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ABSTRACT

Low-delay video coding is a key technology for video 

conferencing as well as upcoming remote-monitoring and 

automotive video applications like rear-view cameras or night 

vision systems. As the ongoing progress in programmable DSP 

and ASIC technology allows cost effective and flexible 

implementations of the necessary hardware, compressed video 

transmission systems over multimedia busses will soon replace 

the current uncompressed systems even in latency critical 

applications. 

In this paper, fundamentals and theoretic limits of low-

delay video coding are discussed with respect to architectural 

consequences of real-time implementations. A general latency 

analysis for a compressed video transmission systems is 

presented considering algorithmic, architectural and 

transmission related delays.  

1.  INTRODUCTION 

Current video compression standards can be grouped into intra-

frame codecs (Motion JPEG, JPEG2000) and codecs with 

temporal prediction (MPEG-1/2/4, H.264). As successive 

frames of a video sequence have high correlation, temporal 

prediction can reduce the data rate significantly at the cost of 

higher computational complexity. 

According to the system presented in Fig. 1, the latency of 

a compressed video transmission system can be subdivided into 

encoder latency, transmission latency and decoder latency. On 

the encoder side, the frame-reordering needed for the bi-

directional prediction (B-frames) would introduce unacceptable 

latencies of several frame periods. Therefore, only the forward 

temporal prediction (I and P-frames) can be used for low-

latency video transmissions. 

Figure 2 shows the rate variations for a typical video 

sequence using three different coding methods. To achieve 

short buffering delays it is generally desirable to have a 

constant bit rate (CBR) in short time intervals with minimum 

intervention of the rate control.  

The standard IP coding scheme shows significant peak 

rates at the I-frames which consume up to 10 times more data 

rate than P-frames. As the encoder averages the rate peaks over 

the following frames, the IP-coding results in buffering delays 

of several frame periods for a CBR transmission. A reduction 

of buffering delays can be achieved by either accepting high 

peak data rates or by selecting appropriate coding modes. Using 

the “I-frame only” coding method is one solution for this 

problem because the rate variations in an intra-coded video 

sequence are fairly small and can be controlled easily. 

For achieving higher compression ratios using temporal 

prediction, it is possible to embed intra coded macroblocks 

Video
Source

Block
Capture

Frame-
Reordering

Stream
Buffer

Network
Decoder

Processing
Decoder
Buffer

Display

Block
Output

Encoder Decoder

Encoder Latency Transmission Latency Decoder Latency

2D Trans-
formation

Quanti-
sation

Predictor

Entropy 
Encoder

Recon-
struction

Figure 1: Video transmission latency model. 
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Figure 2: Frame data rate for test sequence “mobile & 

calendar” (H.264, q=35, 1 reference frame).
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(MB) into predicted frames. The forced intra refresh method [1] 

enables low-latency transmissions at a relatively constant bit 

rate per frame as indicated in Fig. 2.  Furthermore, a defined 

refresh time can be guaranteed with protection mechanisms for 

the refreshed areas [2]. At the beginning of the video sequence 

a single I-frame with coarse quantization (q=51) is transmitted. 

Both, the I-frame only and the Intra refresh method allow short 

buffering delays of one frame period to average out rate 

variations. 

2.  SYSTEM LATENCIES 

Figure 3 shows a process scheduling diagram for a 25 Hz 

progressive-scan transmission with CBR on frame level. The 

analysis is based on the assumption that processing in any stage 

can start immediately when all input data is available. Real-

time constraints allow 40 ms time for each processing stage. 

 The block capture stage models the effects of continuous video 

sampling. Before the encoder processing starts, the block 

capture device collects the incoming uncompressed video 

stream until the complete video frame is buffered. During the 

processing of the frame, the encoder output buffer is filled with 

the compressed frame data which is then transmitted during the 

next frame period. A standard-conformant video decoder 

generally does not start processing a frame until it is completely 

available in its input buffer. Displaying the frame can start right 

after the processing is finished, therefore the block output does 

not account for the latency. The straight forward 

implementation of a frame based encoder (Fig. 3 (a)) introduces 

a significant delay of 160 ms between capturing and displaying 

a frame. 

A reduction of the overall latency can be achieved by 

processing sections of frames rather than whole frames. The 

lower bound for such a system is determined by the size of the 

basic processing block, the 16 by 16 pixel MBs. For standard 

resolution D1 video, 16 lines of video (one slice) introduce 

16 * 64 s = 1 ms latency in the block capture device. As 

illustrated in Fig. 3 (b) the theoretical lower limit for a system 

working at CBR on slice level is 4 ms latency. If the encoder 

ensures the just in time availability of data, a slightly modified 

decoder can start the decoding process before the frame is 

transmitted completely. 

3.  ENCODER PROGRAM FLOW OPTIMIZATIONS  

The basic video coding algorithm described in Fig. 1 leaves the 

system designer certain options for organizing the sequence of 

operations on a macroblock level. Depending on the flows 

illustrated in Figure 4, different minimum latencies and 

memory requirements will result for a real-time video encoder. 

In the standard configuration of current video standards, the 

macroblocks of a frame are coded in a strictly increasing order 

in lines of macroblocks starting at the top left corner of the 

frame. In this document, a complete line of macroblocks is 

called a slice, although most video standards use a more 

flexible definition for this term.  

In a frame-based processing scheme (Figure 4 (a)), the x 

and y MB loops are located inside the major processing 

functions. The sequence of processing is to perform the motion 

estimation for all MBs of a frame in a first step, then the 

prediction for all MBs and so on. 

Moving the x and y loops up to the frame level loop as 

shown in Figure 4 (b) results in pipelining of MBs and 

minimizes the latency and memory requirements [3]. A similar 

processing scheme is used by H.264 codec [4], where several 

iterations per MB are performed to determine the best coding 

mode. If a non-iterative program flow is assumed, pipelining 

stages can be inserted after each major processing stage in the 

codec. However, a MB processing scheme is disadvantageous 

for supporting parallel processing architectures like processors 

with hardware support or multi-core processors, as the frequent 

synchronization of parallel processing units increases the 

complexity and can lead to unbalanced work loads over time. 
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compressed video transmission with  
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A good trade-off between latency and complexity can be 

achieved by slice-based processing schemes. As illustrated in 

Figure 4 (c), the x-loop is on the same level as in the frame 

processing scheme, whereas the y-loop is moved up to the 

frame loop level. In this approach, pipelining stages can be 

inserted after each x-loop operation, which eases the 

implementation on parallel architectures.  

In the slice-based implementation, processing units must 

only be synchronized at the end of a slice, whereas the MB 

pipelining results in a significantly higher synchronization 

frequency (D1 resolution, 720*576 pixels): 

25 36 900
,

25 1620 40500
,

frames syncs syncs
f
sync slice s frame s

frames syncs syncs
f
sync MB s frame s

Reducing the frequency of synchronizations also allows 

more flexible distribution of work loads on processing units 

which is especially critical in the entropy coding unit where the 

work load increases with the data rate. A rough analysis of the 

bit rate per MB reveals, that large MBs require two to three 

times the average bit rate in an intracoded frame. As the 

average MB data rate is far below the peak MB rate, it makes 

sense to average out these work load variations using a slice-

based processing scheme. Longer synchronization intervals 

generally allow better averaging of work load fluctuations but 

they also increase the system latency.  For an I-frame only 

video encoder, a fairly constant work load in the entropy coding 

unit can be achieved if the CBR averaging interval is equal to 

the processing interval, e.g. slice based processing with a 

constant slice bit rate.  

Depending on the architecture and work loads, the slice-

level pipelining stages can be rearranged. The combined 

MB/slice processing illustrated with the Z loops in Figure 4 (c) 

was developed according to the profiling results of the DSP-

optimized MPEG-2 encoder. For the dual-core DSP target 

architecture [5], the system is split into two pipelining stages 

between the Z1 and Z2-loop. Each loop is mapped to one DSP 

core which results in a balanced work load for the desired 

coding parameters.

4.  FRAME MEMORY REQUIREMENTS 

High-performance signal- and general purpose processors use 

on-chip SRAM memories to reduce the latencies caused by 

accesses to external DRAMs. The size of on-chip memories is 

typically limited to several hundred kBytes, which is not 

enough to store a complete D1 video frame, requiring 

720*576*1.5 = 622 kBytes for 4:2:0 color sub-sampling.   

A detailed memory organization diagram of the MPEG-2 

TM5 encoder [6] in IP coding mode is shown in Figure 5. The 

encoder allocates three pixel data memories for the current 

frame (1) and the reconstructed frames (4), (5). Furthermore, 

intermediate results of the prediction (2) and the DCT (3) are 

saved in frame memories because they are needed by more than 

one following processing blocks. The frame memories 1 to 3 

can be re-used instantaneously, whereas the reconstructed 

frame memories 4 and 5 can be reused at half frame frequency.  

In a frame-based processing scheme, the whole image must 

be accessed in each processing stage from external memory, 

which results in very high memory bandwidth requirements and 

bad cache usage. Localizing memory accesses improves the 

cache usage and can be achieved by processing sections of a 

frame sequentially. The lower-bound for localization is the MB 

based processing on 16 by 16 pixel image regions. This allows 

reducing the cached parts of frame memories 1, 2 and 3 to 

16*16 pixels. From the old reference frames, only the pixels of 

the search window around the current MB are accessed, e.g. a 

48 by 48 pixel image segment for a +/- 16 pixel motion search 

range. 

On the implementation side, the MB based processing 

requires an adaptation of the frame memory address 

calculations in low-level functions because of the modified 

picture geometry in the cache. The slice based processing 

overcomes this drawback by caching complete rows of MBs 

but it requires significantly larger cache memories. 

5.  MOTION ESTIMATION MEMORY 

Optimizing the memory requirements of the motion estimation 

and prediction functions of the video encoder is especially 

critical due to the frequent accesses and large size of the 

referenced image section. As illustrated in Figure 5, accesses to 

the scaleable memories can be restricted to a small, 16 line 

region of a frame. For good motion estimation it is however 

necessary to cover a sufficient large vertical search range which 
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is practically at least +/- 16 lines around the current slice. 

Hence, even for a relatively small vertical search range it is 

necessary to provide 3 rows of macroblocks from every 

reference frame in the cache.  

Figure 6 shows four memory organisations scenarios for 

the motion estimation which result in different cache in copy 

operation counts summarized in Table 1. Border effects which 

result in a slight reduction of memory reshuffling operations, 

are not considered. Considering MB 9 in line one of the current 

frame and a search range of +/- 16 pixels, pixel data from MBs 

0, 1, 2, 8, 9, 10, 16, 17 and 18 is needed from the reference 

frame. The MB search window results in the smallest memory 

usage but it requires adaptation of the motion estimation and 

prediction functions.  

After the motion estimation for the current MB is 

performed, the pixels of the search window are copied one 

column to the left, resulting in 2*3*N cache reshuffling 

operations for a whole frame of N pixels. Furthermore, the new 

content of the right most column is loaded from external 

memory, resulting in 3*N load operations. Using a wrap-

around addressing scheme instead of memory reshuffling 

would increase the computational complexity of the motion 

estimation algorithms, whereas memory reshuffling can be 

performed by the DMA (direct memory access) controller at the 

cost of high memory access bandwidth requirements. 

In the case of a slice search window, slices 0, 1 and 2 must 

be buffered, requiring 48 * 720 * 1.5 bytes = 51.8 kBytes 

memory at D1 resolution. Using this approach, it is possible to 

shift the memory content in the frame segment after the motion 

estimation was performed for a complete slice. Therefore, the 

reference frame must  only be loaded once from the external 

memory. It is however necessary to reshuffle 2 * N pixels for 

the complete frame estimate in the cache.  

With the wrap-around search window, the reshuffling 

operations can be further reduced to 2/3 * N and can be 

executed in parallel with the motion estimation. Therefore, 

depending on the size of the available cache memories it is 

possible to exchange memory requirements and reshuffling 

operations according to the needs of the architecture. 

 cache 

memory 

load 

operations 

reshuffle 

operations

frame 1 N 1 N 0 

macroblock 9 * 256 3 N 6 N 

slice 3 N/M  2 N 2 N 

wrap-around 5 N/M 1 N 2/3 N 

Table 1: Motion estimation memory usage. 

N = number of pixels per frame, M = slices per frame 

6.  SUMMARY 

In this document we presented an analysis for implementing 

low-latency video transmission systems. According to our 

model, three major sources of latency must be considered, 

namely the encoder and decoder processing latency and the 

transmission latency. A lower bound for the encoder processing 

latency is given by the block capture latency which models the 

continuous time video sampling process. 

Choosing the optimal coding mode is a major step to 

reduce the transmission latencies. For achieving a constant bit 

rate per frame which allows low buffering latencies, either an 

intra coding mode or an improved intra refresh coding mode 

with significantly higher coding efficiency can be used. Both 

coding modes ensure error-free video display within a short 

time interval. 

The effect of different processing schemes was discussed 

with respect to latencies, memory requirements, parallel 

processing options and work load averaging. For the system 

implementation we recommend using a slice-based processing 

scheme which enables compressed video transmission with a 

minimum latency of 4 ms. Finally, four memory organisation 

concepts for the motion estimation reference picture are 

presented which allowing a trade-off between memory 

requirements and cache load operations. 
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Figure 6:  Motion estimation memory organization. 
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