
PACKET SCHEDULING OF STREAMING VIDEO WITH FLEXIBLE REFERENCE FRAME
USING DYNAMIC PROGRAMMING AND INTEGER ROUNDING

Gene Cheung, Wai-tian Tan

Hewlett-Packard Laboratories

ABSTRACT

Video coding standards like H.264 offer the flexibility to select ref-

erence frames during motion estimation for predicted frames. We

investigate the packet scheduling problem of streaming video over

lossy networks from a real-time encoder with flexible reference frame.

In particular, we consider a multi-path streaming setting where each

predicted frame of video, in addition to the flexibility to select a ref-

erence frame, can schedule one or multiple transmissions on one or

multiple delivery paths for the upcoming optimization period. We

present an algorithm based on dynamic programming that provides

a locally optimal solution with high complexity. We then present a

rounding method to reduce computation complexity at the expense

of degrading solution quality. Results show that our algorithm per-

forms noticeably better than a greedy scheme, and graceful tradeoff

between complexity and solution quality can be achieved.

1. INTRODUCTION
Advances in video coding and networking have created new

flexibilities in the design of streaming algorithms. An exam-

ple is reference frame selection (RFS) of video coding stan-

dards like H.264 [1], where each coding block within a pre-

dicted frame can choose among several previously encoded

frames for motion prediction. This allows a live encoder to

avoid using lost frames as references, thereby controlling er-

ror propagation. Another example is multi-homing, where a

client is equipped with multiple network interfaces, such as

802.11b and WCDMA. Using both interfaces has obvious ad-

vantages including higher throughput and less variability.

While it is clear that streaming can be enhanced by ex-

ploiting these flexibilities, high complexity is required to jointly

select optimal parameters for options afforded by the multi-

ple flexibilities. Specifically, based on feedbacks, at a given

optimization instance a live encoder must choose reference

frames for predicted frames and transmit frames one or mul-

tiple times using one or multiple interfaces. To make such

selection, we investigate an algorithm based on dynamic pro-

gramming that produces a locally optimal solution with high

complexity. We then apply an integer rounding technique to

the algorithm to reduce the complexity at the expense of de-

grading solution quality. Results show that our proposed al-

gorithm performs noticeably better than a greedy algorithm

derived from the simplified version of RaDiO [2].

The paper is organized as follows. After discussing re-

lated work in Section 2, we present our source and network

models in Section 3. We present our optimization algorithm

in Section 4. In Section 5, we discuss an integer rounding-

based procedure to reduce the algorithm complexity at the

cost of solution quality. Results and conclusion are presented

in Section 6 and 7, respectively.

2. PREVIOUS WORK
Video coding standard H.264 [1] has superior coding perfor-

mance over previous standards like MPEG-4 and H.263 over

a broad range of bit rates. Part of H.264 definition is the

flexibility of using any arbitrary frame to perform motion-

estimation, originally introduced as Annex N in H.263+ and

later as Annex U in H.263++. Early work on enhancing stream-

ing using RFS includes [3, 4]. Our work differs from these

works by employing a complexity-scalable optimization pro-

cedure and also applying optimization to jointly perform ref-

erence frame (RF) and transmission path (TP) selection.

Recently, [5] proposes the reorganization of the predic-

tion structure of a group of pictures (GOP) to minimize the

effects of losing a single P-frame. We differ from [5] in two

regards: i) we maximize the expected performance — the av-

erage case, while [5] minimizes the worst case; and, ii) we

adapt our scheme according to observed network conditions.

Our recent work [6] has shown that dynamic program-

ming plus integer rounding can be applied to the joint selec-

tion of reference frame, QoS and delivery path in a multi-path

environment without feedbacks. This paper is a generaliza-

tion in three important regards: i) we permit retransmissions

of lost packets given available client feedbacks; ii) GOP struc-

ture is generalized so that any frame can be real-time encoded

as an I-frame or a P-frame; and, iii) transmission delay in

each path is modeled as a shifted-Gamma-distributed random

variable. With these enhancements, we obtain a more gen-

eral framework for packet scheduling over multiple paths with

feedbacks and flexible reference frames.

3. ASSUMPTIONS AND PROBLEM FORMULATION
In our intended application scenario, a sender is jointly op-

timizing encoding of video and its transport over two net-

work paths via two network interfaces to the client. On the

live-encoder side, we choose previously encoded frames to

be used for references. On the transport side, we choose the

number of transmissions for each encoded frame over the two

19691424403677/06/$20.00 ©2006 IEEE ICME 2006

1 2 3 4

r3,1 r4,2

r2,1
r3,2

1,1r r2,2 r3,3

r4,3

r4,4

Fig. 1. Example of DAG Source Model

interfaces. We first present the source and network models,

then discuss our objective function.

3.1. Directed Acyclic Graph Source Model
Our optimization is run periodically with period P , where

during each optimization instance, a window of M consec-

utive frames of a Mmax-frame video sequence is under con-

sideration for (re)transmission, and each frame in the win-

dow can be coded either as an intra-coded frame (I-frame) or

an inter-coded frames (P-frames). For simplicity, we assume

frames 1 to M are being optimized, though in reality they can

be any M consecutive frames in the Mmax-frame sequence.

Each frame i (Fi) must be delivered to the client by a play-

back deadline Di or is rendered useless. At the next optimiza-

tion instance, the window advances k frames in the sequence,

where k is the number of leading frames with playback dead-

lines having expired at the client. Each Fi has a transmission

history hi which records the times and numbers of transmis-

sions on each path the optimization had selected for Fi in

previous optimization instances (more in Section 3.2).

We model the decoding dependencies of the M frames in

the window using a directed acyclic graph (DAG) G = (V, E)
with vertex set V, |V| = M , and edge set E , similar to [2].

Specifically, each frame Fi, i ∈ {1, . . . , M}, represented by

a node i ∈ V , has a set of outgoing edges ei,j ∈ E to nodes

j’s. Fi can use Fj as reference iff ∃ei,j ∈ E . We define

xi,j to be the binary variable indicating whether Fi uses Fj as

reference. Equivalently, given i, we define xi,j as:

xi,j =

j
1 if Fi uses Fj as RF ∀j ∈ V | ei,j ∈ E
0 otherwise

(1)

H.264 syntax generally allows different coding blocks to use

different reference frames. Instead, we restrict all blocks in a

frame to use the same reference frame to reduce optimization

complexity. We now have the following RF constraint:X
∀j|ei,j∈E

xi,j = 1 ∀i ∈ V | i �= 1 (2)

We assume that only frames in the past are used for refer-

ence, i.e. ∀ei,j ∈ E , i ≥ j. Further, we limit the number of

candidate reference frames for any predicted frame Fi to be

Emax � M . An example of a DAG of a 4-frame sequence is

shown in Figure 1 with Emax = 2. We denote by ri,j the bit

count of Fi when Fj is used as reference. We assume a sparse

rate matrix r of size O(M2) is computed a priori (to be dis-

cussed in Section 6) as input to the optimization algorithm

(sparse because each row has at most Emax entries).

3.2. Network Model
We first assume that the network imposes a maximum trans-

port unit of size MTU bytes, so that frame of size larger than

MTU will be fragmented. For transmission of packet of size

≤ MTU bytes on path k, we assume a time-invariant packet

erasure channel with random delay as in [2]. More specifi-

cally, let πk be the packet erasure probability of path k, and

gk(γ) be the shifted Gamma distribution with parameters αk,

λk and κk that describes the probability distribution of delay

random variable γk of path k:

gk(γk) =
λ

αk
k (γk − κk)αk−1 e−λk(γk−κk)

Γ(αk)
κk < γk < ∞

(3)

where Γ(αk) is the Gamma function. This means that a

packet sent on path k at time to will have probability of cor-

rect transmission by time T , δk(t), t = T − to, defined by:

δk(t) = (1 − πk)

Z t

κk

gk(γ)dγ (4)

We allow each Fi to select two transmission levels (QoS)

q0i, q1i ∈ Q = {0, 1, . . . Q} indicating the number of

(re)transmissions until the next optimization instance on path

0 and 1, respectively. At a given optimization instance to, se-

lection of QoS level q0i and q1i and frame size ri,j , together

with Fi’s transmission history hi, will induce a frame delivery
success probability p(hi, q0i, q1i, ri,j) ∈ R.

We derive p(hi, q0i, q1i, ri,j) given our network model.

We first define Fi’s history hi of length li as:

hi = {(fi, q0
(1)
i , q1

(1)
i , t

(1)
i), (q0

(2)
i , q1

(2)
i , t

(2)
i), . . . ,

(q0
(li)
i , q1

(li)
i , t

(li)
i)} (5)

where the reference frame Fj selected for Fi is denoted by

fi, and QoS selections and transmission time of instance k

are denoted by q0(k)
i , q0(k)

i and t
(k)
i , respectively. Let ni =⌈ ri,fi

8∗MTU

⌉
be the number of packets required to encode Fi us-

ing reference frame fi. The frame delivery failure probability

of using QoS q0i at time to is then ζ0(q0i, ni, Di − t0):
ζ0(q0i, ni, Di − t0) = (1 − δ0(Di − t0)

ni)q0i (6)

If Fi is not ACKed, p(hi, q0i, q1i, ri,j) can be written as:

p(hi, q0i, q1i, ri,j) = 1 − ζ0(q0i, ni, Di − to)ζ1(q1i, ni, Di − to)

liY
k=1

ζ0(q0
(k)
i , ni, Di − t

(k)
i)ζ1(q1

(k)
i , ni, Di − t

(k)
i) (7)

p(hi, q0i, q1i, ri,j) = 1 if Fi is ACKed.

3.2.1. Network Resource Constraint
We impose network constraints on the amount of resource we

can use per optimization period. Accordingly, the constraints

for path 0 and path 1 are respectively:

MX
i=1

X
∀j|ei,j∈E

xi,j q0i ri,j ≤ R̄0

MX
i=1

X
∀j|ei,j∈E

xi,j q1i ri,j ≤ R̄1 (8)

1970

Constraint parameters R̄0 and R̄1 are network available band-

width scaled by optimization period P . Network bandwidth

can be estimated, for example, using congestion control algo-

rithms like TCP-friendly rate control (TFRC).

3.3. Objective Function
The objective function we selected is the expected number

of correctly decoded frames at the decoder for the M frames

in the optimization window. Each frame Fi is correctly de-

coded iff Fi and all frames Fj’s it depends on are delivered

on-time and drop-free. We write j � i if frame Fi depends on

frame Fj . Mathematically, maximizing this objective func-

tion means computing:

max
{xi,j},{q0i},{q1i}

8<
:

MX
i=1

Y
∀j�i

X
∀k|ej,k∈E

xj,k p(hj , q0j , q1j , rj,k)

9=
;
(9)

The problem is then: given pre-computed rate matrix r and

delivery success probability function p(hi, q0i, q1i, ri,j), find

variables {xi,j}, {q0i} and {q1i} that maximize (9) while sat-

isfying the RF constraint (2) and the network resource con-

straints (8). This formally defined optimization is called the

RF / QoS / Path scheduling problem (RQP scheduling).

4. DYNAMIC PROGRAMMING ALGORITHM
RQP scheduling can be easily shown to be NP-hard. To tackle

the problem, we first construct a weakly exponential algo-

rithm using dynamic programming to produce a locally op-

timal solution. Second, we introduce a rounding technique

that allows multiple complexity-quality tradeoff points.

The algorithm composes of two recursive functions: Sum()
and Prod(). Sum(i, R0, R1) returns the locally optimal ex-

pected number of correctly decodable frames for frame F1

to Fi given available network resources R0 and R1 for path 0

and 1. Prod(j, i, R0, R1) returns the probability that Fj is de-
coded correctly given R0 and R1 for path 0 and 1 are locally

optimally distributed from F1 to Fi. A call to Sum(M, R̄0, R̄1)
yields the locally optimal solution. Sum(i, R0, R1) and

Prod(j, i, R0, R1) are shown in Figure 2 and 3, respectively.

The recursive case (line 5-15) of Sum(i, R0, R1) locally

tests every combination of RF j and QoS q0 and q1 for Fi

for the maximal expected number of decodable frames. For

a given selection of RF j and QoS q0 and q1, it induces a

resource expenditure of q0 ri,j and q1 ri,j for path 0 and

1 respectively, and hence a decoding probability for Fi of

p(hi, q0, q1, ri,j)∗Prod(j, i−1, R0 − q0 ri,j , R1 − q1 ri,j).
That is added to the expected sum for F1 to Fi−1 — the re-

cursive term Sum(i − 1, R0 − q0 ri,j , R1 − q1 ri,j).
The results of the local search are stored in the [i, R0, R1]

entries of the four dynamic programming (DP) tables (line

16-17). DP tables are lookup tables so that if the same sub-

problem is called again, the already computed result can be

simply looked up and returned (line 1-2).

The complexity of Sum(M, R̄0, R̄1) is bounded by the

time required to populate the DP tables, which can be easily

shown to be O(MEmaxQ
2R̄0R̄1).

function Sum(i, R0, R1)
1. if (DPsum[i, R0, R1] is filled) // DP case
2. { return DPsum[i, R0, R1]; }
3. if (R0 < 0) or (R1 < 0) // base case
4. { return −∞; }
5. S := 0; // recursive case
6. for each j such that ei,j ∈ E ,
7. { for each q0, q1 ∈ Q,
8. { s := Sum(i − 1, R0 − q0 ri,j , R1 − q1 ri,j);
9. if (j = i) // I-frame
10. { s := s + p(hi, q0, q1, ri,j); }
11. else // P-frame
12. { s := s + p(hi, q0, q1, ri,j) ∗

Prod(j, i − 1, R0 − q0 ri,j , R1 − q1 ri,j); }
13. if (s > S)
14. { (S, X, Y, Z) := (s, j, q0, q1); }
15. } }
16. (DPsum[i, R0, R1], DPind[i, R0, R1]) := (S, X);
17. (DPqos0[i, R0, R1], DPqos1[i, R0, R1]) := (Y, Z);
18. return S;

Fig. 2. Locally Optimal Algorithm Sum(i, R0, R1)

function Prod(j, i, R0, R1)
1. if (R0 < 0) or (R1 < 0) // base case 1
2. { return 0; }
3. if (j = i = 1) // base case 2
4. { return DPsum[1, R0, R1]; }
5. X := DPind[i, R0, R1];
6. (Y, Z) := (DPqos0[i, R0, R1], DPqos1[i, R0, R1]);
7. if (j < i) // recursive case
8. { P := Prod(j, i − 1, R0 − Y ri,X , R1 − Z ri,X); }
9. else // j = i
10. { P := p(hi, Y, Z, ri,X) ∗

Prod(X, i − 1, R0 − Y ri,X , R1 − Z ri,X); }
11. return P ;

Fig. 3. Companion Function Prod(j, i, R0, R1)

4.1. Companion Recursive Function Prod(j, i, R0, R1)
From line 12 of Figure 2, we assume that Prod(j, i, R0, R1)
is called after Sum(i, R0, R1) has been called, so we will as-

sume entries [i, R0, R1] of the DP tables are available during

execution of Prod(j, i, R0, R1).
The recursive case has two sub-cases: i) when j < i (line

8), we recurse on Prod(j, i − 1, .) given we know resources

Y ri,X and Z ri,X on path 0 and 1 are optimally used for

node i; and, ii) when j = i (line 10), we know term i of

the product term — p(hi, Y, Z, ri,X). The maximum product

will be this term times the recursive term Prod(Y, i−1, R0−
Y ri,X , R1 − Z ri,X).

5. ROUNDING-BASED COMPLEXITY SCALING
Having the dynamic-programming based, weakly exponential

Sum(i, R0, R1), we now perform integer rounding to trade

off complexity with solution quality. The rounding technique

DP dimension rounding [6] reduces the size of the DP tables,

hence reduces complexity.

We first scale and round down budgets R̄0 and R̄1 by fac-

tor KDR ∈ R — i.e.
⌊

R̄0
KDR

⌋
and

⌊
R̄1

KDR

⌋
— as input to the

optimization. We then scale and round up costs of transmit-

ting predicted frame Fi, qi ri,j’s, by the same factor KDR

— i.e.
⌈

qi ri,j

KDR

⌉
. Implementationally, we accordingly rewrite

line 8 and 12 of Sum(i, R0, R1) of Figure 2:

8. s := Sum(i − 1, R0 −
l

q0 ri,j
KDR

m
, R1 −

l
q1 ri,j
KDR

m
);

1971

12. s := s + p(hi, q0, q1, ri,j) ∗
Prod(j, i − 1, R0 −

l
q0 ri,j
KDR

m
, R1 −

l
q1 ri,j
KDR

m
);

Cost terms in line 8 and 10 of Prod(j, i, R0, R1) in Figure 3

are similarly modified. Scaling down R̄0 and R̄1 means scal-

ing down the dimension of the DP tables, hence the complex-

ity is reduced by a factor of K2
DR at the cost of decreasing so-

lution quality. Using Sum(i, R0, R1) and Prod(j, i, R0, R1)
with the rewritten lines, the complexity of algorithm is now:

O(MEmaxQ
2R̄0R̄1K

−2
DR).

6. EXPERIMENTATION
We developed a network simulator called multiple-path net-

work simulator (muns). Each transmission path k is imple-

mented as a queue of constant service rate µk, followed by

an identical and independently distributed (iid) packet era-

sure channel with shifted-Gamma-distributed delay. Upon

each packet arrival, client informs the server of its status us-

ing ACK with zero client feedback delay. Parameters for

the delay distributions for path 0 and 1 are (α0,λ0,κ0) = (3,

0.1, 80) and (α1,λ1,κ1) = (2, 0.1, 80), respectively. Packet

loss rates are set at (π0, π1) = (0.06, 0.10) for trial 1, and

(π0, π1) = (0.04, 0.08) for trial 2.

We use H.264 version JM8.4 [7] to encode a 300-frame

QCIF MPEG sequence news sub-sampled in time by 2, at

quantization 25 and 20 for I-frames and P-frames respectively,

resulting in coding rate 140.38kbps if each P-frames Fi is

coded using its previous frame Fi−1. To get rates ri,j’s, we it-

eratively force each frame Fi to use reference Fi−t for motion

prediction during iteration t = {0, 1, 2, 3, 4, 5}. The resulting

coding rate is ri,i−t. We assume Emax = 5. The optimization

period is P = 300ms, and window size is M = 8.

6.1. Results 1: RQP Scheduling Comparison
For the first set of experiment, we show that our optimiza-

tion has practical merits and out-performs a competing greedy

scheme. We first fixed the combined bandwidth of the two

paths, R̄0 + R̄1, at 150kps. Rounding parameter KDR was

kept constant at 1000. By varying the share of 150kbps band-

width to the first path bandwidth R̄0, we tracked the corre-

sponding performance at the client in PSNR, where if a frame

is not correctly decoded, the correctly decoded frame closest

in the past is used to replace it. The sequence was replayed

300 times for an averaging effect.

We compared our algorithm opt to a scheme greedy
that contains elements of the simplified RaDiO [2]. Specif-

ically, given budgets R̄0 and R̄1 in the two paths, it incre-

mentally selects the best combination of reference frame, QoS

and delivery path(s) that maximizes the benefit-to-cost ratio,

where benefit is the increase in objective value (9), and cost is

the increase in bit expenditure. greedy proceeds until both

budgets are expended.

PSNR versus path 0 bandwidth R̄0 for both schemes un-

der both trials are shown in Figure 4a. We see that PSNR

increased with R̄0. This is expected since path 0 has lower

0 50 100 150
39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

path 0 bandwidth

P
S

N
R

"news" 150kbps PSNR Comparison

(0.06,0.10)−opt
(0.06,0.10)−greed
(0.04,0.08)−opt
(0.04,0.08)−greed

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

36.5

37

37.5

38

38.5

39

39.5

40

40.5

DP dimension rounding parameter

P
S

N
R

"news" PSNR Comparison

(0.06,0.10)
(0.04,0.08)

a) PSNR vs. path 0 bandwidth b) PSNR vs. rounding parameter

Fig. 4. Streaming Performance for news

loss rate. Further, we see that opt outperformed greedy by

0.32dB to 0.85dB in the trial 1 and 0.36dB to 0.78dB in trial

2. This provides evidence that opt is an effective scheme for

RQP scheduling.

6.2. Results 2: Performance / Complexity Tradeoff
We next show that graceful tradeoff of performance and com-

plexity can be achieved. We held bandwidths of the two paths

R̄0 and R̄1 constant at (50kps, 100kps). KDR was varied

to observe the tradeoff between performance and complexity.

PSNR versus KDR for both trials are shown in Figure 4b.

We see that as KDR increased, solution quality suffered

due to rounding and PSNR decreased for both trials. More im-

portantly, we see that PSNR decreased gradually over a wide

range of rounding parameters. This suggests that a very wide

range of useful complexity scaling can be realized using the

rounding parameter KDR.

7. CONCLUSION
We study packet scheduling of streaming video with flexible refer-

ence frames in a multi-path network scenario with feedbacks. In

particular, we first presented an algorithm based on dynamic pro-

gramming with high complexity. We then presented a rounding tech-

nique to allow multiple complexity / quality tradeoff points. Results

showed that graceful complexity / quality tradeoff can be achieved

over a wide range.

8. REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
h.264/avc video coding standard,” in IEEE Transactions on Circuits and Systems
for Video Technology, July 2003, vol. 13, no.7, pp. 560–576.

[2] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized media,”
Tech. Rep. MSR-TR-2001-35, Microsoft Research, February 2001.

[3] T. Wiegand, N. Farber, and B. Girod, “Error-resilient video transmission using
long-term memory motion-compensated prediction,” in IEEE J. Select. Areas.
Comm., June 2000, vol. 18, no.6, pp. 1050–1062.

[4] Y.J. Liang, M. Flieri, and B. Girod, “Low-latency video transmission over lossy
packet networks using rate-distortion optimized reference picture selection,” in
IEEE International Conference on Image Processing, Rochester, NY, September
2002.

[5] C.-M. Huang, K.-C. Yang, and J.-S. Wang, “Error resilience supporting bi-
directional frame recovery for video streaming,” in IEEE International Conference
on Image Processing, Singapore, October 2004.

[6] G. Cheung and W. t. Tan, “Reference frame optimization for multi-path video
streaming using complexity scaling,” in International Packet Video Workshop,
Irvine, CA, December 2004.

[7] “The TML project web-page and archive,” http://kbc.cs.tu-berlin.de/ stewe/vceg/.

1972

