
A CASE FOR INTERNET STREAMING VIA WEB SERVERS

Songqing Chen1, Bo Shen2, Wai-tian Tan2, Susie Wee2, and Xiaodong Zhang3

1 Dept. of Computer Science, George Mason University, Fairfax, VA 22030
2 Mobile & Media Systems Lab, HP Laboratories, Palo Alto, CA 94304

3 Dept. of Computer Science and Engineering, Ohio State University, Columbus, OH 43210

ABSTRACT
Hosting Internet streaming services has its unique challenges.
Aiming at making Internet streaming services be widely and
easily adopted in practice, in this paper, we have designed
and implemented a system, called SProxy that can leverage
existing Internet infrastructure to free the streaming content
providers so that they only need to host streaming content
through a regular Web server. SProxy has been extensively
tested and evaluated and it provides high quality streaming
delivery in both local area networks and wide area networks
(e.g. between Japan and US).

1. BACKGROUND AND MOTIVATION

With the increase of aggregate Internet bandwidth, the de-
mand of streaming media applications, such as tele-education,
tele-medicine, entertainment grows quickly. However, the de-
livery of diverse streaming media contents on IP networks in
a cost effective manner, while maintaining high quality, is
challenging due to the nature of streaming media: large file
sizes, long and continuous bandwidth support, real-time re-
quirements, etc.

These difficulties have slowed down the wide usage of
Internet streaming applications. Today, the streaming servers
are still very fragile. Compared to milliseconds or seconds for
traditional web page delivery, streaming delivery keeps con-
suming network bandwidth and disk bandwidth on the host-
ing server. Multiple concurrent streaming sessions can eas-
ily exhaust the available network bandwidth and overload the
media content server, making it extremely fragile.

Thus, today, the majority of Internet media traffic is not
through streaming, but downloading. Our most recent study
of a snapshot of the Internet traffic in June 2004 [1] shows
that currently the overwhelming majority (more than 84%) of
media contents are still delivered via downloading from Web
servers, in which a substantial percentage of these connec-
tions are aborted before completion, resulting in about 20%
wasted bandwidth.

Although many studies have been performed and new al-
gorithms and systems have been designed and implemented to
improve the Internet streaming, they are rarely used in prac-
tice. In addition to the difficulties we have mentioned, the

management and investment overhead for streaming software
and hardware also prevents streaming services being hosted
easily like hosting a Web server.

To deal with these obstacles, in this paper, we have de-
signed and implemented a segment-based proxy, named SProxy.
Such a system leverages existing Internet infrastructure and
enables the content provider to provide streaming service via
a common Web server. Upon a client request via the standard
RTP/RTSP, SProxy communicates with the content-server us-
ing HTTP. This design allows a regular Web server to serve
streaming content, as well as regular Web documents. Thus,
the existing Internet infrastructure is fully leveraged.

Furthermore, SProxy uses a segment-aware file I/O sys-
tem that enables automatic segmentation and intelligent prefetch-
ing techniques to guarantee continuous streaming. This al-
lows the SProxy to transparently handle the complexity of me-
dia formats and to support continuous delivery demands. In
addition, it has the following merits. First, a client request is
processed and divided into multiple sub-requests. Each sub-
request asks for only a small part of the whole media object.
The sequence of sub-requests is stopped whenever the client
terminates its session, which subsequently terminates the data
transfer. This design introduces a low startup latency while
providing efficient bandwidth utilization. Second, prefetch-
ing techniques are implemented to assist high quality con-
tinuous streaming. Based on dynamically detected available
bandwidths of the proxy-server link, active prefetching tech-
niques are used to dynamically prefetch the data likely to be
accessed by the client.

An actual implementation of the SProxy is evaluated un-
der various conditions. Our extensive experimental results
show that the SProxy consistently provides high quality stream-
ing delivery to a medium number of concurrent clients, with
reduced startup latency and more efficient cache utilization in
a LAN or in a WAN between US and Japan.

The rest of this paper is organized as follows. We present
the design and implementation of the SProxy in Section 2.
We briefly report evaluation results in Section 3. We make
concluding remarks in Section 4.

21451424403677/06/$20.00 ©2006 IEEE ICME 2006

2. DESIGN AND IMPLEMENTATION OF SPROXY

Figure 1 shows the architecture of a SProxy, as well as its
request handling. The SProxy is composed of four main com-
ponents: a streaming engine that interfaces with the client, a
segmentation-enabled cache engine that interfaces with con-
tent servers, a Local Content Manager and Scheduler (LCMS)
module that coordinates the streaming engine and the cache
engine, and a high speed disk that provides a fast data-path
via the local file system.

...1 n
ssM M...1 n

ssR R

...1 n
ssR R ...1 n

ssM M

Ds
nDs

1 ...

Ds
nDs

1 ...

Streaming
Engine

Client

Internet HTTP
Segmentation−
Enabled

HTTP

RTSP

RTP

& Scheduler
Manager

Local Content

Cache Engine

SProxy

Fast

Path

Data

Fig. 1. Internal design of the SProxy : A client request is
divided into n sub-requests with different ranges, R1

s to Rn
s ,

requesting different content segments, D1
s to Dn

s . The Local
Content Manager and Scheduler controls when to send the
next sub-request. The cache engine returns segment meta data
(M1

s to Mn
s) to the Local Content Manager and Scheduler,

and caches the segments D1
s to Dn

s on the disk.

2.1. Streaming Engine

The streaming engine is a multi-threaded media server, re-
sponsible for providing an interface to the client. Its internal
structure is described in detail in [2]. As shown in Figure 1,
it receives a client request for a RTSP URL and converts it
to multiple segment requests, R1

s . . . Rn
s , that are sent to the

LCMS. It uses the meta-data information, M1
s . . . Mn

s , re-
turned by the cache engine through the LCMS to access the
raw data segments on the disk.

As shown in Figure 1, the streaming engine reads data
segments, D1

s . . . Dn
s , from the disk to serve clients. However,

there is a problem: a randomly chosen segment length breaks
the object into pieces, thus creating segments that are likely to
include an incomplete media packet. If this incomplete packet
is sent to the client, the client player would have to use error
concealment or it may crash. One solution to this problem
is to always segment the object on a packet boundary, which
requires the SProxy to have packet boundary knowledge be-
fore segmentation can be done. This information could be
obtained by parsing the complete media file, or by using a
hint track, if available. However, the hint track data can be

dispersed through the media file, so in either case, the whole
file may have to be downloaded. A better solution is to allow
random segment boundaries, but to always feed a complete
data packet to the client. In the SProxy, a segment-aware file
I/O system is implemented to support this requirement. It au-
tomatically requests the appropriate segment when reading or
seeking beyond the boundaries of the current segment. The
LCMS tries to ensure that the next segment is always avail-
able in the cache.

2.2. Local Content Manager and Scheduler

The Local Content Manager and Scheduler (LCMS) coor-
dinates the streaming engine and the segmentation-enabled
cache engine. It converts the sub-requests, e.g., R1

s . . . Rn
s ,

to corresponding HTTP requests (with Range headers) and
forwards them to the proxy. It returns the appropriate cache
meta-data M1

s . . . Mn
s from the proxy replies to the streaming

engine after. More importantly, the LCMS schedules segment
prefetching. Prefetching is necessary because segment-based
proxy caching is a partial caching solution, in which only a
part of the object is cached in the proxy while a client may
access an object to a segment which is not cached in the sys-
tem. To guarantee continuous media delivery, each segment
should be available locally before the streaming engine tries
to read and stream it to the client. Otherwise, the client can
experience playback jitter.

Based on the available bandwidth, to prefetch the uncached
segment at a proper time can not only maintain the continu-
ous service, but also reduce resource waste since the client
may terminate any time without viewing all the prefetched
data.

We have implemented multiple segment based caching
modes. In the following context, we briefly describe the four
modes we implemented in our streaming proxy, depending
on when the request for a succeeding uncached segment is
issued.

• OnDemand: In this mode, no prefetching is implemented.
The succeeding segment is fetched when it is needed by
the streaming engine. This mode is simple and works
fine when the available bandwidth of HTTP channel is
large enough. Otherwise, streaming can be interrupted
due to the delay in fetching the next segment from the
server.

• Window: In this mode, the sub-request for the next un-
cached segment is always issued when the client starts
to access the current one. Thus it provides aggressive
prefetching with a look-ahead window size of one seg-
ment.

• Half : Intuitively, the window size is adjustable. We
also implemented a Half mode, in which the sub-request
for the next uncached segment is issued after the server
has reached the middle of the current one.

2146

• Active: Active prefetching is implemented to dynami-
cally decide when to prefetch an uncached segment ac-
cording to the real-time bandwidths. It is the most pre-
cise online prefetching technique according to [3] and
is implemented with the aid of Packet CAPture (PCAP)
library. The prefetch schedule is based on the media en-
coding rate and the available bandwidth measured on-
line.

2.3. Segmentation-Enabled Cache Engine

The segmentation-enabled cache engine handles the sub-requests
from the LCMS. In case of a cache MISS, the cache engine
gets the data for the sub-request from the content-server (or
other peering proxies). The cache stores data Dn

s (data for
segment n) on the disk, as well as constructing and sending a
reply with meta data Mn

s only to the LCMS. The meta data
includes the name and the location of the file containing the
data for this sub-request on the local disk. In a case of a cache
HIT, the cache directly constructs and sends the Mn

s meta-
data to the LCMS.

Currently, the SProxy uses a modified version of Squid2.3
(STABLE4) as the cache engine. Segmentation support is
provided through the Range header in HTTP requests. Squid
identifies objects in its cache using the MD5 hash of the re-
quest URL. Hence, in the original version of Squid, differ-
ent ranges of a URL would have the same MD5 keys, and
HTTP requests that include the Range header would be con-
sidered non-cachable. To make these requests cachable, our
segmentation-enabled version re-writes the URL internally.
For example, a request for:

http://www.foo.com/bar.mp4
with

Range=123-890
can be rewritten as:

http://www.foo.com/bar.mp4 123 890.
This guarantees that different ranges of the same object gener-
ate different MD5 keys. This mechanism enables the caching
of different segments of a media object.

The re-written URL is used internally in the proxy to iden-
tify different range requests. If the corresponding segment
is not cached, the request is forwarded to the content-server
(or peering proxies) by restoring back the URL and Range
header.

Since the re-writing of the URL provides the opportunity
to cache the data for different segments of the same object,
segment caching is enforced by saving the partial data on disk
without violating the HTTP protocol. In the implementation,
a HTTP reply status of PARTIAL CONTENT (206) in-
dicates the reply corresponds to a range request.

Popularity based replacement policy has been found to be
the most efficient for the multimedia object caching. The
SProxy leverages the existing popularity based replacement
policy in Squid. In our system, it is not a pure popularity

based replacement due to the LOCK problem when stream-
ing. We will discuss more about it later.

Additionally, cooperative proxies have been used for caching
static Web objects. It is even more desirable for caching large
streaming media objects. The SProxy also leverages the ex-
isting cooperative functions in Squid. When requesting seg-
ments from neighboring caches, the internally re-written URL
is restored to the original version, with the Range header
added. This allows the SProxy interact with regular Web-
proxies without streaming capability, as well as other streaming-
enabled Squid proxies. The procedure is as follows: after a
request gets a “miss” from its local cache, its neighbor proxy
cache is searched if any by changing the internal request to
the one as we showed before. We omit the details here.

2.4. Fast Data Path

The shared local file-system provides a fast data path between
segmentation-enabled cache engine and the streaming engine.
Traditionally, Squid transfers incoming data to an HTTP client
over a network. For large media data files, it is more effi-
cient to directly share the part of file system used as a data
cache by Squid. In the SProxy system, a set of new methods,
PREFETCH, LOCATEFILE and LOCK, was added to Squid
for this purpose:

1. PREFETCH is implemented as a non-blocking version
of the HTTP GET method. Whenever a segment is re-
quired, a request with a PREFETCH method and the
corresponding Range header is sent to the proxy. The
proxy checks if the requested segment is cached or not.
If it is cached, a HIT is returned. Otherwise, a MISS
is returned and the corresponding request is re-written
as a HTTP GET and forwarded to the content-server
or peer simultaneously. The proxy will store the reply
containing the requested segment data on its local disk
for future requests.

2. LOCATEFILE is implemented as a blocking method.
The LCMS only invokes this method after a PREFETCH
request returns a HIT. It returns the file location of the
requested segment in the cache file structure maintained
by Squid. It blocks until the entire data for a range re-
quest has been written to disk.

3. LOCK(UNLOCK) is used before the streaming engine
starts to stream a segment to the client. Since the seg-
ment is cached and the cache is managed by Squid,
the replacement policy in Squid automatically starts the
replacement when the available cache space is below
some threshold. It does not know whether or not the
to-be-replaced segment is being used by the streaming
engine. Thus, before reading the data of a segment for
streaming, the LCMS issues a request with a LOCK
method. After segment access is complete, the LOCK
is released with UNLOCK.

2147

The non-blocking PREFETCH method and the blocking
LOCATEFILE method effectively split the original, blocking
GET method into a two-phase protocol. This is critical to the
system performance when the SProxy needs to handle a large
number of concurrent requests or when the segment size is
large.

3. PERFORMANCE EVALUATION

We evaluate the system in both local network (local in the
figure) and over the Internet (remote in the figure). For the
Internet experiments, the content server running Apache Web
Server (version 2.0.45 with HTTP 1.1) is located in Japan,
and our system is located in Palo Alto, CA. The local network
environment is set up in a LAN. In both cases, the server runs
on an HP Netserver lp1000r, with a 1 GHz Pentium III Linux
PC platform. The SProxy system runs on a HP workstation
x4000 with two dual 2 GHz Pentium III Xeon Linux PC, with
1 GB memory. The media client used for the experiments is
a dummy loader that logs incoming RTP and RTSP packets.
For all tests, the network connection between SProxy and the
client machine is a switched 100 Mbps Ethernet and the media
segment is 100 KB and each experiment was repeated 100
times.

(a) (b)

10 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

Number of concurrent client requests

A
ve

ra
ge

 s
ta

rt
up

 la
te

nc
y

(m
s)

local−OnDemand
local−Window
local−Half
local−Active

10 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Number of concurrent client requests

A
ve

ra
ge

 s
ta

rt
up

 la
te

nc
y

(m
s)

remote−OnDemand
remote−Window
remote−Half
remote−Active

Fig. 2. Client Startup latency for local and remote

Figure 2 (a) shows the startup latency for local accesses,
while Figure 2 (b) shows this metric for remote accesses. In
the local case, it varies from 96 ms to 169 ms, while for re-
mote accesses, the startup latency is much larger, with a much
bigger dynamic range, from 2 s to 11 s. The startup latency
in both environments shows only a small variation across dif-
ferent prefetching methods. This is an intuitive result, since
the value would be dominated by the access time for the first
segment accessed. It is also seen that the startup latency gen-
erally increases when there are more concurrent requests. The
results indicate that more concurrent requests can be served in
local networks, and that more concurrent requests can lead to
a longer startup latency in wide area networks. This figure
also shows that our design and implementation of the SProxy
can support the delivery of media objects with reasonable
startup latency in both intranet and Internet environments.

Figures 3 (a) and (b) show the client perceived jitter in

(a) (b)

10 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Number of concurrent client requests

A
ve

ra
ge

 c
lie

nt
 ji

tte
r

(m
s)

local−OnDemand
local−Window
local−Half
local−Active

10 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Number of concurrent client requests

A
ve

ra
ge

 c
lie

nt
 ji

tte
r

(m
s)

remote−OnDemand
remote−Window
remote−Half
remote−Active

Fig. 3. Client perceived jitter for local and remote

both local and remote environments. In both cases, the ab-
solute client perceived jitter is small, which indicates that
our SProxy can successfully serve a large number of clients
with rigorous continuous streaming demand. Note that the
client jitter tends to increase when more concurrent requests
are served, especially in the remote environment. This in-
dicates that accurate prefetching is very important especially
when the SProxy – content-server link bandwidth resource be-
comes scarce. Active prefetching achieves better performance
as shown in the remote case.

4. CONCLUSION

Recent years have witnessed a lot of streaming service un-
availability and a large amount of research work has been con-
ducted to advocate the Internet streaming applications. In this
work, we presented our design, implementation, and evalu-
ation of a novel system that enables streaming service from
a regular Web server, thus removing the obstacles that has
greatly hindered the Internet streaming. Our system has been
extensively evaluated and is now deployed in HP Labs.

5. REFERENCES

[1] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Analysis
of multimedia workloads with implications for internet
streaming media,” in Proceedings of the 14th Interna-
tional World Wide Web Conference, Chiba, Japan, May
2005.

[2] S. Roy, J. Ankcorn, and S. Wee, “Architecture of a Mod-
ular Streaming Media Server for Content Delivery Net-
works,” in Proceedings of IEEE International Conference
on Multimedia & Expo, Baltimore, MD, July 2003.

[3] S. Chen, B. Shen, S. Wee, and X. Zhang, “Streaming flow
analyses for prefetching in segment-based proxy caching
strategies to improve media delivery quality,” in Proceed-
ings of the 8th International Workshop on Web Content
Caching and Distribution, Hawthorne, NY, September
2003.

2148

