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ABSTRACT

This paper proposes a new architecture for efficient variable-length
decoding (VLD) of entropy-coded data for multimedia applications
on general-purpose processors. It improves on earlier proposals for
low-complexity performance-enhancing hardware structures that ex-
ploit prefix/suffix properties of variable-length codes for common
multimedia formats [1]. The enhanced architecture is compared
to the previous architectures in terms of complexity and operating
speed for FPGA implementation, and also in terms of area require-
ments, power consumption, and operating speed for a 0.18-µm ASIC
fabrication process. Simulation results are reported for a pipelined
processor with caches executing MPEG-4 software where VLD per-
formance is doubled by incorporating the proposed architecture.

1. INTRODUCTION

The ubiquity of multimedia data is leading to the inclusion of per-
formance-enhancing hardware support for encoding and decoding
such data on general-purpose and embedded processors. Although
instructions for bit-level parallelism can improve performance for
many aspects of multimedia decoding, the variable-length decoding
(VLD) portion has inherent serial characteristics. VLD on special-
ized hardware that is specific to a particular multimedia format has
seen significant improvements since early work in this area [2]. This
specialized approach cannot easily be extended to general-purpose
processors that need the capability to decode multiple different for-
mats. VLD on general-purpose processors has only seen modest
gains through certain architectural improvements, even though it may
account for up to 30% of the decoding time in a given application [3].
Recent work has augmented an existing media processor with pro-
grammable logic for custom VLD acceleration [4], but there are in-
herent chip-area penalties with this approach. Instead, we have pre-
viously proposed the incorporation of flexible instruction extensions
for VLD acceleration with modest implementation complexity that
are applicable to general-purpose processors [1].

Multimedia data is typically compressed using lossy transform
coding followed by lossless entropy coding [5]. The latter com-
monly uses modified Huffman coding with fixed or dynamic code-
word tables. The first column of Table 1 gives sample codewords
for chroma block patterns in an MPEG-4 video [5]. The codewords
in such a table can be grouped by their prefix of the leading number
of zeros (LNZ) to enable efficient variable-length decoding. Once a
codeword is classified into its LNZ group, the remaining codeword
suffix can be an index into a table that contains the decoded informa-
tion [1, 3, 6]. Software-based MPEG decoders have used this prop-
erty for symbol-by-symbol decoding, rather than slower bit-by-bit
decoding [3, 6]. Although this property has been used in hardware
accelerators for a specific multimedia codec [2], flexible and efficient

mechanisms using the same property to support different multimedia
codecs in general-purpose processors are lacking.

We have recently proposed two low-complexity hardware archi-
tectures that exploit codeword prefix/suffix characteristics in order to
enhance VLD performance in general-purpose processors [1]. Our
memory-based (MB) decoding architecture uses a small intermedi-
ate memory in the processor with a number of entries equal to the
number of distinct groups in a codeword table having the same LNZ
count. Each entry provides the suffix length for the group and a base
address in the main memory where the group-related codeword table
is located. Our Single Fixed-Length Suffix (SFLS) architecture, on
the other hand, does not use a small memory in the processor and
hence has reduced hardware complexity. Instead, it uses the maxi-
mum suffix length across an entire codeword table for indexing all
group tables in memory. As a consequence, it requires larger group
tables than the memory-based architecture.

This paper proposes an enhanced Multiple Fixed-Length Suffix
(MFLS) architecture for incorporation into general-purpose proces-
sors. It exploits prefix/suffix properties of variable-length entropy-
coded data, similar to our previous architectures [1], but seeks to
balance hardware complexity and memory requirements. The re-
mainder of this paper describes the proposed architecture, presents
FPGA and ASIC synthesis results, and summarizes performance re-
sults from instruction-level simulation.

2. THE MULTIPLE FIXED-LENGTH SUFFIX
ARCHITECTURE

The Multiple Fixed-Length Suffix (MFLS) architecture consists of
combinational logic and an associated group control register. It would
be implemented in a general-purpose processor and used by a special
instruction to support variable-length decoding. The combinational
logic performs the LNZ count, group selection, bit-shift, and arith-
metic operations that generate the table index for variable-length de-
coding. The latter three operations, in particular, depend on the con-
tents of the group control register that is configured by standard con-
trol register access instructions prior to executing VLD code. The
maximum number of groups supported by a hardware implementa-
tion of the MFLS architecture is fixed. Up to that maximum number,
the actual grouping of codewords into subsets with sequential LNZ
counts, as explained below, is at the discretion of the multimedia
programmer.

2.1. Definition of Groups

Let L − 1 represent the maximum LNZ count for a collection of
variable-length codewords. In our previous proposals [1], the memo-
ry-based (MB) architecture would require L codeword tables, whereas
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Table 1. Prefix properties in MPEG-4 Video Table B-7
Codeword LNZ Group s�m

Sm offset�min
m

1 0 0
010 1 1
011 1 m=0 1 1 0
0010 2 1
0011 2 1
0001 00 3 2
0001 01 3 2
0001 1 3 1
0000 100 4 2
0000 101 4 2
0000 110 4 2
0000 111 4 2
0000 0100 5 m=1 2 2 6
0000 011 5 1
0000 0101 5 2
0000 0010 0 6 2
0000 0010 1 6 2
0000 0011 6 1
0000 0001 0 7 1
0000 0001 1 7 m=2 1 1 22
0000 0000 1 8 0

the Single Fixed-Length Suffix (SFLS) architecture would require
only one codeword table. The MFLS architecture that is proposed in
this paper is a compromise between the two previous architectures
in that it may use at most M codeword tables, where 1 < M ≤ L, and
this value of M represents the maximum number of groups supported
in an MFLS hardware implementation. The programmer may then
define up to M groups of codewords in the software.

Each codeword group m that is identified by the programmer for
the MFLS architecture reflects a sequence {�min

m , �min
m +1, . . . , �max

m }
of LNZ counts for that group, where �min

m is the minimum LNZ count
and �max

m is the maximum LNZ count for the group. Let s�m
denote

the suffix length for the subset of codewords in a group m with the
LNZ count �m. The suffix is the portion of the original codeword that
remains after the leading number of of zeros and the first non-zero bit
are excluded. The maximum suffix length for the entire group is then
given by Sm = max(s�min

m
,s�min

m +1, . . . ,s�max
m

). From these definitions,
the address offset in a group table for a codeword with LNZ value of
� that is contained in group m is given by

offset� = 2Sm · (�− �min
m )+

m−1

∑
i=0

2Si · (�max
i − �min

i +1)

= 2Sm · (�− �min
m )+offset�min

m
.

The total number of memory entries to store all of the codewords is
then ∑M−1

m=0 2Sm · (�max
m − �min

m +1).
The application of the above definitions is illustrated for the

variable-length codewords given in Table 1. Inspection of the code-
words suggests that three groups are appropriate. Codewords with an
LNZ count ranging from 0 to 2 are assigned to group 0, whose mini-
mum LNZ value is �min

0 = 0. Codewords with an LNZ count ranging
from 3 to 6 are assigned to group 1, whose minimum LNZ value
is �min

1 = 3. Finally, codewords with an LNZ count of 7 or more
are assigned to group 2, whose minimum LNZ value is �min

2 = 7.
The maximum suffix lengths for each of the three groups are S0 = 1,
S1 = 2, and S2 = 1. The group offset values are provided in Table 1.

2.2. VLD Instruction Format

To utilize the MFLS architecture in a general-purpose processor im-
plementation, the following instruction is proposed for a typical three-
operand instruction set architecture:

vldecode rdest, rsrc1, imm

The instruction uses the left-aligned codeword in register rsrc1
and returns the index in the VLC table identified by the imm field in
rdest. The internal group control register that is used by this new
instruction consists of group minimum LNZ values �min

m , right-shift
amounts W −Sm, where W is the maximum suffix length supported,
and offset values corresponding to each group m. The right-shift
amount W −Sm aligns the suffix bits to form the index for the code-
word table entry. Precomputed offset values must be used in order to
reduce storage requirements for a VLC table. Multiple group control
registers could support multiple VLC tables, and the imm field in the
instruction would select the intended one.

2.3. 3FLS Architecture

Figure 1 provides the details of an MFLS architecture with M = 3.
For commonly-used MPEG-4 look-up tables, Section 5 will show
how the choice of M = 3 results in total MFLS table storage re-
quirements that are significantly less than the requirements for the
SFLS architecture and moderately more than the MB architecture.
A larger value of M would further reduce the total MFLS storage re-
quirements, but it would also increase the hardware complexity and
the size of the group control register.

The proposed instruction format and the group control register
contents are depicted at the top of Figure 1. For each group m as
defined by the programmer, the group control register contains the
offset, the right-shift amount W −Sm, and the minimum LNZ count
�min

m . The exception is group 0, where the offset value and the mini-
mum LNZ count are often zero, hence these fields are omitted from
the register (the right-shift amount is still required, however). Stan-
dard control register access instructions can be used to set or obtain
the contents of the group control register. The combinational logic
in the remainder of Figure 1 includes a block to determine the LNZ
count for the input codeword in register rsrc1, and then various
blocks to use the LNZ count in order to select the group, the offset,
and the shift amount. These selection blocks use multiplexers with
inputs from the group control register.

The logic in Figure 1 uses the bit field from processor register
rsrc1 as input to the LNZ count block and the left shifter. The
most significant bit from the output of the left shifter is the ‘1’ bit
that follows the leading zeros, hence it is ignored. The next 12 most-
significant bits from the left shifter are concatenated with the output
of the 4-bit subtract unit that computes �− �min

m . The combined 16
bits are used as the input to the 16-bit right shifter that produces
the codeword offset within the group. This codeword offset is then
added to the group offset in order to obtain the required index in the
table. The architecture in Figure 1 assumes a maximum codeword
length of 20 bits. Because of the actual maximum lengths of 17 bits
for MPEG-2 and 13 bits for MPEG-4, there is additional capacity
for any new codes in the future. Furthermore, the maximum suffix
length, W , for MPEG-2 and MPEG-4 is 12 bits, and this property is
also exploited in the architecture.

The size of the group control register in an MFLS implemen-
tation depends on the number of bits needed for the grouping in-
formation. A possible allocation is 12 offset bits, 4 right-shift bits,
and 4 bits for the minimum LNZ value for each group. The index
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Fig. 1. 3-Fixed-Length Suffix Architecture

range supported with the above bit allocation is sufficient for many
common multimedia formats. With the above bit allocation, the min-
imum required size of one group control register for a maximum of
M groups is 20× (M −1)+4 bits.

For generality, the proposed vldecode instruction generates
only the table index in the destination register rdest. This index
value must then be added to the base address of the appropriate table
in memory in order to retrieve the decoded information. Automat-
ically performing the final calculation using a base address register
could affect the cycle time.

The method provided in Figure 1 can be extended for M = 4
or higher with ease. For most cases, the VLC table size is a non-
increasing function of M. Increasing M will, however, add to the
hardware complexity of the selection blocks and it will also increase
the size of the group control register. The memory-based architec-
ture introduced in our previous work [1] can be thought of as an
MFLS implementation with all possible leading number of zeros or
M = 16. Similarly, the single fixed length suffix (SFLS) architec-
ture can be thought of as an MFLS implementation with M = 1 and
without any group control register.

3. FPGA AND ASIC SYNTHESIS RESULTS

The MFLS architecture with M = 3 was synthesized for FPGA and
ASIC implementation, along with the MB and SFLS architectures
from our earlier work [1]. Section 2.1 explained the differences be-
tween the three approaches, specifically how the MFLS architecture
is a compromise between the previous MB and SFLS architectures.
The designs were implemented in VHDL and used vendor-supplied
shifter and adder components to maximize performance. The 16-bit
leading-zero-count block is a hierarchical radix-4 implementation.
A 44-bit group control register was used in the MFLS implementa-
tion; 4 bits were used for each LNZ and right-shift field, and 12 bits
for each offset field.

Table 2. FPGA synthesis results
MB SFLS 3FLS

Num. Logic Elems. 200 119 156
Critical Path Delay (ns) 12.96 10.40 12.98

Max. Freq. (MHz) 77 96 77

Table 3. ASIC synthesis results
MB SFLS 3FLS

Total Area (µm2) 27170 3496 6984
Power (mW) 19.00 4.78 9.37

Max. Freq. (MHz) 117 246 114

The target FPGA is an Altera Stratix EP1S40 chip with synthesis
performed by the Altera Quartus II software. Table 2 summarizes the
synthesis results for all three architectures. The MB results exclude
the memory, which is implemented in a predefined on-chip RAM
block and not in logic elements. The 3FLS architecture has a logic
complexity that is between the other two architectures, and it has a
frequency of operation that is the same as the MB architecture.

For ASIC synthesis, we used Synopsys tools with 0.18 µm TSMC
generic libraries. The design was optimized by using the Design-
Ware library components for adders with fast carry look-ahead and
for shifters. The operating voltage of the design is 1.6 volts. The re-
sults are summarized in Table 3. The area and power results for the
3FLS architecture are better than the results for the MB architecture
(the MB results include the area and power for a 320-bit latch-based
asynchronous RAM). The operating speeds are comparable, how-
ever. The 3FLS architecture would therefore be suited for embedded
systems with area/power constraints. For higher performance, even
more specialized or advanced library cells could be employed for
integration with processors that would be used for decoding applica-
tions. Further optimizations could include pipelining the combina-
tional logic in Figure 1 if its propagation delay exceeds the critical
path through the execute (EX) stage of the processor with which the
logic is integrated.

4. PERFORMANCE RESULTS FROM SIMULATION

Performance results were obtained by simulating the execution of
software for MPEG-4 variable-length decoding on a model of a ge-
neral-purpose pipelined processor with and without the decoding
support of the MFLS architecture. The simulations were performed
with tools provided by Tensilica, Inc., for their configurable Xtensa
processor core [7]. Using the Tensilica Instruction Extension (TIE)
language, the proposed vldecode instruction from Section 2 was
added to the instruction set, along with other instructions to set or
obtain the contents of the group control register with M = 3. The
simulations were initially configured for a processor with 32-kbyte,
4-way-associative data and instruction caches using 32-byte blocks.
The processor pipeline and the memory hierarchy were modeled,
with a data cache miss penalty of 14 cycles and an instruction cache
miss penalty of 13 cycles.

The simulated MPEG-4 code is the MoMuSys MPEG-4 refer-
ence software in the C language [5]. The variable-length decoding
portion of the reference software was modified to use our new in-
struction; the Tensilica tools allow the use of special C functions to
represent the operation of a new instruction, from which the compiler
generates executable machine code with the new instruction. The
simulated performance results are reported only for computations re-
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Table 4. Group information for VLC tables in MPEG-4
LNZmin Right Shift Offset

Group 0 - 5 -
Group 1 3 7 96
Group 2 6 4 480

Table 5. Performance results for MPEG-4 VLD
Video Orig. (Mcycles) 3FLS (Mcycles) Speedup

Coastguard 431 201 2.14x
Waterfall 180 84 2.14x
Mobile 771 361 2.14x

lated to the frequently-used MPEG-4 intra- and inter-transform coef-
ficient tables B-16 and B-17, which were modified appropriately for
the new vldecode instruction. Each modified table for 3FLS has
528 entries as compared to 205 entries for the original tables. The
settings of the group control register with M = 3 for both tables are
provided in Table 4.

The results from decoding 100 frames (352×288, 30 fps) in
three commonly-used MPEG-4 test video sequences are provided
in Table 5. Use of the MFLS architecture in the processor that ex-
ecutes the modified software led to a doubling of performance over
the original code on the base processor. This result was achieved
with just one group control register.

For further insight, additional simulations were conducted with
different cache configurations. Table 6 summarizes results for the
Coastguard video sequence. With a smaller cache size, the perfor-
mance of the modified software using the MFLS architecture is less
sensitive to the cache associativity than the original software on the
base processor.

5. MEMORY EFFICIENCY ANALYSIS

We also analyzed the codeword table sizes for the reference MPEG-
4 decoder software that was used in the simulation experiments in
order to characterize the memory required for VLC tables using dif-
ferent methods. The results are provided in Table 7. The first col-
umn lists the tables used in MPEG-4 video coding. Table B-12 is the
motion vector table. Tables B-16 and B-17 are the intra- and inter-
transform coefficient tables, respectively. These three tables are the
most frequently-accessed tables in the decoder software. The second
column lists the number of codewords in the original tables. The last
three columns indicate the number of entries in the modified tables
for the three VLD architectures being compared in this section. The
total memory requirements for all tables under each method are also
provided (assuming 4 bytes per entry). The 3FLS architecture re-
quires less than half of the storage of the SFLS architecture.

6. CONCLUSION

The multiple fixed-length suffix (MFLS) architecture proposed in
this paper provides a generic programmable solution for accelerating
variable-length decoding in general-purpose processors for various
multimedia formats including MPEG-1/2/4, H.261/3/4, and JPEG.
The hardware extension for MFLS consists of a modest amount of
combinational logic and a group control register. The parameter M
for MFLS defines the maximum number of codeword groups that
a hardware implementation will support; larger values of M imply
a larger group control register and increased hardware complexity.

Table 6. Performance results for different cache configurations
Cache Size Orig. (Mcycles) 3FLS (Mcycles)
32KB-4way 431 201
32KB-direct 458 208
16KB-4way 458 221
16KB-direct 490 221

Table 7. MPEG-4 VLC table sizes
Table Orig. 3FLS SFLS MB
B-12 65 134 352 87
B-16 205 528 1152 350
B-17 205 528 1152 350

Total entries 475 1190 2656 787
Total memory 1.90KB 4.76KB 10.62KB 3.15KB

Compared to our earlier architecture proposals, the MFLS archi-
tecture results in lower memory requirements than the single fixed-
length suffix (SFLS) architecture and reduced hardware complexity
with respect to the memory-based (MB) architecture, as reflected
in synthesis results for FPGA and ASIC implementation. Simula-
tion results using MPEG-4 reference software demonstrate that the
MFLS architecture with M = 3 can double performance in the com-
putations related to the intra- and inter-transform coefficient tables.
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