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Abstract 

 
Parallel applications with energy and low-latency 

constraints are emerging in various networked 
embedded systems like digital signal processing, 
vehicle tracking, and infrastructure monitoring. 
However, conventional energy-driven task allocation 
schemes for a cluster of embedded nodes only 
concentrate on energy-saving when making allocation 
decisions. Consequently, the length of the schedules 
could be very long, which is unfavorable or in some 
situations even not tolerated. In this paper, we address 
the issue of allocating a group of parallel tasks on a 
heterogeneous embedded system with an objective of 
energy-saving and short-latency. A novel task 
allocation strategy, or BEATA (Balanced Energy-
Aware Task Allocation), is developed to find an 
optimal allocation that minimizes overall energy 
consumption while confining the length of schedule to 
an ideal range. Experimental results show that BEATA 
significantly improves the performance of embedded 
systems in terms of energy-saving and schedule length 
over an existing allocation scheme.  
 
1. Introduction 
 

All A parallel application consists of a number of 
tasks that cooperate with each other through 
communications to fulfill a common mission [5][10]. 
In the last decade, networked embedded systems have 
become increasingly popular as platforms for 
executing parallel applications such as target tracking 
and infrastructure monitoring [1][4]. Much of this 
trend can be attributed to rapid advances in processing 
energy, network bandwidth, and storage capacity. 
However, embedded systems usually have low energy 
capacities operating in distributed mobile or wired 

environments [8][9][15]. Therefore, energy-saving 
became a critical issue for these systems.  

To address this challenge, extensive researches 
have been conducted to reduce overall energy 
consumption for a variety of embedded systems using 
diverse techniques [6][8][9][11][12][15][16]. Source 
code optimization and profiling were exploited in [12] 
to minimize energy consumption in embedded 
systems. Zhu et al. devised a mechanism to increase 
reliability and reduce energy consumption of real-time 
embedded systems by slack time reclamation [16]. 
Park et al. tried to make a balance between energy 
efficiency and fairness in multi-resource for multi-
tasks in embedded system [9]. A hierarchical approach 
for energy efficient application design using 
heterogeneous embedded systems was proposed by 
Mohanty et al.[8]. In [15], Yu et al. proposed an 
energy-balanced task allocation scheme for parallel 
processing in homogeneous wireless sensor networks 
with a goal to maximize the lifetime of the entire 
system. In particular, most of recent researches in 
energy-saving for embedded systems share two 
common features (1) applications considered are real-
time in nature with hard deadlines; and (2) energy-
saving is achieved by employing DVS (Dynamic 
Voltage Scaling). Our work is fundamentally different 
from the above approaches as we focus on reducing 
both energy consumption and response time for soft 
real-time parallel applications running on 
heterogeneous embedded systems with no DVS 
available. Without loss of generality, we assume that 
different processing nodes have distinct fixed energy 
consumption rates. Similarly, different communication 
channels also have various energy assumption rates. 
The goal of this work is to develop a task allocation 
strategy that not only conserves energy but also 
generates a short schedule, which is favorable or even 
necessary in some scenarios. For example, in a soft 



real-time embedded system such as a cellular phone 
[7], it must be able to encode outgoing voice and 
decode incoming signal during a conversation in a 
timely manner. Occasional glitches in conversations 
due to tardy response are not desired. When the 
response time becomes longer frequent glitches could 
happen, which are not tolerated at all.  

Energy-saving and low-latency, however, are two 
conflicting objectives in the context of allocating a 
parallel application represented by a task graph onto a 
set of connected heterogeneous processing nodes in an 
embedded system. The dilemma arises from a 
multidimensional heterogeneity bearing by a 
heterogeneous embedded system (see Section 2.1). 
Specifically speaking, a processing node that provides 
a task with earliest finish time may not be an ideal 
candidate in terms of energy-saving. This is because 
the execution time of a task allocated on an embedded 
node is irrelative to the energy consumption rate 
offered by the node. Moreover, the computational 
energy consumption of a task allocated on a node is a 
product of energy consumption rate of the node and 
execution time of the task. The motivation of this work 
is to solve the energy-latency dilemma existed in 
networked heterogeneous embedded system where 
both energy-saving and low-latency need to be 
achieved. In this paper, we address the issue by 
minimizing energy consumption while confining 
schedule lengths. To this end, we devised a energy-
adaptive window to control the trade-off between 
energy consumption and response time. Experimental 
results demonstrate that our scheme is effective in a 
heterogeneous embedded system.  

The main contributions of this paper are: (1) an 
energy-latency driven task allocation scheme BEATA 
for parallel applications on heterogeneous embedded 
systems; (2) an energy consumption model for 
quantitatively measuring energy cost introduced by 
both computation and communications; and (3) a 
simulated heterogeneous embedded system where the 
BEATA strategy is implemented and evaluated. The 
rest of the paper is organized as follows. In the next 
section we describe the system model, the task model 
and energy consumption model. In Section 3, we 
propose the BEATA scheme for parallel applications 
running on heterogeneous embedded systems. We 
present in Section 4 experimental results based on 
synthetic benchmarks and a real world application. 
Section 5 concludes the paper with summary and 
future directions. 
 
2. System models 
 

We describe in this section mathematical models, 
which were built to represent a task allocation 
framework, parallel applications with precedence 
constraint, and energy consumption model. 

 
2.1. The networked embedded system 
 

A networked embedded system in the most general 
form consists of a set, e.g., P = {p1, p2, ..., pm}, of 
heterogeneous embedded computing nodes (hereinafter 
referred to as nodes or embedded nodes) connected by 
a single-hop wired or wireless network. The network 
embedded system can be represented as a graph of 
nodes along with their point-to-point links. In the 
system, an embedded node is modelled as a vertex. 
There exists a weighted edge between two vertices if 
they can communicate with each other. Each node in 
the system has an energy consumption rate measured 
by Joule per unit time. With respect to energy 
conservation, each network link is characterized by its 
energy consumption rate that heavily relies on the 
link’s transmission rate, which is modelled by weight 
wij of the edge between node pi and pj. An allocation 
matrix X is an n×m binary matrix used to reflect a 
mapping of n tasks to m embedded nodes. Element xij 
in X is “1” if task ti is assigned to node pj and is “0”, 
otherwise. Heterogeneity investigated in this study 
embrace multiple meanings. First, execution times of a 
task on different embedded nodes may various, since 
the nodes may have different processing capabilities. 
Second, a node offering task ti a shorter execution time 
does not necessarily provide another task tj with a 
shortened execution time, because different nodes may 
have distinct processor architectures. This implies that 
different nodes in a system are suitable for different 
kinds of tasks. Third, the transmission rates of links 
may be distinct. Last, energy consumption rates of the 
nodes may not necessarily be identical. For sake of 
simplicity and without any loss of generality, we 
assume that all nodes are fully connected with a 
dedicated communication system. Each node 
communicates with other nodes through message 
passing, and the communication time between two 
tasks assigned to the same node is negligible. 

 
2.2. The task model 

 
Applications with dependent tasks can be modelled 

by Directed Acyclic Graphs (DAGs) [14].  Throughout 
this paper, a parallel application is specified as a pair, 
i.e, (T, E), where T = {t1, t2, ..., tn} represents a set of 
non-preemptable tasks, E is a set of weighted and 
directed edges representing communications among 



t1

tasks, e.g., (ti, tj)∈ E is a message transmitted from task 
ti to tj. Precedence constraints of the parallel 
application are represented by all edges in E. 
Communication time spent in delivering a message (ti, 
tj) ∈ E from task ti on node pu to tj on pv is determined 
by sij/buv, where sij is the data size of the message and 
buv is the transmission rate of a link connecting pu and 
pv. The execution time of task ti is modelled by a 
vector, i.e., ( )m

iiii cccc ,,, 21 L= , where  
represents the execution time ti on the jth embedded 
node. 

j
ic

Example 1. Figure 1 illustrates an example task graph 
and an example networked embedded system. The task 
graph has eleven tasks and the processor graph has 
three processors. The transmission rate and energy 
consumption rate of the channel between processor p1 
and p2 are 2 and 0.8, respectively. The energy 
consumption rate of processor p1 is 12.6. The matrix of 
execution times for each task on the three processors is 
illustrated as below. For example, task t1 has execution 
time 3.1 second, 4.3 second, and 1.9 second on 
processor p1, p2, and p3, respectively. 
 
2.3. Energy consumption model 
 

Let be an energy dissipation caused by task ti 
running on node pj. We denote the energy 
consumption rate of the jth node when it is active 
by , and the energy dissipation  can be 

written as below 
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The energy consumption rate of a networked 
embedded system is represented by a vector. Given a 
parallel application with task set T and allocation 
matrix X, we obtain the total energy consumed by all 
tasks of the application from Eq. (2). 
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We assume in Eq. (2) that no energy consumption is 
incurred when nodes are sitting idle. However, this 
assumption is not valid for real-world embedded 
systems. Before removing this assumption, we 
introduce a vector of energy consumption rates for the 
nodes when their energy states are idle, 
i.e., ( )idle

m
idleidleidle ECNECNECNECN ,,, 21 L= , 

where  as an energy consumption rate of 

node j when it is inactive. Additionally, we define fi as 
the complete time of task ti. Then, we obtain the 
analytical formula for the energy consumed by the 
embedded nodes when they are idle:  

idle
jECN

Figure 1. Example task and networked embedded system.  ECNi is the energy consumption 
rate of node i, and ECLij  is the energy consumption of a link between node i and j. 
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 p1     p2     p3                     
3.1   4.3   1.9           T1 
2.5   3.3   1.8           T2 
9.6   4.2   5.5           T3 
0.8   4.3   1.9           T4 
3.4   7.5   1.0           T5   
2.8   1.3   9.9           T6 
3.8   4.5   7.4           T7     
6.6   4.1   10.2         T8 
5.1   0.3   1.7           T9 
14.5  4.2  10.9         T10 
1.1   2.3   3.8           T11 
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where  is the schedule length (also referred 

to as makespan time), and  is 

the total idle time on node j. Eq. (3) is valid because 
the energy consumed by an idle node is a product of 
the corresponding consumption rate and the idle 
period. 
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Thus, the total energy consumption of the 
embedded nodes is derived from Eqs. (2) and (3) as  
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Similarly, let  denote the energy consumption of 

a message (ti, tj)∈ E. Suppose ti and tj are respectively 
allocated to node u and v, we can express the energy 
consumption  as  
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where  is the energy consumption rate of 
the link between node u and v, and sij/buv is the data 
transmission time. Note that the energy consumption 
rate of a network link depends on the transmission rate 
of the link. In our model, we used the same energy-
latency tradeoffs function presented in [1]. 

( )uvuv bECL

The energy consumption rate of the network links 
can be modelled by an m×m matrix 

( )    where, active
uv

active
uv

active ECLECLECL = is the 
energy consumption rate function of the link between 
pu and pv. The energy consumption in a link between 
pu and pv, denoted by , is calculated as a 
cumulative energy consumption of all messages 
transmitted on the link. The link’s energy consumption 

 can be derived from Eq. (5). Then, we have 
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where Luv is a set of messages transmitted over the link 
between pu and pv, and Luv can be defined as 
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It is assumed in Eq. (6) that all the messages are 
transmitted over the link at the same transmission rate, 
which may not be true for realistic traffic patterns. 
Hence, we relax the assumption by allowing different 
message to be transmitted at various rates, depending 
on an underlying energy-aware message scheduling 
mechanism, which we recently developed [1]. Let  
denote the transmission rate at which the message (ti, 
tj) is delivered along the link between pu and pv. Then, 

is modified as 
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The energy consumption of links, i.e, 

, in the networked 
embedded system is derived from Eq. (7). Specifically, 

 is equivalent to the 
summation of all the links energy consumption. Thus, 

can be expressed as 
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Again, we assume in Eq. (8) that no energy 

consumption is incurred when a link has no message to 
transmit. We relax this assumption by considering 
energy consumption when a link is idle during the 
cause of an application’s execution. An energy 
consumption rate of a link sitting idle is denoted 
by , and we obtain the energy consumed by the 

link when it is inactive as: 
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idle time over the link, and  is computed as a 
product of the consumption rate and idle period of the 
link. 
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The energy consumption of all the links during their 
idle periods is expressed as 
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The total energy consumption of the network links 

is derived from Eqs. (8) and (10) as follows 
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Based on Eqs.(4) and (11), we can calculate the 

energy dissipation experienced by a parallel 
application with task set T and allocation matrix X. 
Given the energy consumption rate vectors 

, the energy 
consumption of the networked embedded system can 
be expressed as 
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3. The BEATA algorithm 
 

In an effort to reduce an overall energy 
consumption of the heterogeneous system, we 
designed the BEATA algorithm, which aims at 
blending an energy conservation scheme with task 
allocation for networked embedded systems that are 
heterogeneous in nature. To make the best trade-off 
between energy-saving and schedule lengths, we 
employ an energy-adaptive window, within which a 
node is chosen for each task in a way to offer lower 
energy consumption and earlier finish time of the task.  

Now we present the BEATA algorithm in Figure 2 
BEATA is conducive to increasing heterogeneous 
nodes’ lifetime while maintaining high performance in 
terms of makespan time for parallel applications 
running on networked embedded systems. In other 
words, BEATA can increase processing nodes’ 
lifetimes by dramatically reducing energy dissipation 
(see Step 14). Before minimizing the energy 

consumption of task ti, BEATA organizes all the nodes 
in a non-decreasing order in terms of ti’s earliest finish 
time (see Eq. 16).  Step 8 determines the energy 
consumption incurred by the task on a node, whereas 
Steps 9-10 calculate the energy consumed by all the 
messages received by the task from its predecessors. 
Among all the candidate nodes listed in the energy-
adaptive window, Step 14 chooses the most 
appropriate node that yields the minimal energy 
dissipation for the task and its corresponding 
messages, thereby conserving energy without 
excessive performance deterioration. Then, Step 15 
allocates the task to the best candidate node. After the 
allocation of the task is accomplished, Step 16 updates 
the schedule of the node to which the task is allocated. 

1.for each task ti ∈ T do 
2.      for each node pu ∈ P in the system do 
3.       Compute estu(ti) 
4.               Compute fu (ti) (see Eq. 15) 
5.      end for 
6.     Sort all nodes in finish time of ti  
7.     for each node in energy-adaptive window do 
8.     Compute energy consumption of ti  
9.              for each ti’s predecessor tj, do 
10.                 Compute the energy consumption    
                          cause by message (tj, ti)  
11.                 Compute the total energy consumed  
                          by ti and the messages sent from 
                          the predecessors 
12.            end for        
13.    end for 
14.    Select  pv in energy-adaptive window that  
         offers the smallest energy consumption for ti 
         and messages sent from ti‘s predecessors 
15.    Assign ti to pv 
16.    Update the schedule on node pv  
17.    Compute the energy consumed by ti on pv  
             and the messages received by ti 
18.    Record start time and finish time for task ti 
19.end for

Figure 2. The BEATA algorithm. 

Two important parameters, the earliest start time 
and finish time on a node, are used in the above 
algorithm. We denote the earliest start time and finish 
time of task ti on node pu by estu(ti) and fu(ti), 
respectively. In what follows we present derivations 
leading to the final expressions for these two 
parameters. Suppose task ti has only one predecessor 
task tj, the earliest available time eatu(tj, ti) of ti relies 
on (a) the finish time fj of tj, (b) the message start time, 
mst(tj, ti), and (c) the transmission time, sji/bvu, for the 
message sent from tj to ti, where pv is the processor to 
which task tj has been allocated. It is assumed that if 



both the tasks are allocated to the same embedded 
node, the transmission time is negligible. Thus, eatu(vj, 
vi) is expressed as 
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The earliest available time of ti, which is denoted by 
eatu(ti), is the maximum of eatu(vj, vi) among all its 
predecessors. Considering all predecessors of ti, we 
can obtain eatu(ti) as  
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Now we are positioned to derive the earliest start 
time estu(ti), which is computed based on eatu(ti). More 
specifically, estu(ti) is calculated by checking the 
schedule on pu to identify an idle time slot that starts 
later than the task’s eatu(ti) and is large enough to 
accommodate the task. With the value of estu(ti) in 
place, we can obtain the finish time of ti on pu using 
Eq. (15). The finish time equals to the summation of 
the earliest start time estu(ti) and ti’s execution time on 
pu.  

                                   (15) .)()( u
iiuiu ctesttf +=

The following theorem gives the time complexity of 
the proposed BEATA algorithm. 
Theorem 1. Given a networked embedded system and 
a parallel application represented as a task graph. The 
time complexity of BEATA is O(nmlgm+nkq), where n 
is the number of tasks, m is the number of nodes, k is 
the energy-adaptive window size, and q is the 
maximum in-degrees of the task graph. 
Proof. It takes O(m) time to compute the earliest start 
times and earliest finish times for a task on all the 
nodes (see Steps 3 and 4). The time complexity of 
sorting the earliest finish times is O(mlgm), since we 
only have m nodes (see Step 6). To determine the most 
appropriate node that offers the minimal energy 
consumption of a task, the time complexity is O(kq) 
(see Steps 7-13). Other steps simply take O(1) time. 
Hence, the time complexity of the BEATA algorithm 
is given as follows: O(n)(O(m) + O(mlgm)+ O(kq)) = 
O(nmlgm+nkq). 
 
4. Performance evaluation 
 

Now we are in a position to evaluate the 
effectiveness of the proposed energy-latency driven 
task allocation scheme. To demonstrate the strength of 
BEATA, we compare it with the list scheduling 
scheme, which is a well-known scheduler for parallel 

applications. The LIST algorithm is briefly described 

below. 

Parameter  Value (Fixed) - (Varied) 

Number of tasks (300) – (50, 100, 200, 300, 
400, 500) 

Energy-adaptive 
window  

(4) – (2, 4, 6, 8, 10, 12, 14, 
16) 

Number of nodes (64) 
Energy consumption 
rate heterogeneity  1.2 (see Eq. 16) 

Standard node energy 
consumption rate 200 mW 

Communication energy 
consumption rate 

The energy-transmission 
time model in [1]. 

Table 1. System parameters. 

     LIST: The most common heuristic for DAG 
scheduling in a heterogeneous system. For each task 
allocation, it chooses the computing node that can 
offer the task earliest finish time considering both 
computation time and communication time. Its goal is 
to generate a schedule for a DAG with the shortest 
length.  

 
 
4.1. Simulation setup 
 

Before presenting empirical results, we present the 
simulation model as follows. Table 1 summarizes the 
configuration parameters of simulated networked 
embedded systems used in our experiments. The 
parameters of computing nodes in the networked 
embedded systems are chosen to resemble real-world 
processors like Intel StrongARM 1100. The 
relationship between energy rate and transmission rate 
is 100 mW at 100 Kbps, which means the time and 
energy cost for transmitting one bit are around 10 µsec 
and 1 µJoule [1]. All synthetic parallel jobs used from 
Section 4.2 to Section 4.3 were created by TGFF [3], a 
randomized task graph generator [13].  

Although number of tasks, number of computing 
nodes, out degree, and task execution time are 
synthetically generated, we examined impacts of these 
important workload parameters on system performance 
by controlling the parameters. The performance 
metrics by which we evaluate system performance 
include:  
� Makespan (the latest task completion time in the 

task set represented by a DAG). 
� Energy consumption: total energy consumed by 

the task set including computation energy 
consumption and communication energy 
consumption (see Eq. 12). 



� Utilization standard deviation (USD): standard 
deviation of computing nodes utilization in the 
simulated networked embedded systems.  

� Energy standard deviation (PSD): standard 
deviation of computing nodes energy 
consumption in the simulated networked 
embedded systems. 

                  
4.2. Overall performance comparisons 
 

The goal of this experiment is to compare the 
proposed BEATA algorithm against the conventional 
list scheduling scheme to understand the sensitivity of 
the two heuristics to the number of tasks in a DAG. 
We tested 6 task graphs with the number of tasks 
varying from 50 to 500 with precedence constraints. 

Figure 3. Performance impact of
number of tasks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We observe from Figure 3 (a) that BEATA and 

LIST exhibit very similar performance in terms of 
makespan. An interesting observation is that BEATA 
even generates a shorter schedule than LIST when the 

number of tasks is 300. The “anomaly” can be 
explained by the fact that the LIST algorithm cannot 
guarantee the shortest schedule in a heterogeneous 
system due to lack of the information about tasks not 
yet scheduled and the varying execution times for each 
task on different computing nodes. Compared with 
LIST, BEATA on average only increases makespan by 
2.9% but saves energy by 12.1%. Figure 3 (b) reveals 
that BEATA consistently performs better than LIST in 
terms of energy consumption. 

 
4.3 Sensitivity to energy-adaptive windows 

 
To verify the performance impact of energy-

adaptive window, we evaluate the performance as 
functions of size of energy-adaptive window. Since 
LIST does not have an energy-adaptive window, its 
performance in all metrics keeps constant.  

 
 

 
 
 
 
 
 
 
 
 
 (a)  
 
 

(a) 

 
 
 
 
 
 
 
 
 
 

(b)  
 

(b)  
 Figure 4. Performance impact of

size of energy-adaptive window. 
 

The results from Figure 4 validate the relationships 
between the two algorithms described in Section 3. 



When energy-adaptive window was set to 1, BEATA 
degraded to LIST. We observe from Figure 4 that 
BEATA achieves an excellent trade-off between 
makespan and energy consumption when the size of 
energy-adaptive window falls in the range [3, 5]. 
Within this range, BEATA in terms of makespan 
achieves almost the same performance as LIST (on 
average merely 0.42% longer), while it can save 
energy up to 10.4%. 

 
5. Conclusions 
 

In this paper, we address the issue of allocating 
tasks of parallel applications in heterogeneous 
embedded systems with an objective of energy-saving 
and latency-reducing. BEATA (Balanced Energy-
Aware Task Allocation), a task allocation scheme 
considering both energy consumption and schedule 
length, is developed to solve the energy-latency 
dilemma. To facilitate the presentation of BEATA, we 
also proposed mathematical models to describe a 
system framework, parallel applications with 
precedence constraints, and energy consumption 
model. We conducted extensive experiments using a 
real world application as well as synthetic benchmarks. 
The experimental results show that BEATA 
significantly improves the performance in terms of 
energy dissipation and makespan time over an existing 
allocation scheme. Compared with LIST, BEATA 
achieves improvement in energy-saving on averages of 
12.1% with only 2.9% increase in makespan.  

Future studies in this research can be performed in 
the following directions. First, we will extend our 
scheme to multi-dimensional computing resources 
from which energy-saving can be achieved. For now, 
we simply consider CPU time and network 
communication time. Memory access and I/O activities 
will be considered in the future. Second, we intend to 
enable the BEATA scheme to deal with real-time 
parallel applications, where the hard deadlines must be 
guaranteed. 
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