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ABSTRACT

We present a robust vision system for single person tracking inside a
smart room using multiple synchronized, calibrated, stationary cam-
eras. The system consists of two main components, namely initial-
ization and tracking, assisted by an additional component that de-
tects tracking drift. The main novelty lies in the adaptive tracking
mechanism that is based on subspace learning of the tracked per-
son appearance in selected two-dimensional camera views. The sub-
space is learned on the fly, during tracking, but in contrast to the tra-
ditional literature approach, an additional “forgetting” mechanism is
introduced, as a means to reduce drifting. The proposed algorithm
replaces mean-shift tracking, previously employed in our work. By
combining the proposed technique with a robust initialization com-
ponent that is based on face detection and spatio-temporal dynamic
programming, the resulting vision system significantly outperforms
previously reported systems for the task of tracking the seminar pre-
senter in data collected as part of the CHIL project.

1. INTRODUCTION

Visual tracking of humans in complex scenes is a very interest-
ing and challenging problem, a major difficulty being the non-
stationary visual target characteristics, due to view, pose, or illumi-
nation changes. Various target representations have been used in
the literature for this purpose, such as parameterized shapes [1],
color distributions [2], image templates [3] and the eigen-space
approach [4], to name a few. Tracking with fixed representations
however is not reliable over long durations, and a successful tracker
needs to allow appropriate model adaptation. Not surprisingly, a
number of tracking methods have been developed to allow such
adaptation, for example the online EM-algorithm based technique
of [5], the online feature selection mechanism of [6], and the para-
metric statistical on-line appearance modeling technique in [7]. An
interesting non-parametric approach appears in Lim et al. [8], where
the appearance subspace is learned online by an efficient sequential
algorithm for principal component analysis (PCA), updated employ-
ing the incoming data vectors. The proposed algorithm has been
demonstrated to track human motion under large lighting and pose
variations at almost real-time. However, the approach utilizes all
input observations up to the present time, with no mechanism to dis-
card distant past ones, that may have little in common to the current
lighting, pose, and view conditions.

In this paper, we propose a modification to this scheme, that
allows a forgetting mechanism to discard what we view as distant
past input to the appearance modeling approach. We test this tech-
nique in a task that is of interest for human-computer interaction in
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smart rooms, namely that of tracking the 3D location of a person giv-
ing a lecture inside a room equipped with multiple multi-modal sen-
sors. This task constitutes one of the focal technologies developed
under the CHIL project [9]. The particular domain provides realis-
tic labeled data, but also allows for additional information to detect
and avoid tracking drift, thus easing the evaluation of our proposed
approach. Such information is available through time-synchronous
views from multiple calibrated cameras.

In this paper, we integrate the proposed adaptive subspace learn-
ing within a complete 3D single person tracking system in the CHIL
lecture scenario. The system, in addition to the proposed track-
ing algorithm that operates on 2D camera views independently, has
an initialization component which is based on face detection in the
four camera views, triangulation, and dynamic programming. Fur-
thermore, a drifting mechanism controls the switching between ini-
tialization and tracking. The proposed system constitutes a com-
plete redesign of our previously reported approach [10], by replac-
ing the motion-based initialization component with the dynamic pro-
gramming framework introduced in [11], and the previously used
mean-shift tracking technique with the proposed adaptive subspace
methodology. Evaluation results on the CHIL database demonstrate
dramatic performance improvements.

The rest of the paper is organized as follows: Section 2 presents
an overview of the whole system, with the initialization and track-
ing components described in Sections 3 and 4, respectively. Experi-
ments are presented in Section 5, and a brief summary in Section 6
concludes the paper.

2. SYSTEM OVERVIEW

As discussed above, in this paper we concentrate on 3D single per-
son tracking in the CHIL seminar scenario. In this particular do-
main, multiple synchronized calibrated cameras are set up in a smart
room, among them four corner room cameras with widely overlap-
ping fields of view. A schematic of such room is depicted in Fig. 1.
In our work, the inputs of the four corner cameras are used to obtain
over time the 3D head position of a person presenting a seminar in
front of an audience inside this room.

The overview diagram of the proposed system is given in
Fig. 2(a). As already mentioned, it consists of an initialization and
a tracking component, with tracking drift detection controlling the
switch between these two modes. Briefly, for initialization, multi-
view face detectors are first applied to four camera views in the smart
room. Subsequently, spatio-temporal information of the face detec-
tion results over 10 consecutive quad-frames is integrated within a
dynamic programming (DP) framework, to provide robust initial-
ization. Details are described in Section 3 (see also Fig. 2(b)). If
the optimal DP trajectory is accepted as a true object, the tracking
component kicks in, operating independently in two camera views,
selected from the four views, based on the DP result. Details of the
tracking stage are presented in Section 4. As long as the DP trajec-
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Fig. 1. Schematic diagram of the CHIL smart room at the Universität
Karlsruhe, Germany.

tory is not acceptable, the initialization process is repeated with a
shift of five frames.

An important aspect of the system is the re-initialization deci-
sion, or equivalently, the drift detection. This is based on a combina-
tion of local face detection and calibration-based triangulation to test
the consistency of independent tracking in the two (selected based on
the DP results) camera views. In more detail, if the inter-ray distance
of the two 2D-to-3D mapping rays is larger than a predetermined
threshold, this indicates that the two tracked results are inconsistent,
hence immediately prompting re-initialization. Furthermore, at each
frame, multi-view face detectors (see next Section) are also applied
around the tracking result to determine whether there indeed exists
a face object in the local region (in our system, this is an 80�80
pixel region). If faces could not be detected in the local region for
several frames (30 in our case) in any of the two camera views, a
re-initialization decision is prompted.

3. SPATIO-TEMPORAL FACE DETECTION FOR
INITIALIZATION

For automatic initialization, the system is primarily based on multi-
view face detectors, trained using the FloatBoost approach [12], on
four camera images. In particular, two face detectors are trained:
One for the frontal view and the other for the left side view (the right
side face detector is obtained by mirroring the latter), both trained as
a cascade, multi-layer structure of weak classifiers. For example, for
our experiments (see Section 5), 15 layers and 576 features are used
for the frontal face detector, and 30 layers with 4330 features for the
left (see also [10]).

However, face detection by itself produces rather poor results
in the challenging CHIL domain considered. This is illustrated in
Fig. 3: The resolution of the presenter’s face in each camera view
is small, around 30�30 or less within the 640�480-pixel camera
views, with significant pose and illumination change in the video
sequence. Robust multi-view face detection in this scenario is re-
ally hard, with high rates of missing face detections and false alarms
observed.

To solve this problem, we have proposed a novel algorithm
in [11] to integrate spatial and temporal information available within
the multi-camera video sequence setting. This replaces our previ-
ously employed motion-based framework [10]. In summary (see
also Fig. 2(b)), the trained multi-view face detectors are first applied
on all four camera views. Based on the spatial consistency of the
detection result from different camera views, 3D hypotheses of the
presenter’s head location are generated using the calibration infor-
mation. Then dynamic programming (DP) on the results over ten

(a) (b)

Fig. 2. Block diagram of the proposed multi-camera tracking sys-
tem. (a) Overview; (b) Initialization.

consecutive frames is used to search for the optimal trajectory of the
presenter’s face in the 3D space, based on local similarity measure
and a transition cost. If the optimal trajectory is accepted compared
to a threshold, the result is fed into the tracking component described
in the next section; otherwise the process is iterated with a five frame
shift until an acceptable trajectory is determined. Some details are
given next:

Generating 3D Hypotheses: Assuming ni face detections per cam-
era view, there could be

����
X

i�j�i��j

ni � nj (1)

3D candidate head locations, obtained via triangulation. Based on
the resulting inter-ray distances of the 2D-to-3D maps, one can eas-
ily reject few large inter-ray distance hypotheses. An additional
height threshold is also set to distinguish the seminar presenter from
the typically sitting audiences members. The remaining hypotheses
are used in the DP framework.

Generating Optimal Dynamic Programming Trajectory: The DP
framework contains three main components:

Local Similarity Measure: This is used to evaluate the hypothesis
at the current instant on basis of the available four camera views.
The color histograms of rectangles (approximately double the face
height) in different views are used for this task, with the Bhat-
tacharyya coefficient employed over 30-bin histograms of the H
component of the color HSV space. The assumption is that if the
candidate hypothesis is a true target, then the corresponding rectan-
gles in different camera views should cover the same person, and
color histogram similarity should be high.

Transition Cost: This penalizes non-smooth trajectories. In our
framework, the transition is defined as the 3D spatial distance be-
tween two hypotheses, with its cost specified using a Gaussian dif-
fusion with a pre-set diagonal covariance matrix [11]. A constant
new trajectory generation cost is also defined.

Hypothesis Search: The searching scheme employs the standard dy-
namic programming framework, as described in [11]. A few things
to note: A total of six hypotheses are kept “alive” at each time in-
stant, as a pruning mechanism; a maximum acceptable score (con-
stant) is set, thus providing a mechanism to reject the final hypothesis
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Fig. 3. Detection result on four synchronized camera views.

(and hence trigger a new search – with a five quad-frame shift); and
finally, that the returned optimal trajectory defines the two camera
views on which tracking is to commence, based on the views that
generated the last-instant optimal trajectory hypothesis.

4. ADAPTIVE SUBSPACE TRACKING WITH A
FORGETTING MECHANISM

In [8], when a new observation is obtained, the PCA subspace is
updated to take into consideration the variance contributed by the
new observation. However, the method does not provide an updat-
ing algorithm for eliminating past observations during tracking. This
poses a problem when tracking video over long periods of time,
as the noise introduced during tracking would eventually bias the
PCA subspace away from the characteristic appearance of the de-
sired tracked object. In [13], an L� norm subspace is fitted to the
past K frames incrementally by Gramm-Schmitt orthogonalization.
Though the subspace withL� norm has the advantage of incorporat-
ing observation novelties into the subspace representation in a timely
manner, as shown by many successful experiments [13], it runs the
risk of tracking drift, as consistent noise and outliers presented in
the observation may easily bias the subspace away from the object
appearance space. Considering that PCA offers the freedom for the
user to perform dimensionality reduction to ignore the tracking noise
and achieve outlier rejection by reconstruction error [4], we adopt
the incremental PCA subspace learning approach, with Hall’s mech-
anism [14] to incrementally update the PCA subspace given new
observations. Furthermore, this algorithm allows us to adjust the
subspace by eliminating distant past observations in the subspace.
This introduces a forgetting mechanism that is absent in Lim’s ap-
proach [8].

Suppose the subspace at time t is represented by Ct �
��xt� Ut��t� Nt�, where �xt is the mean vector, Ut is the eigenma-
trix, �t is the eigenvalue matrix, and Nt records the current number
of observations modeled by the subspace. The incremental subspace
learning algorithm is listed as Alg. 4.1 when a new observation yt
is presented, and the incremental subspace forgetting algorithm is
listed as Alg. 4.2 when a past observation z needs to be eliminated.

In our particular implementation, we use the most recent 50
frame observations to construct the PCA subspace. Hence, after
tracking initialization, the forgetting mechanism does not commence
until after 50 frames are observed. For this initial duration, the algo-
rithm remains the same as [8]. The learned subspace has dimension-
ality 15, down from the 20�20-pixel data “template”.

Algorithm 4.1: INCRE LEARN(�xt��� Ut����t��� Nt��� yt)

Nt � Nt�� � �

�xt �
�xt��Nt���yt

Nt

d � �xt�� � yt
g � U �t��d
h � d� Ug
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t
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������
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A �
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�t � eigenvalue�A�
R � eigenvector�A�
Ut � �Ut�� v	R
return ��xt� Ut��t� Nt�

Algorithm 4.2: INCRE FORGET(�xt��� Ut����t��� Nt��� z)

Nt � Nt�� � �

�xt �
�xt��Nt���z

Nt

d � �xt�� � z
g � U �t��d

A � �t��
Nt��

Nt

� gg�

Nt��

�t � eigenvalue�A�
R � eigenvector�A�
Ut � Ut��R
Prune the subspace bases in Utwith eigenvalue too

small in �t

return ��xt� Ut��t� Nt�

5. EXPERIMENTS ON THE CHIL CORPUS

For experiments, we use the CHIL seminar database collected at the
University of Karlsruhe (UKA), Germany. The set contains 12 sem-
inars recorded in the UKA smart room (see Fig. 1), with seven sem-
inars collected during 2003 (referred to as the Sem03 data), and five
recorded during 2004 (Sem04 data). For every seminar, segments are
allocated to the development and test sets, each containing approx-
imately 9,000 frames for each of the four available camera views
per seminar, and labeled with 2D and 3D face / head location in-
formation. The proposed algorithm is evaluated using the following
metrics:
3D error: Mean Euclidean 3D distance in millimeters between the
estimated and the ground truth position of the head center in 3D
coordinates. In addition, “% err � 300” is the percentage of time
instants, where the 3D error is smaller than 300 mm.
2D error: Mean of Euclidean 2D distance in millimeters between
the projection on the smart room floor of the estimated 3D head cen-
ter and that of the corresponding ground truth projection. Further-
more, “% err � 300” is the percentage of time instants, where the
2D error is smaller than 300 mm.

For comparison purposes, a number of alternative tracking sys-
tems are considered on the same data:
BGS: It is based on the IBM “PeopleVision” system [15], properly
modified for use on the CHIL data. The system uses background
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Table 1. Comparison of 3D head-tracking performance of various
algorithms on the CHIL seminar task.

Data Sem03
Metrics Proposed SWF BGS MS NC
3D error (mm) 140.0 270.2 278.4 253.9 1649.4
3D err � 300 92.9% 82.5% 81.2% 84.6% 13.2%
2D err (mm) 123.6 217.3 204.7 228.3 1230.7
2D err � 300 93.25% 84.3% 84.1% 85.3% 14.6%
Data Sem04
Metrics Proposed SWF BGS MS NC
3D error (mm) 155.2 267.4 480.3 467.4 1852.4
3D err � 300 95.4% 83.6% 47.7% 78.9% 10.9%
2D err (mm) 141.8 208.9 436.9 441.1 1635.1
2D err � 300 95.6% 85.7% 57.1% 80.7% 12.6%

subtraction based object detection that utilizes a multiple Gaussian
color model at each pixel and object tracking based on the tracking
method described in [16].
MS: This is our prior system, presented in [10]. It uses mean-shift
color based tracking and a simpler initialization mechanism: Motion
history to segment the foreground region, multi-view face detector
applied around the foreground region, and calibration information to
obtain the final estimate. Tracking drift detection is similar to the
proposed system.
SWF: It is close to the proposed system, but with no forgetting
mechanism applied in the adaptive subspace based tracking. It pro-
vides a means to demonstrate the value of the forgetting mechanism,
introduced in this paper.
NC: It is identical to the system proposed in this paper, however with
no drift detection mechanism present. It is provided as a means to
demonstrate the value of drift detection.

As it becomes clear from the table, the proposed system signif-
icantly outperforms all others. This is also demonstrated in Fig. 4,
where the benefit of the forgetting mechanism is clearly shown.

6. SUMMARY

In this paper, we proposed a novel vision system that reduces track-
ing drift of adaptive, subspace based appearance models by intro-
ducing a “forgetting mechanism” in the subspace update process.
For initializion, a dynamic programming approach was used to ana-
lyze raw face detection results in both temporal and spatial domains.
The system was evaluated on the CHIL seminar database, where it
dramatically reduced tracking error over previously tried techniques,
achieving an average of about 15 cm in 3D head tracking error.
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