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ABSTRACT
Analysis of large geographically distributed scientific datasets, also re-
ferred to as distributed data-intensive science, has emerged as an im-
portant area in recent years. An application that processes data from
a remote repository needs to be broken into several stages, including
a data retrieval task at the data repository, a data movement task, and
a data processing task at a computing site. Because of the volume of
data that is involved and the amount of processing, it is desirable that
both the data repository and computing site may be clusters. This can
further complicate the development of such data processing applica-
tions.

In this paper, we present a middleware, FREERIDE-G (FRamework
for Rapid Implementation of Datamining Engines in Grid), which sup-
port a high-level interface for developing data mining and scientific
data processing applications that involve data stored in remote repos-
itories. Particularly, we had the following goals behind designing the
FREERIDE-G middleware: 1) Support high-end processing, i.e., use
parallel configurations for both hosting the data and processing the
data, 2) Ease use of parallel configurations, i.e., support a high-level
API for specifying the processing, and 3) Hide details of data move-
ment and caching.

We have evaluated our system using three popular data mining algo-
rithms and two scientific data analysis applications. The main observa-
tions from our experiments are as follows. First, FREERIDE-G is able
to scale the processing extremely well when the number of data server
and compute nodes are scaled evenly. Second, when only the number
of compute nodes are scaled, our target class of applications achieve
modest additional speedups. Finally, for applications that involve mul-
tiple passes on the dataset, caching remote data provides significant
improvement.

1. INTRODUCTION
Traditionally, the focus in computational sciences has been on de-

veloping algorithms, implementations, and enabling tools to facilitate
simulation of physical processes and phenomena. However, as our
ability to collect, store, and distribute huge amounts of data increases
with advancing technology, analysis of large datasets can also provide
useful insights into physical processes.

With increasing computational power, it is now feasible to simu-
late processes at a greater scale. This, however, creates a challenge in
analysis of data that is being generated. As scientific simulations can
generate very large volumes of data, analyzing this data is becoming
increasingly hard.

Analysis of large geographically distributed scientific datasets, also
referred to as distributed data-intensive science [5], has emerged as
an important area in recent years. Scientific discoveries are increas-
ingly being facilitated by analysis of very large datasets distributed in
wide area environments. Careful coordination of storage, computing,
and networking resources is required for efficiently analyzing these
datasets. Even if all data is available at a single repository, it is not pos-
sible to perform all analysis at the site hosting such a shared repository.
Networking and storage limitations make it impossible to down-load
all data at a single site before processing.

Thus, an application that processes data from a remote repository
needs to be broken into several stages, including a data retrieval task at
the data repository, a data movement task, and a data processing task
at a computing site. Because of the volume of data that is involved and
the amount of processing, it is desirable that both the data repository
and computing site may be clusters. This can further complicate the
development of such data processing applications.

In this paper, we present a middleware, FREERIDE-G (FRamework
for Rapid Implementation of Datamining Engines in Grid), which sup-
port a high-level interface for developing data mining and scientific
data processing applications that involve data stored in remote repos-
itories. Particularly, we had the following goals behind designing the
FREERIDE-G middleware:
Support High-End Processing: Parallel configurations, including clus-
ters, are being used to support large scale data repositories. Many data
mining applications involve very large datasets. At the same time, data
mining tasks are often compute-intensive, and parallel computing can
be effectively used to speed them up [25]. Thus, an important goal
of the FREERIDE-G system is to enable efficient processing of large
scale data mining computations. It supports use of parallel configura-
tions for both hosting the data and processing it.
Ease Use of Parallel Configurations: Developing parallel data min-
ing applications can be a challenging task. In a distributed environ-
ment, resources may be discovered dynamically, which means that a
parallel application should be able to execute on a variety of parallel
systems. Thus, one of the goals of the FREERIDE-G system is to sup-
port execution on distributed memory and shared memory systems, as
well as on cluster of SMPs, starting from a common high-level inter-
face.
Hide Details of Data Movement and Caching: A major difficulty in
developing applications that involve remote data is appropriate staging
of remote data, and possibly caching when feasible and appropriate.
FREERIDE-G is designed to make data movement and caching trans-
parent to application developers.



FREERIDE-G has been developed as a set of services for data server
nodes and compute nodes. The services at the data server node in-
cludes those for data retrieval, data distribution, and data communica-
tion. The services at compute nodes include those for data communica-
tion, data retrieval, data caching, and parallel execution for generalized
reductions, starting from a high-level API.

We have evaluated our system using three popular data mining algo-
rithms and two scientific data analysis applications. The main observa-
tions from our experiments are as follows. First, FREERIDE-G is able
to scale the processing extremely well when the number of data server
and compute nodes are scaled evenly. Second, when only the number
of compute nodes are scaled, our target class of applications achieve
modest additional speedups. Finally, for applications that involve mul-
tiple passes on the dataset, caching remote data provides significant
improvement.

As part of our ongoing work on FREERIDE-G, we are currently
developing a resource selection framework. This will involve the use
of performance models for choosing computational resources, and also
integration of FREERIDE-G with grid resource frameworks. However,
this paper only focuses on the existing services at data and compute
servers.

2. RELATED WORK
Several groups have been developing support for grid-based data

mining. One effort in this area is from Cannataro et al. [20, 21]. They
present a structured Knowledge Grid toolset for developing distributed
data mining applications through workflow composition. Brezanny
et al. [16, 2, 18] have also developed a GridMiner toolkit for cre-
ating, registering and composing datamining services into complex
distributed and parallel workflows. Ghanem et al. [6, 8] have de-
veloped Discovery Net, an application layer for providing grid-based
services allowing creation, deployment and management of complex
data mining workflows. The goal of DataMiningGrid, carried out by
Stankovski et al. [23], is to serve as a framework for distributed knowl-
edge discovery on the grid.

There are significant differences between these efforts and our work.
These systems do not offer a high-level interface for easing paralleliza-
tion and abstracting remote data extraction and transfer. We believe
that FREERIDE-G is able to reduce the time required for developing
applications that perform remote data analysis. On the other hand, our
system is not yet integrated with Grid standards and services.

Jacob et al. have created GRIST [14], a grid middleware for as-
tronomy related mining. This effort, however, is very domain specific,
unlike FREERIDE-G, which has been used for a variety of data mining
and scientific analysis algorithms.

The work presented here builds directly on top of the previously
published work on the FREERIDE system and parallelization of sci-
entific and data mining applications [17, 11]. This work, however,
focused entirely on processing data stored locally.

3. SYSTEM OVERVIEW AND FUNCTIONAL-
ITY

This section presents the overall design of the middleware. In sub-
section 3.1 we outline the middleware design, as well as a brief de-
scription of its components. In subsection 3.2 the middleware API is
presented.

3.1 System Design
This subsection describes the overall design of our middleware. The

basic functionality of the system is to automate retrieval of data from

remote repositories and coordinate parallel analysis of such data using
end-user’s computing resources, provided an inter-connection exists
between the repository disk and the end-user’s computing nodes. This
system expects data to be stored in chunks, whose size is manageable
for the repository nodes.

This middleware is modeled as a client-server system. Figure 1
shows the three major components, including the data server, the com-
pute node client, and a resource selection framework. As we stated
earlier, the resource selection framework is part of our ongoing work
on FREERIDE-G, and is beyond the scope of this paper.

The data server runs on every on-line data repository node in order
to automate data delivery to the end-users processing node(s). More
specifically, it has 3 roles:

1. Data retrieval: data chunks are read in from repository disk.

2. Data distribution: each data chunk is assigned a destination – a
specific processing node in the end-user’s system.

3. Data communication: after destination assignment is made in
the previous step, each data chunk is sent to the appropriate pro-
cessing node.

A compute server runs on every end-user processing node in order
to receive the data from the on-line repository and perform application
specific analysis of it. This component has 4 roles:

1. Data Communication: data chunks are delivered from a corre-
sponding data server node.

2. Data Retrieval: if caching was performed on the initial itera-
tion, each subsequent pass retrieves data chunks from local disk,
instead of receiving it via network.

3. Computation: Application specific data processing is performed
on each chunk.

4. Data Caching: if multiple passes over the data chunks will be
required, the chunks are saved to a local disk.

The current implementation of the system is configurable to accom-
modate N data server nodes and M user processing nodes between
which the data has to be divided, as long as M ≥ N . The reason for
not considering cases where M < N is that our target applications in-
volve significant amount of computing, and cannot effectively process
data that is retrieved from a larger number of nodes.

The configuration illustrated in Figure 1 presents a setup with N =

2 data servers and M = 4 compute nodes. Active Data Repository
(ADR) [3, 4] was used to automate the data retrieval parts of both
components.

3.2 Middleware Interface
FREERIDE-G API is based on the observation that a number of

popular data mining and scientific data processing algorithms share
a relatively similar structure. Their common processing structure is
essentially that of generalized reductions. The popular algorithms
where this observation applies include apriori association mining [1],
k-means clustering [15], k-nearest neighbor classifier [12] and artifi-
cial neural networks [12]. During each phase of these algorithms, the
computation involves reading the data instances in an arbitrary order,
processing each data instance, and updating elements of a reduction
object using associative and commutative operators.

In a distributed memory setting, such algorithms can be parallelized
by dividing the data items among the processors and replicating the
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Figure 1: FREERIDE-G System Architecture

reduction object. Each node can process the data items it owns to
perform a local reduction. After local reduction on all processors, a
global reduction can be performed. In a shared memory setting, par-
allelization can be done by assigning different data items to different
threads. The main challenge in maintaining the correctness is avoid-
ing race conditions when different threads may be trying to update the
same element of the reduction object. We have developed a number of
techniques for avoiding such race conditions, particularly focusing on
the memory hierarchy impact of the use of locking. However, if the
size of the reduction object is relatively small, race conditions can be
avoided by simply replicating the reduction object.

The middleware API for specifying parallel processing of a data
mining algorithm is simplified since we only need to support gener-
alized reductions. The following functions need to be written by the
application developer using our middleware.
The Subset of Data to be Processed: In many cases, only a subset of
the available data needs to be analyzed for a given data mining task.
These can be specified as part of this function.
Local Reductions: The data instances or chunks owned by a proces-
sor and belonging to the subset specified are read. A local reduction
function specifies how, after processing one chunk, a reduction object
(declared by the programmer), is updated. The result of this processing
must be independent of the order in which the chunks are processed on
each processor.
Global Reductions: The reduction objects on all processors are com-
bined using a global reduction function.
Iterator: A parallel data mining application often comprises of one
or more distinct pairs of local and global reduction functions, which
may be invoked in an iterative fashion. An iterator function specifies
a loop which is initiated after the initial processing and invokes local
and global reduction functions.

4. SYSTEM IMPLEMENTATION ISSUES

This section describes a number of implementation issues in our
middleware system. The main issues are: managing and communi-
cating remote data, load distribution, parallel processing on compute
nodes, and caching of remote data.

4.1 Managing and Communicating Remote Data
As we stated in the previous section, data is organized as chunks on

remote repositories, using an existing ADR middleware. The process-
ing of data is organized in phases. In each phase, a generalized reduc-
tion is performed on the computing nodes. Because of the property
of reductions, the order of retrieving, communicating, and processing
data elements does not impact the correctness.

At the beginning of each phase, the compute nodes forward the in-
formation on the subset of the data to be processed to data server. The
data server determines the chunks of the data that need to be retrieved,
as well as a schedule for retrieving these on each data server node.

Initially, let us suppose that the number of data server nodes equals
the number of compute nodes. In such a scenario, each data server
node forwards all the chunks it retrieves to a single compute node.
The support for declustering of chunks in ADR helps maintain a good
balance, even with such a simple scheme. The corresponding data
server and compute nodes coordinate when the next chunk should be
communicated, and also the size of the buffer that needs to be allocated
on the compute node. In our current implementation, stream socket
mechanism was used for all such communication.

4.2 Load Distribution
Data mining and scientific processing applications are often compute-

intensive. In such cases, they can benefit from a configuration where
the number of compute nodes is larger than the number of data server
nodes. However, in such cases, careful load distribution must be per-
formed.

We again use a simple mechanism. Each data server node now com-



municates its chunks to M compute nodes. The value M is the small-
est value which will still enable load balance on each compute node. A
hash function (mod) based on a unique chunk id is used to distribute
the retrieved chunks among the M compute nodes a data server node
is communicating with.

4.3 Parallel Processing on Compute Nodes
One of the major advantages of FREERIDE-G is its ability to sup-

port parallel processing on compute nodes. As we discussed in the
previous section, the processing is specified using a high-level API,
which particularly targets generalized reduction. Parallel execution is
also simplified because we focus only on reduction computations.

After data has been distributed between different computing nodes,
each node can execute initial processing and local reduction functions
on the data items it owns. After each invocation of local reduction
function, local copies of reduction objects on each node are broad-
casted to one node, which performs the global reduction. If the size of
the reduction object is large, the global reduction phase can also be par-
allelized, i.e. portions of reduction objects are received by each node,
and each node performs a part of the global reduction. After global
reduction, the reduction object is broadcasted to all nodes, which then
continue with the next pass of the mining algorithm. The communi-
cation required for gathering and broadcasting the reduction object is
facilitated by the middleware.

4.4 Caching
If an iterative mining application needs to take more than a single

pass over the data, reading the data from the remote location on every
iteration is redundant. For such applications, data chunks belonging
to a certain compute node can be saved onto the local disk, provided
sufficient space. Such caching is performed during the initial iteration,
after each data chunk is communicated to its compute node by the data
server and the first pass of application specific processing has been
completed.

Each chunk is written out to the compute node’s disk in a separate
file, whose name is uniquely defined by the chunk id. These filenames
are also indexed by the chunk ids, speeding up retrieval for the subse-
quent iterations. The benefit of such caching scheme is evident: for an
application requiring P passes over the data, the last P − 1 iterations
will have the data available locally on the compute node. Since each
round out data communication from the server would have to perform
retrieval in order to send the data, the total number of retrievals does
not change. Instead, for iterations subsequent to the initial one, data
retrieval is performed on the compute node.

5. APPLICATIONS
In this section we describe the applications that we have used to

carry out the experimental evaluation of our middleware. We have
focused on three traditional datamining techniques: k-means cluster-
ing [13], EM clustering [7], k-nearest neighbor search [12], as well
as two scientific feature mining algorithms: vortex analysis [19] and
molecular defect detection [22].

5.1 k-means Clustering
The first data mining algorithm we describe is the k-means clus-

tering technique [13], which is one of the most popular and widely
studied data mining algorithm. This method considers data instances
represented by points in a high-dimensional space. Proximity within
this space is used as criterion for classifying the points into clusters.

Three steps in the sequential version of this algorithm are as follows:

1. Start with k given centers for clusters,

2. Scan the data instances. For each data instance (point), find the
center closest to it, assign this point to a corresponding cluster,
and then move the center of the cluster closer to this point, and

3. Repeat this process until the assignment of the points to cluster
does not change.

This method can be parallelized as follows. The data instances are
partitioned among the nodes. Each node processes the data instances it
owns. Instead of moving the center of the cluster immediately after the
data instance is assigned to the cluster, the local sum of movements of
each center due to all points owned on that node is computed. A global
reduction is performed on these local sums to determine the centers of
clusters for the next iteration.

5.2 Expectation Maximization Clustering
The second data mining algorithm we have used is the Expectation

Maximization (EM) clustering algorithm [7], which is one of the most
popular clustering algorithms. EM is a distance-based based algorithm
that assumes the data set can be modeled as a linear combination of
multivariate normal distributions. The goal of the EM algorithm is to
use a sequence of Expectation and Maximization steps to estimate the
means C, the covariances R, and the mixture weights W of a Gaussian
probability function. The algorithm works by successively improving
the solution found so far. The algorithm stops when the quality of the
current solution becomes stable, which is measured by a monotoni-
cally increasing statistical quantity called loglikelihood.

This algorithm can be parallelized in the following manner. The
input data instances (the array Y ) are distributed between the nodes.
The arrays C, R, and W , whose initial values are provided by the user,
are replicated on all nodes. The E step is carried out on each node,
using data instances local to it. Global combination involved in the E

step consists of the information necessary to compute the means and
mixture weights arrays being aggregated by the master node, and then
being re-broadcasted. Next, the M step is performed locally on each
node’s data instances. Information necessary to compute covariance is
then updated during the M step, through an aggregation step followed
by a re-broadcast.

At the end of any iteration, each node has an updated value for C,
R, W and llh, and the decision to execute or abort another iteration is
made locally.

These parallelization steps can be expressed easily using the FREERIDE-
G API described earlier in this paper [9].

5.3 k-Nearest Neighbor Search
k-Nearest neighbor classifier is based on learning by analogy [12].

The training samples are described by an n-dimensional numeric space.
Given an unknown sample, the k-nearest neighbor classifier searches
the pattern space for k training samples that are closest, using the eu-
clidean distance as measure of proximity, to the unknown sample.

Again, this technique can be parallelized as follows. The training
samples are distributed among the nodes. Given an unknown sample,
each node processes the training samples it owns to calculate the k-
nearest neighbors locally. After this local phase, a global reduction
computes the overall k-nearest neighbors from the k-nearest neighbor
on each node.

5.4 Vortex Detection Algorithm
Vortex detection is the first of the two scientific data processing

applications we have used. Particularly, we have parallelized a fea-



ture mining based algorithm developed by Machiraju et al.. A more
detailed overview of the algorithm is available in a recent publica-
tion [24]. The key to the approach is extracting and using volumetric
regions to represent features in a CFD simulation output.

This approach identifies individual points (detection step) as belong-
ing to a feature (classification step). It then aggregates them into re-
gions. The points are obtained from a tour of the discrete domain and
can be in many cases the vertices of a physical grid. The sensor used
in the detection phase and the criteria used in the classification phase
are physically based point-wise characteristics of the feature. For vor-
tices, the detection step consists of computing the eigenvalues of the
velocity gradient tensor at each field point. The classification step con-
sists of checking for complex eigenvalues and assigning a swirl value
if they exist. The aggregation step then defines the region of inter-
est (ROI) containing the vortex. Regions insignificant in size are then
eliminated, and the remaining regions are sorted based on a certain
parameter (like size or swirl).

Parallelizing this application requires the following steps [11]. First,
when data is partitioned between nodes, an overlap area between data
from neighboring partitions is created, in order to avoid communica-
tion in the detection phase. Detection, classification and aggregation
are first performed locally on each node, followed by global combina-
tion that joins parts of a vortex belonging to different nodes. Denoising
and sorting of vortices is performed after the final aggregation has been
completed.

5.5 Molecular Defect Detection Algorithm
The second of the two scientific data processing applications we

have used performs molecular defect detection [22]. More specifically,
its goal is to uncover fundamental defect nucleation and growth pro-
cesses in Silicon (Si) lattices, either in the presence of thermal sources
or extra atoms (e.g., additional Si atoms or dopants such as Boron). A
detection and categorization framework has been developed to address
the above need. Both phases (each consisting of multiple sub-steps)
are briefly described below.
Phase 1-Defect Detection: In this phase the atoms are marked as defect
atoms based on statistical rules and are then clustered to form one or
more defect structures.
Phase 2–Defect Categorization: This phase consist of two sub-steps.
The first step, which is computationally inexpensive, uses a kNN clas-
sifier to provide the system with a set of candidate defect classes. The
second step tries to match the candidate classes from first step using
a relatively expensive exact shape matching algorithm. If no class
matches a particular defect, the class database is updated to include
the newly discovered class.

The first phase of this algorithm can be parallelized [10] in a manner
very similar to vortex detection algorithm. Contiguous chunks of Si
grid are partitioned between nodes, and defects are first detected and
aggregated locally, and followed by defects spanning multiple nodes
being joined in the global combination stage. After all aggregation
has been completed, defects are re-distributed to their original nodes,
in order to improve load balancing for the second phase.

Next, all defects that have a match in the class database are catego-
rized locally. Non-matching defects are given temporary class assign-
ments and then used to update local catalog copy. Local catalogs are
then merged in the global combination step, and the merged copy is
then re-broadcasted to the processing nodes in order to finalize tempo-
rary class assignments.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our middleware. We
use the five data analysis applications described in Section 5. Several
different datasets, of varying sizes, were used for each of these. We
had the following goals in our experiments:

1. Studying parallel scalability of applications developed using FREERIDE-
G. Here, we focused on configurations where the numbers of
compute and data repository nodes are always equal.

2. Investigating how the computing can be scaled, i.e., performance
improvements from increasing the number of compute nodes in-
dependent of the number of data server nodes.

3. Evaluating the benefits of performing caching in applications
that require multiple passes over data.

For efficient and distributed processing of datasets available in a re-
mote data repository, we need high bandwidth networks and a certain
level of quality of service support. Recent trends are clearly pointing
in this direction. However, for our study, we did not have access to
a wide-area network that gave high bandwidth and allowed repeatable
experiments. Therefore, all our experiments were conducted within
a single cluster. The cluster used for our experiment comprised 700
MHz Pentium machines connected through Myrinet LANai 7.0. In ex-
periments involving caching, the communication bandwidth was sim-
ulated to be 500 KB/sec and 1 MB/ sec. In our future, we will conduct
experiments with geographically distributed clusters.

6.1 Evaluating Overall System Scalability
The number of compute nodes used for these experiments was al-

ways equal to the number of data repository nodes. In this situation
pair-wise correspondence between data and compute nodes can be es-
tablished, and no distribution of data to multiple compute nodes is
required from the data server. All scalability experiments were con-
ducted on up to 16 nodes (8 data and compute node pairs).
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Figure 2: Vortex detection application parallel performance on
1.85 GB, 710 MB, and 260 MB datasets.

Vortex detection was evaluated with three datasets, with size of 260
MB, 710 MB, and 1.85 GB, respectively. Figure 2 presents the execu-
tion times from these three data sets on 1, 2, 4, and 8 pairs of nodes. On
2 pairs of nodes, the speedups are 1.99 for the 260 MB dataset, 1.98 for
710 MB dataset, and 1.97 for the 1.8 GB dataset. This demonstrates
that distributed memory parallelization is working very well, resulting
in nearly perfect speedups. Speedups are good even for the smallest
dataset, where execution time is expected to be mostly dominated by



the parallelization overhead. Also, since data communication over-
head is kept relatively low, communication time scales as well with
data size as data retrieval and analysis times.
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Figure 3: Defect detection application parallel performance on 1.8
GB, 450 MB, and 130 MB datasets.

On 4 pairs of nodes, the speedups are 3.99 for the 260 MB dataset,
3.98 for 710 MB dataset, and 3.96 for the 1.8 GB dataset. On 8 pairs
of nodes, the speedups are 7.95 for the 260 MB dataset, 7.92 for 710
MB dataset, and 7.90 for the 1.8 GB dataset.
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Figure 4: Expectation Maximization clustering parallel perfor-
mance on 1.4 GB, 700 MB, and 350 MB datasets.

Figure 3 presents execution parallel execution times for the molecu-
lar defect detection algorithm. This application was evaluated on three
datasets of sizes 130 MB, 450 MB, and 1.8 GB. On 2 pairs of nodes,
the speedups in execution time were 1.97 for the 130 MB dataset, 1.97
for the 450 MB dataset and 1.96 for the 1.8 GB dataset. Again, near
perfect speedups demonstrate good parallelization efficiency.

On 4 pairs of nodes, the speedups were 3.92 for the 130 MB dataset,
3.89 for the 450 MB dataset and 3.82 for the 1.8 GB dataset. The
drop-off in speedups here demonstrates that the overhead associated
with communication between compute nodes that is required for defect
detection is not as small as that for vortex detection. But, with parallel
efficiency somewhat limited by the application itself, the speedups are
still very good. On 8 pairs of nodes, the speedups are 7.52 for the
130 MB dataset, 7.50 for the 450 MB dataset and 7.34 for the 1.8 GB
dataset.

Figures 4, 5, and 6, present execution times from the additional scal-
ability experiments that were conducted. EM clustering, k-means clus-
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Figure 5: K-means clustering parallel performance on 1.4 GB, 700
MB, and 350 MB datasets.
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Figure 6: k-nearest neighbor search parallel performance on 1.4
GB, 700 MB, and 350 MB datasets.

tering, and k-nearest neighbor search were evaluated on three datasets
of size 350 MB, 700 MB, and 1.4 GB.

On 8 pairs of nodes, parallel EM achieved speedups of 7.56 for 350
MB dataset, 7.49 for 700 MB dataset and 7.30 for 1.4 GB dataset. In
the same configuration, parallel k-means achieved speedups of 7.25
for 350 MB dataset, 7.21 for 700 MB dataset and 7.10 for 1.4 GB
dataset. Parallel k-nearest neighbor search, executed on 8 pairs of
nodes, achieved speedups of 7.26 for 350 MB dataset, 7.15 for 700
MB dataset and 6.98 for 1.4 GB dataset.

Results were once again consistent with those of the previous two
experiments. Parallel efficiency observed was high, although in some
cases limited by the application. Data retrieval, communication and
processing all demonstrated good scalability with respect to increasing
both the problem size and the number of compute nodes.

6.2 Evaluating Scalability of Compute Nodes
In processing data from remote repositories, the number of available

nodes for processing may be larger than the number of nodes on which
data is hosted. As we described earlier, our middleware can support
processing in such configurations. In this subsection, we evaluate the
performance of applications in such cases.

We used three of the five applications, i.e., defect detection, vortex
detection and k-nearest neighbor search, for these experiments. Un-
like the other two applications (k-means and EM clustering), each of
these three applications only take a single pass (of retrieval and com-
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Figure 7: Defect detection parallel performance as the number of
compute nodes is scaled (1.8 GB dataset).
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Figure 8: Vortex detection parallel performance as the number of
compute nodes is scaled (1.85 GB dataset).

munication) over the data. So, any change in performance achieved by
the middleware would be due to each data node distributing processing
work to multiple compute nodes, and not due to caching.

Among the datasets used in the experiments in the previous subsec-
tion, we report results from only the largest ones. The number of data
nodes was varied up to 8 and the number of compute nodes was var-
ied up to 16 for each experiment. While both numbers were restricted
to be powers of two to achieve perfect load balance, nothing in the
middleware implementation requires such restriction.

Figure 7 presents parallel defect detection execution times on a 1.8
GB dataset, as the number of both data nodes and compute nodes was
varied. Using a single compute node, the speedups achieved were
1.70 for two compute nodes, 2.64 for four, and 3.65 for eight. The
speedups are sub-linear because only the data processing work is being
parallelized, with data retrieval and communication tasks remaining
sequential. However, these experiments do show that in cases where
additional compute nodes are available, our middleware can use them
to obtain further speedups, even if these speedups are sub-linear.

Using two data nodes, the additional speedups achieved were 1.67
for four compute nodes, 2.63 for eight, and 3.63 for sixteen. With
four data nodes, the speedups were 1.67 for eight compute nodes, and
2.62 for sixteen. And, finally, using 8 data and 16 compute nodes,
the speedup was 1.67. These results demonstrate that a very decent
speedup can be achieved by using twice as many compute nodes as
data nodes, but as the number of compute nodes keeps increasing, a
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Figure 9: k-nearest neighbor search parallel performance as the
number of compute nodes is scaled (1.4 GB dataset).

drop off in parallel efficiency is to be expected.
Figure 8 presents parallel vortex detection execution times on a 1.85

GB dataset. Again, number of both data and compute nodes is var-
ied. Using a single data node, the speedups achieved were 1.63 for
two compute nodes, 2.40 for four, and 3.61 for eight. Again, speedups
are sub-linear because only a fraction of execution time has been par-
allelized. In fact, a larger fraction of time is spent on data retrieval in
the vortex detection application, resulting in slightly lower speedups.
Using two data nodes, the additional speedups are 1.61 for four com-
pute nodes, 2.39 for eight, and 3.14 for sixteen. The lower speedup of
the last configuration is attributed to parallelization overhead starting
to dominate over execution time. With four data nodes, the speedups
achieved were 1.61 for eight data nodes, and 2.35 for sixteen. And,
finally, using 8 data and 16 compute nodes, the speedup was 1.60.
These results are consistent with the defect detection experiment, only
indicating a slightly higher tendency for vortex detection to be ”I/O
bound.”

Figure 9 presents parallel execution times for k-nearest neighbor
search evaluated on the 1.4 GB dataset. Once again, number of data
and compute nodes is varied. Using a single data node, the speedups
achieved were 1.48 on two compute nodes, 1.98 on four, and 2.38 on
eight. This indicates that the fraction of time spent on data retrieval
is even higher for this application. Again, as a larger fraction of exe-
cution time remains sequentialized, the speedup decreases. With two
data nodes, the additional speedups achieved are 1.45 on four compute
nodes, 1.96 on eight, and 2.36 on sixteen. These results are consistent
with previous experiments with both this application and other appli-
cations. Using four data nodes, the speedups achieved are 1.46 on
eight compute nodes, and 1.96 for sixteen. Finally, using 8 data and
16 compute nodes, the speedup was 1.44.

Overall, the results indicate that scaling up the number of com-
pute nodes beyond the number of data nodes results in a more modest
speedup than scaling both compute and data nodes. However, these re-
sults do show that additional computing nodes can be used to decrease
processing rates.

6.3 Evaluating Effects of Caching
When a data processing application involves multiple passes over

data, FREERIDE-G supports the ability to cache remote data. This
subsection describes experiments evaluating the benefits of such caching.
We use the two multi-pass applications from our set of applications,
which are k-means and EM clustering. As the results from these two
applications were very similar, we are only presenting results from EM



1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 10

4

Processing nodes (#)

E
xe

cu
tio

n 
tim

e 
(s

ec
)

1.4 GB − no cache
1.4 GB − cache
700 MB − no cache
700 MB − cache
350 MB − no cache
350 MB − cache

Figure 10: Comparing EM performance with and without caching
on 350 MB, 700 MB, and 1.4 GB datasets (1 MB/sec bandwidth).
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Figure 11: Comparing EM performance with and without caching
on 350 MB, 700 MB, and 1.4 GB datasets (500 KB/sec bandwidth).

in this subsection. We executed this application for five iterations, and
used simulated cluster interconnection bandwidth of 500 KB/sec and
1 MB/sec.

As in subsection 6.1 three datasets of size 350 MB, 700 MB, and 1.4
GB, respectively, were used. Two versions were created: Cache ver-
sion utilizes a caching framework, as described in Section 4.4, and the
No cache version, which does not save the data locally during the
initial iteration, and, therefore, requires that the server node communi-
cates it again to the compute node during each subsequent iteration.

Figure 10 demonstrates a comparison of parallel execution times of
the cache and no cache versions of the EM clustering applica-
tion, with 1 MB/sec bandwidth. In all 1-to-1 parallel configurations
across all three datasets, the decrease in execution time due to caching
is around 1.27. This demonstrates that there is a significant benefit to
caching the data locally. In fact, when the breakdown of the execu-
tion times were considered, data communication time for the cache
version was about 20% of the same time for the no cache version.
Such results were to be expected, since cache communicates data
only once, whereas no cache communicates it five times, once per
iteration.

Finally, Figure 11 illustrates the caching benefits for the EM appli-
cation, but with communication bandwidth of 500 KB/sec. Parallel
EM in this setup demonstrates a speedup of around 1.51 in all 1-to-1
parallel configurations, across three datasets.

Overall, caching experiments presented demonstrate that the relative

benefit achieved from our caching framework is relatively indepen-
dent of the size of the problem or the parallel configuration. Instead,
communication bandwidth available and the ratio of communication
time to compute time determine the factor of improvement in execu-
tion times.

7. CONCLUSIONS
In this paper, we have presented a middleware, FREERIDE-G (FRame-

work for Rapid Implementation of Datamining Engines in Grid), which
support a high-level interface for developing data mining and scientific
data processing applications that involve data stored in remote repos-
itories. Particularly, we had the following goals behind designing the
FREERIDE-G middleware: 1) Support high-end processing, i.e., use
parallel configurations for both hosting the data and processing the
data, 2) Ease use of parallel configurations, i.e., support a high-level
API for specifying the processing, and 3) Hide details of data move-
ment and caching.
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