain when confusion cannot arise

p
a

wa(x)v wa(x1)v1

p
k-1

rk-1(xk-1)v wk-1(xk)vk

p
b

rb(xk)vk

p
1

r1(x1)v1 w1(x2)v2

p
h

rh(xh)vh wh(xh+1)vh+1

………..

………..

ob(x)

p
a

wa(x)v wa(x1)v1

p
k-1

rk-1(xk-1)v wk-1(xk)vk

p
b

rb(xk)vk

p
1

r1(x1)v1 w1(x2)v2

p
h

rh(xh)vh wh(xh+1)vh+1

………..

………..

ob(x)

Figure 3. An x-dependency chain from wa(x)v
to ob(x)

3.2. A characterization of x-relevant pro-
cesses

In this section, a characterization of x-relevant pro-
cesses, where x is a variable, is given.

Proposition 1. Given a variable x, a process pi is x-
relevant if it belongs to C(x) or to a minimal x-hoop.

Proof. If pi ∈ C(x), then it is obviously x-relevant. Con-
sider now a process pi 	∈ C(x), but belonging to a min-
imal x-hoop between two processes in C(x), namely pa

and pb. Let [pa = p0, p1, . . . , pk = pb] be such minimal
x-hoop, then the history H depicted in Figure 3 can be gen-
erated. H includes an x-dependency chain along this hoop
from wa(x)v to ob(x)v and, by definition 5, it follows that
wa(x)v �→co ob(x). Thus if ob(x) is a read operation, the
value that can be returned is constrained by the operation
wa(x)v, i.e., to ensure causal consistency, it cannot return
neither ⊥ nor any value written by a write operation be-
longing to the causal past of wa(x)v. Similarly, if ob(x) is a
write operation, namely ob(x) = wb(x)v′, the dependency
wa(x)v �→co wb(x)v′ implies that, to ensure causal consis-
tency, if a process pc ∈ C(x) reads both values v and v′

then it reads them in such a order.
In both cases, to ensure causal consistency, process

pb has to be aware that wa(x)v is in the causal past of
wk−1(xk)vk. Since pa cannot be aware of wa(x)v causal
future, this information has to arrive from pk−1. Let us re-
mark that wa(x)v �→co ob(x) since wa(x)v →a wa(x1)v1,
and, for each h, 1 ≤ h ≤ k − 1, rh(xh)vh →h

wh(xh+1)vh+1, and rb(xk)vk →b ob(x). This means that
wa(x)v is in the causal past of wh(xh+1)vh+1 because
wa(x)v is in the causal past of wh−1(xh)vh, for each h such
that 1 ≤ h ≤ k − 1. Moreover, since the hoop is minimal,
the only way for process ph to be aware that wa(x)v is in
the causal past of wh−1(xh)vh is through ph−1, for each h
s.t. 1 ≤ h ≤ k−1. Then for each h such that 1 ≤ h ≤ k−1,
ph is x-relevant. In particular pi is x-relevant.

Proposition 2. Given a variable x, if a process pi is x-
relevant then it belongs to C(x) or it belongs to a x-hoop.

Proof. The analysis above shows that the purpose of trans-
mitting control information concerning the variable x is to
ensure causal consistency. In particular, if an operation
o1=wa(x)v is performed by a process pa ∈ C(x), then
any operation o2 = ob(x) performed by another process
pb ∈ C(x) is constrained by o1 only if o1 �→coo2.

We have that o1 �→coo2 only if one of the two following
cases holds:

• A ”direct” relation: o1 �→roo2. In this case, no third
part process is involved in the transmission of information
concerning the occurrence of the operation o1.

• An ”indirect” relation: there exists at least one oh such
that o1 �→cooh and oh �→coo2. Such an indirect relation in-
volve a sequence σ of processes p0 = pa, . . . , ph, . . . , pk =
pb (k ≥ 2) such that two consecutive processes ph−1 and ph

(1 ≤ h ≤ k) respectively perform operations oh−1 and oh

with oh−1 �→rooh. This implies that there exists a variable
xh such that oh−1=wh−1(xh)vh and oh=rh(xh)vh. Con-
sequently, xh is shared by ph−1 and ph, i.e., ph−1 and ph

are linked by an edge in the graph SG, meaning that the
sequence σ is a path between pa and pb in the share graph
SG. Such a path is either completely included in C(x), or
is a succession of x-hoops, and along each of them there
is a x-dependency chain. Thus, a process pi 	∈ C(x) and
not belonging to any x-hoop cannot be involved in these
dependency chains. The result follows from the fact that
this reasoning can be applied to any variable x, then to any
pair of processes pa and pb in C(x), and finally to any x-
dependency chain along any x-hoop between pa and pb.
�

3.3. Impossibility of efficient partial repli-
cation

Shared memory is a powerful abstraction in large-scale
systems spanning geographically distant sites; these envi-
ronments are naturally appropriate for distributed applica-
tions supporting collaboration. Two fundamental require-
ments of large-scale systems are scalability and low-latency
accesses:

i) to be scalable a system should accommodate large
number of processes and should allow applications to man-
age a great deal of data;

ii) in order to ensure low latency in accessing shared
data, copy of interested data are replicated at each site.

According to this, causal consistency criterion has been
introduced by Ahamad et al. [13], [8] in order to avoid
large latencies and high communication costs that arise in
implementing traditional stronger consistency criteria, e.g.,
atomic [7] and sequential consistency [6]. “Many appli-
cations can easily be programmed with shared data that is
causally consistent, and there are efficient and scalable im-
plementations of causal memory” [13]. In particular, low

latency is guaranteed by allowing processes to access local
copy of shared data through wait-free operations. It means
that causal consistency reduces the global synchronization
between processes which is necessary to return consistent
values.

This criterion is meaningful in systems in which com-
plete replication is requested, i.e., when each process ac-
cesses all data in the system. On the other hand, consider-
ing large scale system with a huge and probably increasing
number of processes and data, partial replication seems to
be more reasonable: each process can directly access data
it is interested in without introducing a heavy information
flow in the network. From the results obtained in Section
3.2, several observations can be made, depending which is
the a priori knowledge on variable distribution.

If a particular distribution of variables is assumed, it
could be possible to build the share graph and analyze it
off-line in order to enumerate, for each variable x not totally
replicated, all the minimal x-hoops. It results from Propo-
sition 1 that only processes belonging to one of these x-
hoops will be concerned by the variable x. Thus, an ad-hoc
implementation of causal DSM can be optimally designed.
However, even under this assumption on variable distribu-
tion, enumerating all the hoops can be very long because it
amounts to enumerate a set of paths in a graph that can be
very big if there are many processes. In a more general set-
ting, implementations of DSM cannot rely on a particular
and static variable distribution, and, in that case, any pro-
cess is likely to belong to any hoop. It results from Propo-
sition 1 that each process in the system has to transmit con-
trol information regarding all the shared data, contradicting
scalability.

Thus, causal consistency does not appear as the most ap-
propriate consistency criterion for large-scale systems. For
this reason, in the next section, we weaken the causal con-
sistency in order to find a consistency criterion that allows
efficient partial replication implementations of the shared
memory, while being strong enough to solve interesting
problems.

4. Weakening the causal consistency criterion:
PRAM

In this Section we consider three consistency criteria,
obtained by successive relaxations of causal consistency,
namely: Lazy Causal, Lazy Semi-Causal and PRAM con-
sistency criteria. The Lazy Causal criterion relaxes the pro-
gram order by observing that some operations performed by
a process could be permuted without effect on the output of
the program (e.g. two successive read operations on two
different variables). The Lazy Semi-Causal Consistency is
based on the previous lazy program order and on a relax-
ation of the read-from order relation, namely weak writes-

before, introduced by Ahamad et al. [10]. Due to the lack of
space, these criteria are presented in details in the full paper
[5], where it is also shown that they are still too strong to
allow efficient partial replication.

The last possibility is to weaken the transitivity property
such that two operations executed by different processes can
be related only by the direct read-from relation. The PRAM
consistency criterion [16] relaxes the transitivity due to in-
termediary processes [11]. In other words, it only requires
that all processes observe the writes performed by a same
process in the same order, while they may disagree on the
order of writes by different processes. The PRAM consis-
tency is based on a relation, denoted �→pram, weaker than
�→co. Formally [11]4:

Definition 6 (PRAM relation). Given two operations o1

and o2 in OH , o1 �→pramo2 if, and only if, one of the fol-
lowing conditions holds:

1. ∃ pi : o1 �→io2 (program order), or
2. ∃ pi ∃pj i 	= j : o1 = wi(x)v and o2 = rj(x)v, i.e.

o1 �→ro o2 (read-from relation).

Note that �→pram is an acyclic relation, but is not a partial
order due to the lack of transitivity.

Definition 7 (PRAM consistent history). A history H is
PRAM consistent if, for each application process api, there
exists a serialization Hi+w that respects �→pram.

A memory is PRAM iff it allows only PRAM consistent
histories.

The following result shows that PRAM memories allow
efficient partial replication implementations.

Theorem 1. In a PRAM consistent history, no dependency
chain can be created along hoops.

Proof. Let x be a variable and [pa, . . . , pb] be a x-hoop. A
x-dependency chain along this hoop is created if H includes
wa(x)v, ob(x) and a pattern of operations, at least one
for each process of the x-hoop, implying wa(x)v �→pram

ob(x). But the latter dependency can occur only if point 1
or point 2 of Definition 6 holds. Point 1 is excluded be-
cause a 	= b. Point 2 is possible only if ob(x) = rb(x)v
and the dependency wa(x)v �→pram rb(x)v is wa(x)v �→ro

rb(x)v, i.e., does not result from the operations performed
by the intermediary processes of the hoop.

As a consequence of this result, for each variable x, there
is no x-pertinent process out of C(x), and thus, PRAM
memories allow efficient partial replication implementa-
tions.

Although being weaker than causal memories, Lipton
and Sandberg show in [16] that PRAM memories are strong

4in [11] this relation is denoted �→H′ .

enough to solve a large number of applications like FFT,
matrix product, dynamic programming and more generally
the class of oblivious computations5. In his PhD, Sinha
[17] shows that totally asynchronous iterative methods to
find fixed points can converge in Slow memories, which are
still weaker than PRAM. In the next section, we illustrate
the power of PRAM, together with the usefulness of partial
replication, by showing how the Bellman-Ford shortest path
algorithm can be solved by using PRAM memory.

5. Case study: Bellmann-Ford algorithm

A packet-switching network can be seen as a directed
graph, G = (V,Γ), where each packet-switching node is a
vertex in V and each communication link between node is a
pair of parallel edges in Γ, each carrying data in one direc-
tion. In such a network, a routing decision is necessary to
transmit a packet from a source node to a destination node
traversing several links and packet switches. This can be
modelled as the problem of finding a path through the graph.
Analogously for an Internet or an intranet network. In gen-
eral, all packet-switching networks and all internets base
their routing decision on some form of least-cost criterion,
i.e minimize the number of hope that correspond in graph
theory to finding the minimum path distance. Most least-
cost routing algorithms widespread are a variations of one
of the two common algorithms, Dijkstra’s algorithm and the
Bellman-Ford algorithm[3].

5.1. A distributed implementation of the
Bellman-Ford algorithm exploiting
partial replication

In the following we propose a distributed implementa-
tion of the Bellman-Ford algorithm to compute the min-
imum path from a source node to every other nodes in a
system, pointing out the usefulness of partial replication to
efficiently distribute the computation. In the following we
refer to nodes as processes.

The system (network) is composed by N processes
ap1, . . . , apN and it is modelled with a graph G = (V,Γ),
where V is the set of vertex, one for each process in the sys-
tem and Γ is the set of edges (i, j) such that api, apj belong
to V and there exists a link between i and j.

Let us use the following notation:

• Γ−1(i) = {j ∈ V |(i, j) ∈ Γ} is the set of predecessors
of process api,

• s=source process,

5”A computation is oblivious if its data motion and the operations it
executes at a given step are independent of the actual values of data.”[16]

• w(i, j)=link cost from process api to process apj . In
particular:

i) w(i, i) = 0,

ii) w(i, j) = ∞ if the two processes are not directly
connected,

iii) w(i, j) ≥ 0 if the two processes are directly con-
nected;

• xk
i = cost of the least-cost path from source process s to

process n under the constraint of no more than k links
traversed.

The centralized algorithm proceeds in steps.

1. [Initialization]

x0
i = ∞, ∀ n 	= s

xk
s = 0, for all k

2. [Update] for each successive k ≥ 0:

∀ i 	= s, compute xk+1
i = min

j∈Γ−1(i)[x
k
j + w(j, i)]

It is well-known that, if there are no negative cost cycles,
the algorithm converge in at most N steps.

The algorithm is distributively implemented as follows .
Without loss of generality, we assume that process ap1 is the
source node. We denote as xi the current minimum value
from node 1 to node i. Then, to compute all the minimum
path from process ap1 to every other process in the system,
processes cooperate reading and writing the following set
of shared variables X = {x1, x2, . . . , xN}. Moreover,
since the algorithm is iterative, in order to ensure liveness
we need to introduce synchronization points in the compu-
tation. In particular, we want to ensure that at the beginning
of each iteration each process api reads the new values writ-
ten by his predecessors Γ−1(i). Thus each process knows
that at most after N iterations, it has computed the short-
est path. With this aim, we introduce the following set of
shared variables S = {k1, k2, . . . , kN}.

Each application process api only access a subset of
shared variables. More precisely, api accesses xh ∈ X and
kh ∈ S, such that h = i or aph is a predecessor of api.

Since each variable xi and ki is written only by one pro-
cess, namely api, it is simple to notice that the algorithm
in Figure 4, correctly runs on a PRAM shared memory.
Moreover, since each process has to access only a subset
of the shared memory, we can assume a partial replication
implementation of such memory. In particular, at each node
where the process api is running to compute the shortest
path, there is also a MCS process that ensure Pram consis-
tency in the access to the shared variables.

The algorithm proposed is deadlock-free. In fact, given
two processes api and apj such that api is a predecessor
of apj and viceversa, the corresponding barrier conditions

MINIMUM PATH
1 ki := 0;
2 if(i == 1)
3 xi := 0;
4 else xi := ∞;
5 while(ki < N)do
6 while(

∧
h∈Γ−1(i)(kh < ki))do;

7 xi := min([xj + w(j, i)] ∀j ∈ Γ−1(i));
8 ki := ki + 1

Figure 4. pseudocode executed by process api

(line 6 of Figure 4) cannot be satisfied at the same time:
ki < kj and kj < ki.

1

3

4

5

2
4

1

1
2

8

2

3
3

1

3

4

5

2
4

1

1
2

8

2

3
3

Figure 5. An example

As an example, let us consider the network depicted
in Figure 5. We have the following set of processes
Π = {ap1, ap2, ap3, ap4, ap5} and the corresponding
variable distribution:

X1 = {x1, k1},
X2 = {x1, x2, x3, k1, k2, k3},
X3 = {x1, x2, x3, k1, k2, k3},
X4 = {x2, x3, x4, k2, k3, k4},
X5 = {x3, x4, x5, k3, k4, k5}.

In Figure 6 we show the pattern of operations gener-
ated by each process at the k-th step of iteration, we
only explicit value returned by operations of interest. In
reality, in order to point out the sufficiency of PRAM
shared memory to ensure the safety and the liveness of
the algorithm, we start the scenario showing the two last
write operations made by each process at (k − 1)-th step.
In this sense, it must be noticed that the protocol correctly
runs if each process reads the values written by each of its
neighbors according to their program order.

6. Conclusion

This paper has focused on the pertinence of implement-
ing distributed shared memories by using partial replication
of variables. It has introduced the notions of share graph

p1

p2

p3

p4

p5

r1(k1) w1(x1)v
'
1

w1(k1)... ...

... r2(k2)k r2(k1) r2(k3) r2(x1)v1 r2(x3)v3 w2(x2)v
'
2

w2(k2) ...

... r3(k3)k r3(k1) r3(k2) r3(x1)v1 r3(x2)v2 w3(x3)v
'
3

w3(k3)...

... r4(k4)k r4(k2) r4(k3) r4(x2)v2 r4(x3)v3 w4(x4)v
'
4

w4(k4) ...

... r5(k5)k r5(k4) r5(k3) r5(x4)v4 r5(x3)v3 w5(x5)v'5 w5(k5) ...

w2(x2)v2 w2(k2)

w3(x3)v3 w3(k3)

w4(x4)v4 w4(k4)

w5(x5) v5 w5(k5)

w1(x1)v1 w1(k1)k

Figure 6. A step of the protocol in Figure 4 for
the network in Figure 5

and hoops to model the distribution of variables on the pro-
cesses, and the notion of dependency chain along hoops to
characterize processes that have to transmit information on
variables that they don’t manage. As a consequence, it has
been shown that, in general, distributed shared memories
enforcing consistency criteria stronger than causality do not
allow efficient implementation based on partial replication.
It has also been shown that distributed shared memories en-
forcing consistency criteria weaker than PRAM are prone
to efficient implementation based on partial replication. The
power of PRAM memories has been illustrated with the par-
ticular example of Bellman-Ford shortest path algorithm.

This paper opens the way for future work. First, the
design of an efficient implementation of PRAM memories
based on partial replication. Second, on a more theoreti-
cal side, the ”optimality” of the PRAM consistency crite-
rion, with respect to efficient implementation based on par-
tial replication. In other words, the existence of a consis-
tency criterion stronger than PRAM, and allowing efficient
partial replication implementation, remains open. Finally
and more subtly, we point out the necessity of understand-
ing and modelling consistency requirements in new dis-
tributed system paradigms characterized by large-scale and
dynamism properties. In such systems a big amount of pro-
cesses can dynamically enter and leave the system. Thus
traditional consistency guarantees, that is the ones thought

for static systems in which the number of processes n is
fixed and known by each process, seem to be not reason-
able.

Acknowledgement We like to thank Michel Raynal for
suggesting this subject of research and for insightful dis-
cussions on this work.

References

[1] M. S. A.D. Kshemkalyani. Necessary and sufficient con-
ditions on the information for causal message ordering
and their optimal implementation. Distributed Computing,
11:91–111, 1988.

[2] H. Attiya and J. Welch. Distributed Computing (second edi-
tion). Wiley, 2004.

[3] R. E. Bellman. On a routing problem. Quarterly Applied
Mathematics, XVI(1):87–90, 1958.

[4] V. C. E. Jimenez, A. Fernández. On the interconnection of
causal memory systems. In: press in Journal of Parallel and
Distributed Computing, 2004.

[5] A. M. J.M. Hlary. About the efficiency of partial replication
to implement distributed shared memory. Technical Report
PI-1727, IRISA, Campus de Beaulieu, 2005.

[6] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transac-
tions on Computers, 28(9):690–691, January 1979.

[7] L. Lamport. On interprocess communication; part i: Basic
formalism. Distributed Computing, 1(2):77–85, 1986.

[8] J. B.-P. K. M. Ahamad, G. Neiger and P. Hutto. Causal mem-
ory: Definitions, implementation and programming. Dis-
tributed Computing, 9(1):37–49, 1995.

[9] M. R. M. Ahamad and G. Thia-Kime. An adaptive architec-
ture for causally consistent distributed services. Distributed
System Engineering, 6(2):63–70, 1999.

[10] P. K. M. Ahamad, R.A. Bazzy and G. Neiger. The power of
processor consistency. ACM, 1993.

[11] A. S. M. Raynal. A suite of formal definitions for consis-
tency criteria in distributed shared memories. Proc. 9-th
Int. IEEE Conference on Parallel and Distributed Computing
Systems (PDCS96), Dijon, France, pages 125–131, 1996.

[12] M. A. M. Raynal. Exploiting write semantics in implement-
ing partially replicated causal objects. Proc. 6th Euromicro
Conference on Parallel and Distributed Systems, pages 164–
175, 1998.

[13] P. K. M.Ahamad, R. John and G. Neiger. Causal memory
meets the consistency and performance needs of distributed
application! EW 6:Proceedings of the 6th workshop on
ACM SIGOPS European workshop, pages 45–50, 1994.

[14] S. T.-P. R. Baldoni, A. Milani. Optimal propagation-based
protocols implementing causal memories. Distributed Com-
puting, 2006.

[15] S. T.-P. R. Baldoni, C. Spaziani and D. Tulone. An imple-
mentationof causal memories using the writing semantics.
Proc. 6th Int. Conf. on Principles of Distributed Systems,
pages 43–52, 2002.

[16] J. S. R. Lipton. Pram: a scalable shared memory. Technical
Report CS-TR-180-88,Princeton University, 1988.

[17] H. S. Sinha. Mermera: non-coherent distributed shared
memory for parallel computing. Technical Report BU-CS-
93-005, Boston University, 1993.

