
ARCHITECTURE ANALYSIS FOR LOW-DELAY VIDEO CODING

Ralf M. Schreier, A. M. Tushar Iqbal Rahman, Ganesh Krishnamurthy, Albrecht Rothermel

University of Ulm, Microelectronics Department, 89081 Ulm, Germany

email: ralf.schreier@uni-ulm.de

ABSTRACT

Low-delay video coding is a key technology for video

conferencing as well as upcoming remote-monitoring and

automotive video applications like rear-view cameras or night

vision systems. As the ongoing progress in programmable DSP

and ASIC technology allows cost effective and flexible

implementations of the necessary hardware, compressed video

transmission systems over multimedia busses will soon replace

the current uncompressed systems even in latency critical

applications.

In this paper, fundamentals and theoretic limits of low-

delay video coding are discussed with respect to architectural

consequences of real-time implementations. A general latency

analysis for a compressed video transmission systems is

presented considering algorithmic, architectural and

transmission related delays.

1. INTRODUCTION

Current video compression standards can be grouped into intra-

frame codecs (Motion JPEG, JPEG2000) and codecs with

temporal prediction (MPEG-1/2/4, H.264). As successive

frames of a video sequence have high correlation, temporal

prediction can reduce the data rate significantly at the cost of

higher computational complexity.

According to the system presented in Fig. 1, the latency of

a compressed video transmission system can be subdivided into

encoder latency, transmission latency and decoder latency. On

the encoder side, the frame-reordering needed for the bi-

directional prediction (B-frames) would introduce unacceptable

latencies of several frame periods. Therefore, only the forward

temporal prediction (I and P-frames) can be used for low-

latency video transmissions.

Figure 2 shows the rate variations for a typical video

sequence using three different coding methods. To achieve

short buffering delays it is generally desirable to have a

constant bit rate (CBR) in short time intervals with minimum

intervention of the rate control.

The standard IP coding scheme shows significant peak

rates at the I-frames which consume up to 10 times more data

rate than P-frames. As the encoder averages the rate peaks over

the following frames, the IP-coding results in buffering delays

of several frame periods for a CBR transmission. A reduction

of buffering delays can be achieved by either accepting high

peak data rates or by selecting appropriate coding modes. Using

the “I-frame only” coding method is one solution for this

problem because the rate variations in an intra-coded video

sequence are fairly small and can be controlled easily.

For achieving higher compression ratios using temporal

prediction, it is possible to embed intra coded macroblocks

Video
Source

Block
Capture

Frame-
Reordering

Stream
Buffer

Network
Decoder

Processing
Decoder
Buffer

Display

Block
Output

Encoder Decoder

Encoder Latency Transmission Latency Decoder Latency

2D Trans-
formation

Quanti-
sation

Predictor

Entropy
Encoder

Recon-
struction

Figure 1: Video transmission latency model.

0 5 10 15 20 25 30 35
 0

50

100

150

K
b

it
 p

e
r

fr
a
m

e

frame

I-frame only

IP

intra refresh

Figure 2: Frame data rate for test sequence “mobile &

calendar” (H.264, q=35, 1 reference frame).

20531­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

(MB) into predicted frames. The forced intra refresh method [1]

enables low-latency transmissions at a relatively constant bit

rate per frame as indicated in Fig. 2. Furthermore, a defined

refresh time can be guaranteed with protection mechanisms for

the refreshed areas [2]. At the beginning of the video sequence

a single I-frame with coarse quantization (q=51) is transmitted.

Both, the I-frame only and the Intra refresh method allow short

buffering delays of one frame period to average out rate

variations.

2. SYSTEM LATENCIES

Figure 3 shows a process scheduling diagram for a 25 Hz

progressive-scan transmission with CBR on frame level. The

analysis is based on the assumption that processing in any stage

can start immediately when all input data is available. Real-

time constraints allow 40 ms time for each processing stage.

 The block capture stage models the effects of continuous video

sampling. Before the encoder processing starts, the block

capture device collects the incoming uncompressed video

stream until the complete video frame is buffered. During the

processing of the frame, the encoder output buffer is filled with

the compressed frame data which is then transmitted during the

next frame period. A standard-conformant video decoder

generally does not start processing a frame until it is completely

available in its input buffer. Displaying the frame can start right

after the processing is finished, therefore the block output does

not account for the latency. The straight forward

implementation of a frame based encoder (Fig. 3 (a)) introduces

a significant delay of 160 ms between capturing and displaying

a frame.

A reduction of the overall latency can be achieved by

processing sections of frames rather than whole frames. The

lower bound for such a system is determined by the size of the

basic processing block, the 16 by 16 pixel MBs. For standard

resolution D1 video, 16 lines of video (one slice) introduce

16 * 64 s = 1 ms latency in the block capture device. As

illustrated in Fig. 3 (b) the theoretical lower limit for a system

working at CBR on slice level is 4 ms latency. If the encoder

ensures the just in time availability of data, a slightly modified

decoder can start the decoding process before the frame is

transmitted completely.

3. ENCODER PROGRAM FLOW OPTIMIZATIONS

The basic video coding algorithm described in Fig. 1 leaves the

system designer certain options for organizing the sequence of

operations on a macroblock level. Depending on the flows

illustrated in Figure 4, different minimum latencies and

memory requirements will result for a real-time video encoder.

In the standard configuration of current video standards, the

macroblocks of a frame are coded in a strictly increasing order

in lines of macroblocks starting at the top left corner of the

frame. In this document, a complete line of macroblocks is

called a slice, although most video standards use a more

flexible definition for this term.

In a frame-based processing scheme (Figure 4 (a)), the x

and y MB loops are located inside the major processing

functions. The sequence of processing is to perform the motion

estimation for all MBs of a frame in a first step, then the

prediction for all MBs and so on.

Moving the x and y loops up to the frame level loop as

shown in Figure 4 (b) results in pipelining of MBs and

minimizes the latency and memory requirements [3]. A similar

processing scheme is used by H.264 codec [4], where several

iterations per MB are performed to determine the best coding

mode. If a non-iterative program flow is assumed, pipelining

stages can be inserted after each major processing stage in the

codec. However, a MB processing scheme is disadvantageous

for supporting parallel processing architectures like processors

with hardware support or multi-core processors, as the frequent

synchronization of parallel processing units increases the

complexity and can lead to unbalanced work loads over time.

Encoder
Processing

Transmission

Decoder
Processing

Block
Capture

Encoder Buffer

Block
Output

CBR
Interval

Decoder Buffer

Encoder
Processing

Transmission
Decoder

Processing
Block

Capture

Block
Output

a)

b)

Figure 3: Process scheduling for 25 Hz progressive scan

compressed video transmission with

(a) frame based and (b) slice based processing.

Motion
Estimator

Predictor

+ / DCT / Q

Motion
Estimator

Predictor

+ / DCT / Q

Motion
Estimator

Predictor

+ / DCT / Q

Figure 4: Program flow options for video encoders. For

combined MB / slice processing (c), the x loops are replaced by

the z loops.

2054

A good trade-off between latency and complexity can be

achieved by slice-based processing schemes. As illustrated in

Figure 4 (c), the x-loop is on the same level as in the frame

processing scheme, whereas the y-loop is moved up to the

frame loop level. In this approach, pipelining stages can be

inserted after each x-loop operation, which eases the

implementation on parallel architectures.

In the slice-based implementation, processing units must

only be synchronized at the end of a slice, whereas the MB

pipelining results in a significantly higher synchronization

frequency (D1 resolution, 720*576 pixels):

25 36 900
,

25 1620 40500
,

frames syncs syncs
f
sync slice s frame s

frames syncs syncs
f
sync MB s frame s

Reducing the frequency of synchronizations also allows

more flexible distribution of work loads on processing units

which is especially critical in the entropy coding unit where the

work load increases with the data rate. A rough analysis of the

bit rate per MB reveals, that large MBs require two to three

times the average bit rate in an intracoded frame. As the

average MB data rate is far below the peak MB rate, it makes

sense to average out these work load variations using a slice-

based processing scheme. Longer synchronization intervals

generally allow better averaging of work load fluctuations but

they also increase the system latency. For an I-frame only

video encoder, a fairly constant work load in the entropy coding

unit can be achieved if the CBR averaging interval is equal to

the processing interval, e.g. slice based processing with a

constant slice bit rate.

Depending on the architecture and work loads, the slice-

level pipelining stages can be rearranged. The combined

MB/slice processing illustrated with the Z loops in Figure 4 (c)

was developed according to the profiling results of the DSP-

optimized MPEG-2 encoder. For the dual-core DSP target

architecture [5], the system is split into two pipelining stages

between the Z1 and Z2-loop. Each loop is mapped to one DSP

core which results in a balanced work load for the desired

coding parameters.

4. FRAME MEMORY REQUIREMENTS

High-performance signal- and general purpose processors use

on-chip SRAM memories to reduce the latencies caused by

accesses to external DRAMs. The size of on-chip memories is

typically limited to several hundred kBytes, which is not

enough to store a complete D1 video frame, requiring

720*576*1.5 = 622 kBytes for 4:2:0 color sub-sampling.

A detailed memory organization diagram of the MPEG-2

TM5 encoder [6] in IP coding mode is shown in Figure 5. The

encoder allocates three pixel data memories for the current

frame (1) and the reconstructed frames (4), (5). Furthermore,

intermediate results of the prediction (2) and the DCT (3) are

saved in frame memories because they are needed by more than

one following processing blocks. The frame memories 1 to 3

can be re-used instantaneously, whereas the reconstructed

frame memories 4 and 5 can be reused at half frame frequency.

In a frame-based processing scheme, the whole image must

be accessed in each processing stage from external memory,

which results in very high memory bandwidth requirements and

bad cache usage. Localizing memory accesses improves the

cache usage and can be achieved by processing sections of a

frame sequentially. The lower-bound for localization is the MB

based processing on 16 by 16 pixel image regions. This allows

reducing the cached parts of frame memories 1, 2 and 3 to

16*16 pixels. From the old reference frames, only the pixels of

the search window around the current MB are accessed, e.g. a

48 by 48 pixel image segment for a +/- 16 pixel motion search

range.

On the implementation side, the MB based processing

requires an adaptation of the frame memory address

calculations in low-level functions because of the modified

picture geometry in the cache. The slice based processing

overcomes this drawback by caching complete rows of MBs

but it requires significantly larger cache memories.

5. MOTION ESTIMATION MEMORY

Optimizing the memory requirements of the motion estimation

and prediction functions of the video encoder is especially

critical due to the frequent accesses and large size of the

referenced image section. As illustrated in Figure 5, accesses to

the scaleable memories can be restricted to a small, 16 line

region of a frame. For good motion estimation it is however

necessary to cover a sufficient large vertical search range which

Motion
Estimator

-

Predictor

Q
-1

DCT
-1

Block Capture

Video
Input

Compressed
VideoStream

Output

1: Current Frame

2: Predicted Frame

3: Transf. Frame

4: Reconstr. Frame 1

5: Reconstr. Frame 2

Next Frame
Pointer
Flipping

Scaleable Memories

Figure 5: IP-mode video encoder frame memory structure

2055

is practically at least +/- 16 lines around the current slice.

Hence, even for a relatively small vertical search range it is

necessary to provide 3 rows of macroblocks from every

reference frame in the cache.

Figure 6 shows four memory organisations scenarios for

the motion estimation which result in different cache in copy

operation counts summarized in Table 1. Border effects which

result in a slight reduction of memory reshuffling operations,

are not considered. Considering MB 9 in line one of the current

frame and a search range of +/- 16 pixels, pixel data from MBs

0, 1, 2, 8, 9, 10, 16, 17 and 18 is needed from the reference

frame. The MB search window results in the smallest memory

usage but it requires adaptation of the motion estimation and

prediction functions.

After the motion estimation for the current MB is

performed, the pixels of the search window are copied one

column to the left, resulting in 2*3*N cache reshuffling

operations for a whole frame of N pixels. Furthermore, the new

content of the right most column is loaded from external

memory, resulting in 3*N load operations. Using a wrap-

around addressing scheme instead of memory reshuffling

would increase the computational complexity of the motion

estimation algorithms, whereas memory reshuffling can be

performed by the DMA (direct memory access) controller at the

cost of high memory access bandwidth requirements.

In the case of a slice search window, slices 0, 1 and 2 must

be buffered, requiring 48 * 720 * 1.5 bytes = 51.8 kBytes

memory at D1 resolution. Using this approach, it is possible to

shift the memory content in the frame segment after the motion

estimation was performed for a complete slice. Therefore, the

reference frame must only be loaded once from the external

memory. It is however necessary to reshuffle 2 * N pixels for

the complete frame estimate in the cache.

With the wrap-around search window, the reshuffling

operations can be further reduced to 2/3 * N and can be

executed in parallel with the motion estimation. Therefore,

depending on the size of the available cache memories it is

possible to exchange memory requirements and reshuffling

operations according to the needs of the architecture.

 cache

memory

load

operations

reshuffle

operations

frame 1 N 1 N 0

macroblock 9 * 256 3 N 6 N

slice 3 N/M 2 N 2 N

wrap-around 5 N/M 1 N 2/3 N

Table 1: Motion estimation memory usage.

N = number of pixels per frame, M = slices per frame

6. SUMMARY

In this document we presented an analysis for implementing

low-latency video transmission systems. According to our

model, three major sources of latency must be considered,

namely the encoder and decoder processing latency and the

transmission latency. A lower bound for the encoder processing

latency is given by the block capture latency which models the

continuous time video sampling process.

Choosing the optimal coding mode is a major step to

reduce the transmission latencies. For achieving a constant bit

rate per frame which allows low buffering latencies, either an

intra coding mode or an improved intra refresh coding mode

with significantly higher coding efficiency can be used. Both

coding modes ensure error-free video display within a short

time interval.

The effect of different processing schemes was discussed

with respect to latencies, memory requirements, parallel

processing options and work load averaging. For the system

implementation we recommend using a slice-based processing

scheme which enables compressed video transmission with a

minimum latency of 4 ms. Finally, four memory organisation

concepts for the motion estimation reference picture are

presented which allowing a trade-off between memory

requirements and cache load operations.

7. REFERENCES

[1] Tri D. Tran, Lurng-Kuo Liu, Peter H. Westering: “Low-delay MPEG-

2 video coding”, Proc. SPIE - Int. Soc. Opt. Eng. (USA), USA: SPIE-

Int. Soc. Opt. Eng, vol.3309, 1997, pp. 510-16.

[2] Ralf M. Schreier and Albrecht Rothermel: „Motion Adaptive Intra

Refresh for the H.264 Video Coding Standard”, IEEE Trans. on

Consumer Electronics, Vol. 52, No. 1, Feb. 2006, pp. 249-253

[3] Gabby Yi, Ke Ning, Marc Hoffman: “Memory-organization

challenges with real-time video encoding on embedded signal

processors”, EDN, 11/27/ 2003, available at www.edn.com

[4] H.264 JM ref. software, http://iphome.hhi.de/suehring/tml/download/

[5] “ADSP-BF561: Blackfin Embedded Symmetric Multi-Processor Data

Sheet”, available at http://www.analog.com

[6] MPEG-2 TM5 ref. software, http://www.mpeg.org/MSSG/#source

Full-frame search

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 19 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

...

...

...

line

0

1

2

3

4

5

6

...

...

Macroblock search window

16

0 1 2

17 18

rows copied
after MB
search

8 9 10

Slice search window

16

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

17 18 19 20 21 22 23

Wrap-around search window

1
 s

e
a
rc

h
s
t

2
 s

e
a
rc

h
n

d

3
 s

e
a
rc

h
rd

4
 s

e
a
rc

h
th

16

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

17 18 19 20 21 22 23

24 25 26 27 28 19 30 31

32 33 34 35 36 37 38 39

line copied
during 2

slice search

nd

line copied
during 3

slice search

rd

lines copied
after slice

search

Figure 6: Motion estimation memory organization.

2056

