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Abstract
Moving Object Databases (MODs), the core component

of location server to support location-related applications,
keep track of the locations of moving objects which sub-
mit location update reports to the centralized server. In
resource-limited wireless environments, the frequency and
conditions for generating location update messages exert
a strong impact on system performance in terms of up-
date message cost and object location accuracy, hence the
query result precision. Conceptually, moving objects are the
sources of the location data while the MOD caches recently
reported object locations for query processing. Owing to
the inherent imprecision of the cached values, we impose
a bounded level of inconsistency for the cached values, re-
alized in the form of a “safe range” for a moving object.
The cached value needs not be invalidated so long as the
deviation of the object’s current location from its reported
location is within the safe range. A smaller safe range re-
sults in a higher accuracy of the cached value and hence
more accurate query result at the expense of higher update
cost, and vice versa. Since the size of the safe range is the
key to system performance, we derive a system cost model
to determine its appropriate value. Furthermore, to cater
for highly dynamic environments in which object move-
ment, query access pattern and system workload always
change, we propose two adaptive safe range adjustment al-
gorithms. Through extensive simulation experiments, the
benefits brought about by our algorithms are evidenced.

1. Introduction
Moving object location tracking is an essential service in

many location-related applications such as intelligent trans-
portation system, logistics, fleet/cargo management, child-
care system, wildlife animal monitoring, emerging service
like E911 etc. Consider the intelligent transportation sys-
tem, often launched in a city for answering queries from
drivers, passengers, police and other interested parties. One
typical task is to keep monitoring locations of interested
moving objects and log the updated location value to a Mov-
ing Object Database (MOD) for centralized efficient query

processing. Figure 1 depicts a MOD, the core component
of location server, keeping track of the locations of a large
number of moving objects such as persons, vehicles, and
wildlife animals and processing user queries on these mov-
ing objects. Under this configuration, moving objects report
their locations to the MOD either periodically, on demand,
or when a certain condition materializes. Maintaining re-
ported locations, MOD generates results to user queries
about the locations of interested moving objects.

In our model, the system performance is attributed to two
costs: location update cost and query evaluation cost. The
location update cost is basically the cost to post location up-
dates from battery-powered moving objects to the database
server over a scare-bandwidth wireless channel. Clearly,
it is impractical for an object to keep submitting location
reports continuously along its trajectory. To reduce the up-
date cost, state-of-art update policies like time-based [1],
distance-based [11], dead-reckoning [14], adaptive dead-
reckoning [7] and group-based location update [6] have
been proposed. The query evaluation cost is resulted when
the object location at server is imprecise and the server
needs to page the object for its updated location.

Conceptually, the moving objects are the sources of their
location information (source data) and the database server
maintains a cache of latest reported object locations (cached
data). The problem of location update and querying resem-
bles the cache coherence problem. Though location update
can be realized as cache update or cache invalidation ini-
tiated by moving objects to MOD, we adopt cache update
approach since the payload of a location update message
that includes object ID and spatial coordinates is very close
to an invalidation message that contains the object ID only.

In this paper, we propose a distance-based update ap-
proach with adaptively tuned safe range to realize the con-
cept of location cache at MOD. The safe range defines the
degree of bounded inconsistency [16], which is the maxi-
mum deviation allowed between the cached location and the
actual location. Thus, when an object moves to a new posi-
tion within the safe range, the cached value remains valid;
no update needs to be issued to the server. From the per-



cached location within the safe range, in the absence of
an update. The object location may be stale, but accurate
enough to answer queries with fair accuracy expectation.
For queries with high accuracy requirement, relevant ob-
jects will be paged when queried. This on-demand paging
cost, resulted when high accuracy queries access object lo-
cation with low precision, constitutes the query evaluation
cost. This object paging resembles cache verification.

In our algorithms, the adaptation of safe ranges is mu-
tually agreed between the server and the moving objects.
Based on the safe range r, a location update is initiated only
when the object is more than a distance of r away from its
previously reported location. The area within which no up-
date is needed is called the safe region. It is a circular area
centered at the previously reported location with radius r.

Although to a certain degree, the precision of cached
value is bounded, processing a query with a high precision
requirement, as specified by users, could likely trigger ob-
ject paging. We should set the safe range judicially to im-
prove system performance. However, selecting a good safe
range needs thorough analysis since a small safe range is
not effective in reducing location update frequency, while a
large safe range incurs high object paging cost, especially
when a large volume of queries are to be served, despite
suppressing the location updates. Even more complicated,
the safe range is not necessarily fixed; it should be adap-
tive in highly dynamic environments in which object move-
ment pattern and query access pattern always change. To
address this, we propose two adaptive safe range determi-
nation algorithms that are both movement-aware and query-
aware [18]. To evaluate, we conduct extensive experiments
with synthetic datasets. The experimental results well in-
dicate their effectiveness in balancing the update cost and
query cost, resulting in an optimal system performance.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes the general
system model and the operation of each component. Sec-
tion 4 derives the system cost model, providing the basis
to develop our adaptive algorithms discussed in Section 5.
We conduct experiments to evaluate the performance of our
adaptive algorithms, demonstrating their effectiveness in
yielding minimal operational cost. Details are documented
in Section 6. Finally, Section 7 summarizes our work and
highlights some future research directions.

2. Related Work
In distributed information systems, the problem of adap-

tive data caching is related to adjusting the caching strategy
dynamically as conditions change [3, 4, 13]. Most previous
work does not focus on the problem of how to set cache pre-
cision optimally according to data value change and query
situation [2, 10, 12, 17]. A distinguished work addressing
the optimization problem considers interval approximation

ing the precision of cached approximations [9]. One of our
algorithms extends this methodology and makes the general
approach applicable for MOD applications.

Although moving object tracking is essential in mobile
computing applications, little work is done in MOD to ad-
dress the location information caching optimization prob-
lem. A handful of tracking algorithms and updating poli-
cies such as time-based, distance-based, dead-reckoning
are proposed [1, 7, 11, 14] and comparison work has been
done [11]. However, none of the existing work focuses on
optimization efforts. To our best knowledge, the most rel-
evant work taking the optimization approach is from Wolf-
son [14]. In their work, an information cost model is pro-
posed based on three separate costs: update cost, deviation
cost and uncertainty cost. They derive the optimal settings
for deviation threshold to yield the minimum information
cost, based on the dead-reckoning policies. In their model,
queries are not allowed to request for exact values from
sources so server probe costs are not taken into account.
Compared to their work, ours is much more adaptive in the
sense that it is both query-aware and movement-aware [18].

The novelty of our approach lies in three aspects. First,
Wolfson’s work regards querying and updating as two sep-
arate procedures in MOD environment, in which the un-
certainty and deviation impose a cost or penalty in terms
of incorrect decision making. Based on this, the informa-
tion cost function is designed to absorb both update cost and
penalty for uncertainty, so as to derive the minimal cost for
one trip by assigning the optimal value to the object’s devia-
tion threshold. They then consider the query issued in a next
step. We believe that in most practical systems, the only rea-
son to provide up-to-date location information is to provide
answers precise enough to queries concerning these objects.
Therefore, if no query is issued for the whole trip of a mov-
ing object, it is not necessary to “produce” the information
for the non-existent “consumer”. Thus, both movement pat-
tern and query information are absorbed and integrated into
our adaptive algorithms. Second, the dead-reckoning poli-
cies suffer from the dependency of the optimal deviation
threshold value on a predicted deviation function. The de-
viation threshold at each update is adjusted to the current
motion pattern, whose changes need to be reflected by pa-
rameter change on the predicted deviation function, such as
the linear function, d�t� [14]. In contrast, our adaptive algo-
rithms do not need to be based on any predicted deviation
function. Third, the dead-reckoning policies are only ap-
plicable when the destination and motion plan of the mov-
ing objects are known a priori [15]. The route would be
fixed and known to both the moving object and the server.
However the future route of a tracked object is not always
known. Our work relaxes the assumption about predefined
routes or destination about the motion plan.



Figure 1 depicts the general updating and querying activ-
ities in the MOD, which resides inside some kind of loca-
tion server providing location-dependent querying services.
The location server communicates with moving objects via
a low bandwidth network and records their locations. Upon
receiving queries issued by users, location server processes
them and returns the results. It is normally the responsibil-
ity of the moving objects to generate update reports on their
locations to the server. Both server and moving objects are
aware of the update policies and the agreeed safe range of
location information stored in the MOD.
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Figure 1. Updating and querying in MOD
Let the set of moving objects be O � fo�� o�� o�� ���g

and the set of queries issued be Q � fq�� q�� q�� ���g. Our
adaptive algorithms are built based on the distance-based
update policy. A moving object, o � O, issues an update
whenever the distance between the current object location,
o�loccurrent, and the stored location, o�locstored, exceeds the
safe range r, i.e., jo�loccurrent� o�locstoredj � r. Upon each
update, a tuple of the current location and chosen safe range
ri for each object oi is stored at the server. Queries pro-
cessed at the server are of the form qj � hoi� pji, where oi
is the identification for the required tracking object, and pj
is the precision constraint for query qj � Q. In general, to
process qj , if ri � pj , the stored location at the server sat-
isfies the precision requirement and is returned to the query
issuer immediately. If ri � pj , the stored location is inad-
equate in precision. The server needs to page the moving
object oi for its current location, oi�loccurrent.
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Figure 2. Moving object safe region
The procedures executed at a moving object oi and the

server S in order to maintain the MOD and to process the
queries are illustrated in Figures 3 and 4. There is a safe

within which there is no need for the object to report its lo-
cation. An update is only needed when the object moves
out of its safe region. The safe region is a circle centered at
the previously reported location (the stored location at the
server), with radius ri. It is represented by the dotted cir-
cle in Figure 2 for each object. In other words, an object
reports its new location if the deviation in location exceeds
the safe range. Upon receiving a location update, the server
installs the new location, determines the new safe range and
informs the moving object. Meanwhile, the server monitors
querying activities to adjust the safe range. The new safe
range ri for oi is determined based on our adaptive algo-
rithms discussed in Section 5.

Procedure for moving object oi
1: monitor its own location oi�loc via devices such as GPS
2: if joi�loc� oi�locreportedj � ri then

// move out of safe region
3: send update report to server S: hoi� oi�loci
4: oi�locreported � oi�loc
5: coordinate with S for its new safe range ri
6: endif

Figure 3. Moving object responsibility

Procedure for server S
1: receive the next message
2: if it is an update report from oi then
3: update the stored location of oi with oi�loc
4: determine the new safe range ri
5: endif
6: if it is a query qj � hoi� pji from a user then
7: if ri � pj then
8: return the stored location to the query issuer
9: else page oi for its exact current location
10: return the result to the query issuer
11: endif
12: determine the new safe range ri
13: endif
14: piggyback the new safe range ri to oi

Figure 4. Server responsibility

4. Cost-based Analysis
The two kinds of costs, namely, wireless communication

cost for location update and the query evaluation cost at the
database server, are the most important factors on the sys-
tem performance. Both are directly related to the location
safe range, i.e., the value of the threshold r to generate an
update report. In order to optimize the system performance,
we adopt the cost-based approach in analyzing the perfor-
mance, striking at the minimal cost with an optimal setting
for r. The total system cost, C, can be considered as a sum
of the two component costs, CT and CQ, where CT repre-
sents the tracking cost and CQ stands for the querying cost.
Thus, C � CT � CQ. This cost function definition sets up
the ultimate goal for our adaptive algorithms: minimization



key factors that are influential to each of the costs and derive
the appropriate settings to effect our adaptive algorithms de-
sign in optimizing the total cost C.
4.1. Tracking Cost for Moving Objects

We assume in this paper that the tracking of moving ob-
jects is achieved by voluntarily issuing update reports from
moving objects to the server. Cost of sending updates upon
a paging request from the server belongs to probing cost and
will be associated with the query instead, as discussed in
next section. The cost for tracking mainly depends on the
cost for update activities and we define the tracking cost,
CT
i , for an object oi as:

CT
i � Cu��ri� (1)

where Cu is the unit cost for an update activity. In other
words, it is the cost paid for one object to send one up-
date report to the server. The value of Cu is application-
dependent. ��ri� is update rate for moving object oi, i.e.,
the number of updates initiated from oi per time unit, with
safe range ri. Intuitively, larger ri leads to smaller rate.
Hereafter, we will drop the subscript when it is clear from
the context. Obviously, ��r� depends on the movement pat-
tern of the objects.

To define the formula for ��r�, we need to analyze the
object movement behavior. Let us assume that the moving
objects obey a 2-dimensional random walk model. All the
objects move in steps and in each step, each object travels a
distance of d along an arbitrary direction. Each step takes a
duration of L time units.

Lemma 1 If the movement of an object oi follows the ran-
dom walk model, each movement step lasting for a period
of time Li and the distance moved in each step being di,
then the rate at which oi moves out of the safe region is
d�i ��Lir

�
i �.

Proof. To prove this lemma, let us review the well-
known Drunken Person Problem.

Drunken Person Problem. A drunken person
moves following the random walk model. Sup-
pose that in every step, she moves a unit distance.
After n steps, the distance between her current lo-
cation and the starting point is

p
n. �

The movement of an object is similar to the drunken
person. The lemma can be proved with result from the
Drunken Person Problem. For an object oi to move out
of its safe region, it should move at least a distance of r
beyond its safe region center, corresponding to the starting
point in the drunken person problem. The normalized dis-
tance from the starting point to the boundary is ri

di
. Let T

be the expected time that oi moves out of its safe region.
It is obvious that ��ri� � �

T
. Suppose at t�, oi is located

at safe region center and at time t� � T , it is expected to

distance moved between this time period is D� � ri
di

and

the number steps that oi moves is n � T
Li

. Thus, the dis-
tance between the starting point and the current point is

D� �
p
n �

q
T
Li

�
q

�
Li��ri�

. Since D� � D�, we

have ri
di

�
q

�
Li��ri�

. Thus, ��ri� �
d�i
Lir

�

i

. �

Similar to [9], we can generalize the relationship be-
tween ��r� and r as:

��r� � ��r� (2)

where � is a parameter that represents other factors except
r that will affect the value of ��r�. By intuition, we know
that � depends on the movement pattern of the objects.

4.2. Querying Cost for Probing Moving Objects
Besides object tracking cost, the other cost for MOD is

the query processing cost. Assuming negligible CPU cost,
the query processing cost is attributed to unsatisfactory safe
range in location information for queries with high preci-
sion constraint. The server then needs to probe for more
precise location of the moving objects involved. The costs
of probing and updating from those objects comprise the
querying cost, CQ. We define the querying cost CQ

ji involv-
ing an object oi to answer a specific query qj as:

CQ
ji � Cp��ri� (3)

whereCp is unit cost for probing moving objects for the cur-
rent location, which translates into the cost paid to page one
object and receiving the reply back. ��ri� is query probe
rate for moving object oi, i.e., the number of probes gener-
ated per time unit, when the query qj is not satisfied with
an object oi with safe range ri, for which the query preci-
sion constraint is not fulfilled. Obviously, ��r� depends on
querying pattern, including query arrival rate and precision
requirement. Intuitively, with a larger value of r, higher
probe rate will be resulted.

To define function ��r�, we assume a simplified case
where queries arrive with rate �, each being accompanied
by a precision constraint sampled from a uniform distri-
bution, U��� pmax�. Then ��r� is the number of queries
issued per time unit multiplied by the probability that the
precision constraint of the query is not satisfied. The prob-
ability that the precision constraint of the query is not sat-
isfied can be computed as Pr�p � r� � r�pmax. We can
evaluate the function ��r� for an object with safe range r as
��r� � �r�pmax. We can then generalize the relationship
between r and ��r� as:

��r� � 	r (4)

where 	 is a summarizing factor other than r that could af-
fect ��r�. Obviously, 	 depends on the distribution of query
precision constraint and query arrival pattern.



With ��r� and ��r� determined, we can define a com-
plete general cost function for moving objects. Table 1 sum-
marizes all the parameters we use in the cost function and
in our simulation study. We would relax the assumption in
the derivation of the functions in our performance study to
illustrate the robustness of our algorithms.

Symbol Description
C Total cost for the system

CT , CQ Tracking and querying cost
Cu, Cp Unit cost for location update and probe
r, r� Safe range and its optimal value

��r�, ��r� Object update and query probe rate
� Parameter due to object movement behavior
� Parameter due to querying behavior
� Cost ratio, defined as ��r�

��r�

�� Optimal cost ratio, �Cu
Cp

� Rate of adaptation
	 Exponential aging parameter

 Ping-pong effect barrier parameter

Table 1. Symbols and parameters
Recall that C � CT � CQ � Cu��r� � Cp��r�. With

appropriate parameter values of � and 	, C � ��r� � 	r.
Through mathematical analysis, we can derive the minimal
value for the total cost via differentiation. This occurs when
r� � �Cu�

�

p
��	��Cp.

For example, if the moving object follows the ran-
dom walk model, queries are generated with a stable ar-
rival rate of �, and precision constraints are uniformly
distributed within 0 to pmax, We can derive � and 	
as � � d��L and 	 � ��pmax. We can then eas-
ily achieve the optimal cost by setting the safe range to
r� � ��Cu�Cp��

�

p
d�pmax��L�.

Unfortunately, setting the safe range r to the optimal r�

is difficult unless object moving behavior and querying pat-
tern are stable and known in advance, as assumed in most
related work, since both parameters � and 	 depend on
these factors. We need to adjust the system in an attempt
to reach out for the optimal safe range r�, despite the unsta-
ble and unknown object movement and query patterns.

5. Adaptive Safe Range Algorithms
With unknown system parameters and changing system

conditions, one feasible way to strive for optimal system
performance is the adaptive adjustment approach. We de-
sign two adaptive algorithms for setting the safe range to-
wards minimizing total system cost. The basic idea behind
the algorithms is from an observation on the intuitive rela-
tionship between the two kinds of costs and safe range r.
Intuitively, larger r leads to lower tracking cost but higher
querying cost and vice versa. Whenever a location update
occurs, it is a signal that the safe range should be larger and
the value of r should be increased for the next updating ac-

signal that the safe range is too large for the precision con-
straint of the existing query and r should be decreased. This
approach adapts the value of r according to changing situa-
tion. We then need to determine by what amount should r
be adjusted. Too large a jump will create a strong ping-pong
effect, defeating the purpose of the adaptation. Too small a
shift will make it a lengthy process to adapt to a new object
movement and querying pattern.

To determine the adjustment, we look at the system prop-
erty at the optimal performance point and maneuver the
adjustment based on the existing deviation from the op-
timal property. We observe that the ratio between ��r�
and ��r� is a constant at the optimal safe range r�. When
��r����r� � ��Cu�Cp�, r � r� � ��Cu�Cp��

�

p
��	�.

We thus define 
� � ��Cu�Cp�, and the optimal safe range
r� is resulted when 
 � 
�. Our problem then reduces to
adjusting the safe range r so that 
�
� � �. The value of r
is adjusted by an amount of � , a tunable parameter.

Figures 5 and 6 present two adaptive algorithms for set-
ting r at the server. The meaning of symbols used can be
found in Table 1. Both algorithms attempt to adjust the sys-
tem parameters in order to make the ratio of the observed
query probe rate and location update rate equal to 
�.

History-tracking Algorithm (HA) keeps track of the loca-
tion update and query probe rates, in order to compute 
 and
make the ratio 
�
� close to 1 by adjusting r. Since larger r
leads to higher query probe and lower location update rate
and hence larger 
, HA decreases r when the ratio 
�
� is
larger than the value in optimal condition, i.e., 1. Note that
since the value of 
 can change dynamically, HA needs to
track changes in object movement and query patterns, by
means of an exponentially weighted moving average of the
metric, with an adjustable weight �. To avoid the ping-pong
effect, a change is initiated only when the ratio is beyond a
certain threshold 
 from the target value of 1.

Non-History-tracking Algorithm (NHA) only makes use
of the local property of location update and query probing
observed at the server under normal operation, without at-
tempting to track for the object movement pattern, query
pattern and query precision, nor storing their history. As
with HA, NHA attempts to make the ratio 
�
� close to 1,
but by means of probabilistic approach. To explain the al-
gorithm, let us examine the simplest case when 
� � �. To
make the ratio 
�
� � �, the system should keep 
 � �, i.e.,
query probe rate should be equal to location update rate. To
balance the likelihood of the two types of updates, NHA
would decrease or increase r on a query probe or object up-
date in order to reach for the optimal setting. If 
� � �, a
larger r which leads to a higher query probe rate and smaller
object update rate is preferred. Therefore, NHA would still
increase r on a location update but would just decrease r
with a probability ��
� on a query probe. Conversely, if



r on every location update.

1: initialize �� � �Cu�Cp and r; reset � and �
2: upon receiving a location update or server probe do
3: if a location update is received then
4: ��r�� 	��r� � ��� 	���now � TlastUpdated�
5: else
6: ��r�� 	��r� � �� � 	���now � TlastProbed�
7: endif
8: � � ��r����r�
9: if ���� � � � 
 then
10: r � r��� � � �
11: else if ���� � � � 
 then
12: r � r�� � � �
13: endif

Figure 5. HA at server

1: initialize �� � �Cu�Cp and r
2: if an object location update is received then
3: r � r�� � � � with probability minf��� �g
4: endif
5: if a server probe is needed for an object then
6: r � r��� � � � with probability minf����� �g
7: endif

Figure 6. NHA at server

6. Performance Evaluation
We conduct a number of experiments to evaluate the

performance of our adaptive algorithms. Each experiment
models the movement of the moving objects for 1000 time
units. The spatial domain of interest is a square-shaped re-
gion of size 500 by 500. Two mobility models are used
in the simulation, namely, Random Walk and Random Way-
point [5]. Both are well-known for performance evaluation
of MOD. The random walk model is suitable to simulate
small-scale scenarios, while the random waypoint model
fits better to large-scale on-purpose movements. In random
walk, all objects move in steps and each moves a distance of
d along an arbitrary direction at each step, with a duration of
L. In random waypoint, each object chooses a random point
in the space as its destination and moves to it at a speed ran-
domly selected from the range [0, Vmax]; upon arrival or
expiration of a constant movement period randomly picked
from the range [0, Tmax], it chooses a new destination and
repeats the same process. Queries arrive with rate � and
maximum precision constraint pmax. We assume that the
location update cost per object is 1 and the server probe cost
is 2, with one server paging message and one object report-
ing message. Thus, 
� � �Cu�Cq would be 1. Note that the
actual value of 
� depends on the semantics of the particular
application system and may vary. However, its choice has
no particular effect to the algorithm performance, as long as
the value can be estimated accurately. Table 2 summarizes
the parameters used in our experiments.

L (in second) 1 1
d (in meter) 1 (slow), 5 (moderate), 15 (fast) 5


 1 - 10 s�� 1
Vmax 15 15
Tmax 2 2
pmax 10-100 50
�� 1 1

Table 2. Simulation parameters setting

6.1. Experiment #1
Our first set of simulation experiments is a comprehen-

sive set, conducted to demonstrate that our algorithms in-
deed achieve optimal performance with appropriate param-
eter settings. We evaluate using both movement models.
For random walk, we consider a set of moving objects with
moderate speed. For random waypoint, we take the maxi-
mum velocity to be 15 and maximum stop time 2 time units.
We simulate a querying workload with query arrival rate
of 1 and a maximum precision constraint of 50. First, we
run simulation to establish the correctness of our assump-
tion for the relationship among r and ��r� and ��r�, i.e.,
to show that generally ��r� and ��r� are proportional to
��r� and r respectively. We also want to show that when
��r����r� � 
�, the total system cost is minimized.

We run the update and querying algorithm with fixed
r for each experiment (i.e., we do not adjust r adaptively
according to different system situation), but vary r across
experiments. We measure the average number of updates
and probes per time unit and the results are reported in Fig-
ure 7. The measured values for ��r� and ��r� are found to
be proportional to ��r� and r respectively. From the figure
for random walk and random waypoint models, we can ver-
ify that the minimal total cost can indeed be attained when
��r����r� � 
� � �, i.e., at the intersection point of the
update rate curve and probe rate curve, where ��r� � ��r�.
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Figure 7. Update/probe rate and cost versus
safe range

Upon confirming the validity of the derived optimal
point, we next attempt to validate the claim that our adap-
tive algorithms can adapt the safe range r towards the op-
timal value r�, i.e., they converge. Both algorithms con-
trol the magnitude of the safe range adjustment by means
of � , an important tunable parameter. We vary � as well
as initial safe range r� in our experiment. After conduct-
ing numerous experiments, we could deduce the optimal



(i.e., the optimal value r� returned by HA and NHA). Fig-
ure 8 presents the simulation results for NHA. Under both
random walk and random waypoint movement models, it is
clear that NHA is unable to yield a best performance when
� is either too large or too small. This is because a large �
induces strong fluctuation to the adjustment of r, thus miss-
ing the optimal. Too small a value of � will lead to a very
slow convergence for the system to adapt to the optimal r.
Figure 8 also reveals that unless � is too extreme, initial safe
range r� brings little impact to the performance. We repeat
the experiment to measure the performance of HA and the
results are very similar to those in Figure 8. Table 3 summa-
rizes the best setting for the adjustable parameters and the
best safe range r� returned by the algorithms. Compared
with the results in Figure 7, the best safe ranges returned
from both algorithms are close to the optimal, with at most
5% difference. The results also indicate that HA performs
better in exerting a lower total system cost.
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Figure 8. Adaptation of NHA to parameters

NHA HA
Parameter Ran. walk Ran. waypoint Ran. walk Ran. waypoint

� 0.04 0.04 0.04 0.04
r� 50 50 50 50
	 - - 0.1 0.1

 - - 0.1 0.1
r� 9.064 12.255 8.318 12.134

cost C 0.549 0.742 0.510 0.667

Table 3. Optimal setting for parameters
6.2. Experiment #2

Our second set of experiments aims at evaluating the ef-
fect of object movement speed. We employ the random
walk movement model, with three movement speeds, i.e.,
slow, moderate and fast. We set the tunable parameters to
their optimal setting according to the experimental results
in Experiment #1. The results are presented in Figure 9.
The total system cost increases when moving speed of ob-
jects gets faster no matter which algorithm. The reason be-
hind this phenomenon is that faster object movement makes
them more easily moving out of their safe region, dictating
tight tracking. It is apparent that HA is more adaptive to
the change of speed. This is because NHA uses a fixed
pre-determined value of 
�, while HA attempts to track
the changes in object movement pattern with 
. Further-
more, we repeat Experiment #1 with those varying move-

trend, except with minor shifting. Table 4 indicates the best
value of r that can be attained by both algorithms and the
range of optimal r derived from the static algorithm.
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Figure 9. Effect of movement speed

Algorithm slow moderate fast
NHA 3.271 9.064 16.633
HA 2.997 8.318 16.900

Algorithm with static r 3-3.5 8.5-9 16.5-17

Table 4. Optimal safe range r

6.3. Experiment #3
Our third experiment evaluates the effect of the query

pattern, with random waypoint movement model. We fo-
cus on evaluating the effect on the query arrival rate � and
varying query precision pmax. The results are depicted in
Figure 10. Both algorithms result in higher system cost
at higher query rate and smaller maximum precision con-
straint. This is expected due to a higher degree of query-
ing activities. In both cases, it is clear that HA is perform-
ing better with a lower total cost, due to its stronger ability
to adapt to changes, compared with NHA with a precom-
puted 
. There is a performance tradeoff between the two
algorithms. NHA requires less computational power at the
server because no history tacking is needed while HA can
adapt to the changing situation more quickly, yielding better
performance at the expense of higher computational cost.
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Figure 10. Effect of query pattern

6.4. Experiment #4
Our last set of experiments is conducted to evaluate the

robustness of the adaptive algorithms. The aim is to find out
how fast our algorithms converge to their best safe range
setting when system conditions such as object movement
pattern, query arrival rate and query precision requirement



models to generate two sets of simulation data to model
changing movement pattern and query pattern respectively.
Dataset1 slows down random walk moving objects af-
ter every one-third of the simulation period. Dataset2 is
based on the random waypoint model with default maxi-
mum speed, but the query pattern is changed from very in-
frequent and loose precision constraint to frequent and tight
precision constraint every one-third of the simulation pe-
riod. To visualize the changing condition, the query pattern
also changes suddenly every one-third of the period. We
run both algorithms on the two datasets. The results are
shown in Figure 11, with HA1 standing for running HA on
Dataset1 and so on. Both adaptive algorithms can con-
verge to stable safe range after some adaptation period. HA
exhibits a slightly better performance with faster conver-
gence, especially under changing system conditions. This
is quite expected because HA keeps monitoring object up-
date and server probe rates and adapts faster according to a
more accurate value of 
, while NHA makes use of a pre-
computed 
� no matter how the current condition changes.
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Figure 11. Convergence of algorithms
7. Conclusion

In this paper, we considered the location update problem
with bounded level of inconsistency, by means of the safe
range. We derived the optimal setting of the safe range for
the location information based on object movement pattern
and query pattern in an ideal known scenario. We then pre-
sented two adaptive algorithms for adjusting the safe range
that controls the deviation of cached location of moving ob-
jects adaptively to achieve the best performance as move-
ment pattern, query precision requirement or system work-
load vary, as in real applications. Comprehensive simula-
tion studies demonstrate that our algorithms can achieve op-
timal system performance in a robust manner.

We have so far assumed that the queries are looking for
the location of objects. We have not considered other types
of useful queries, such as range queries, continuous queries,
nearest neighbor queries, etc. As future work, we plan to
explore the possibility of applying the adaptive approach to
deal with different types of queries in MOD. As the relation-
ship between the safe range and different types of queries

order to handle more complex and interesting queries, such
as range queries or nearest surrounder queries [8].

References
[1] A. Bar-Noy, I. Kessler, and M. Sidi. Mobile users: To up-

date or not to update? ACM-Baltzer Journal of Wireless
Networks, 1(2):175–185, 1995.

[2] R. Barga and C. Pu. Accessing imprecise data: An ap-
proach based on intervals. IEEE Data Engineering Bulletin,
16(2):12–15, 1993.

[3] B. Chan, A. Si, and H. Leong. A framework for cache
management for mobile databases: design and evaluation.
Journal of Distributed and Parallel Databases, 10(1):23–57,
2001.

[4] M. Franklin and M. Carey. Client-server caching revisited.
In Proc. of International Workshop on Distributed Object
Management, 1992.

[5] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, Edited by Imielin-
ski and Korth, Kluwer Academic Publishers, 1996.

[6] G. Lam, H. Leong, and S. Chan. GBL: Group-based loca-
tion updating in mobile wireless environment. In Proc. of In-
ternational Conference on Database Systems for Advanced
Applications, pages 762–774, 2004.

[7] K. Lam, O. Ulusoy, T. Lee, E. Chan, and G. Li. An effi-
cient method for generating location updates for processing
of location-dependent continuous queries. In Proc. of In-
ternational Conference on Database Systems for Advanced
Applications, pages 218–225, 2001.

[8] K. Lee, W. Lee, and H. Leong. Nearest surrounder queries.
In Proc. of International Conference on Data Engineering,
2006.

[9] C. Olston, B. Loo, and J. Widom. Adaptive precision set-
ting for cached approximate values. In Proc. of SIGMOD
Conference, 2001.

[10] C. Olston and J. Widom. Offering a precision performance
tradeoff for aggregation queries over replicated data. In
Proc. of International Conference on Very LargeData Bases,
pages 144–155, 2000.

[11] E. Pitoura and G. Samaras. Locating objects in mobile com-
puting. Knowledge and Data Engineering, 13(4):571–592,
2001.

[12] C. Pu and A. Leff. Epsilon-serializability. Technical report,
Columbia University, Computer Science Department, 1990.

[13] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ACM Transactions on Database Sys-
tems, 22(2):255–314, 1997.

[14] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units. Dis-
tributed and Parallel Databases, 7(3):257–387, 1999.

[15] O. Wolfson and H. Yin. Accuracy and resource consumption
in tracking moving object. In SSTD, pages 325–343, 2003.

[16] M. Wong, D. Agrawal, and H. Mak. Bounded inconsistency
for type-specific concurrency control. Journal of Distributed
and Parallel Databases, 5(1):31–75, 1997.

[17] H. Yu and A. Vahdat. Efficient numerical error bounding for
replicated network services. In Proc. of International Con-
ference on Very Large Data Bases, pages 123–133, 2000.

[18] J. Zhou, H. Leong, Q. Lu, and K. Lee. Aqua: An adaptive
query-aware location updating scheme for mobile objects.
In Proc. of International Conference on Database Systems
for Advanced Applications, pages 612–624, 2005.


