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ABSTRACT
A joint rate-distortion-complexity H.264 motion search framework
is proposed to balance the encoder’s coding efficiency and complex-
ity in an embedded system environment. Under our framework, the
complexity of H.264 motion search is primarily measured by the
execution time of the sum of absolute differences (SAD) calcula-
tion. Two Lagrange parameters are used to terminate the complexity-
inefficient motion search rounds and skip redundant motion search
of small block modes, respectively. Then, the relationship between
the weighted complexity and the Lagrange parameters is explored
to allocate the complexity cost among different coding units. It is
demonstrated by experimental results that the proposed method can
reduce the complexity without much sacrifice in coding efficiency.

1. INTRODUCTION

Motion estimation is one of the most time-consuming units in the
H.264 encoder due to the use of multiple reference frames, vari-
able block sizes and fractional pixel interpolation. Several fast mo-
tion search algorithms such as the diamond search and the hexagon
search were developed to accomplish a significantly faster speed
while maintaining similar R-D performance as compared to the full
search. They achieve a great success in the GPP system. However,
the speed-up of these fast motion search algorithms when imple-
mented on embedded systems is however not as impressive due to
the limited resource of the embedded environment. Thus, it is crit-
ical to study an effective tradeoff between resource utilization in an
embedded system and coding efficiency.

The complexity-constrained motion estimation has been stud-
ied for a long while. For example, Kossentini et al. explored the
complexity-constrained MPEG-2 motion search in [1], where little
attention was paid to the bit rate increase due to lower computational
complexity. There were also efforts to reduce the motion compen-
sation cost in the decoder. Some researchers studied the decoder-
friendly encoder algorithm that generates low-decoding-complexity
and high-quality bit stream for decoders [2]. The complexity re-
duction in the H.264 encoder in an embedded environment is quite
different from previous work on complexity reduction in general pur-
pose processor (GPP) systems, and most previous research was con-
ducted from a pure algorithmic viewpoint. To our best knowledge,
there has been little research conducted to balance the R-D perfor-
mance and the complexity cost of H.264 motion estimation in the
encoder end under an embedded environment.

Our proposed scheme is motivated by two observations. First,
for fast motion search algorithms such as the diamond search, not
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every round of local refinement can achieve equally good SAD re-
duction. By eliminating the complexity-inefficient SAD operations,
motion estimation can be accelerated at the cost of little bit rate in-
crease. Second, due to the video signal characteristics, motion esti-
mation of smaller block modes is often redundant. For instance, less
than 10% MBs are encoded by block modes smaller than 8×8. Thus,
by skipping motion search of unnecessary modes, we can speed up
the motion estimation process without sacrificing the coding effi-
ciency much. Our overall objective in this work is to minimize the
complexity of the motion search yet maintaining high video quality.

Simply speaking, we propose a joint rate-distortion-complexity
(R-D-C) optimization framework to balance the coding efficiency
and the complexity cost of the H.264 encoder in this work. The
method can cut off the complexity-inefficient motion search rounds,
skip redundant motion search of small block modes and terminate
motion search at the optimal R-D-C points. Our scheme saves the
complexity for the motion search up to 35% with a small bit rate
increase and negligible video quality degradation.

2. PROPOSED MOTION SEARCH SCHEME

2.1. Rate-Distortion Optimization

In video coding, a rate control algorithm dynamically adjusts en-
coder parameters as as to achieve a target bit rate and video qual-
ity, where the Lagrangian method is a widely accepted approach for
bit allocation. The Lagrangian method is applied into two stages:
motion compensation and residue coding. In the stage of motion
compensation, specifically, for each block B with fixed block mode
M , the motion vector associated with the block is selected through
a joint rate-distortion (RD) cost function [3] via

JR,D
Motion = DDF D + λMotionRMotion, (1)

where RMotion is the estimated bit rate to record the motion vector,
DDF D is the prediction error between the current and the reference
blocks and JR,D

Motion is the joint R-D cost comprising of RMotion

and DDF D, and λMotion is the Lagrange multiplier to control the
weight of the bit rate cost. JR,D

Motion is widely used to determine
the optimal displacement vector. The process is shown in Fig. 1(a),
where JR,D

Motion is employed to terminate any further search effort in
the fast motion search schemes and JR,D

Motion(i) is the best joint R-D
cost in the ith search round.

Similarly, the joint cost of distortion and block mode selection
in the residual coding stage can be written as

JR,D
Mode = DRec + λModeRRec, (2)

where RRec is the estimated bit rate associated with mode M . DRec

is the difference between the reconstructed MB and the reference
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Fig. 1: Local refinement and mode decision with JR,D
Motion.

one, and λMode is the Lagrange multiplier. The motion vectors as-
sociated with the optimal block mode will be the coded data recorded
in the bit stream.

The Lagrange multipliers used in the above two cost functions
determine the relative weights between the signal quality and the
bit rate. To simplify the search procedure, an empirically derived
relationship as shown below is generally used in practice if SAD is
used in modeling DDF D while SSD is used for DRec:

λMotion =
p

λMode. (3)

2.2. Rate-Distortion-Complexity Optimization

Two new Lagrange parameters ”λ′
Motion” and ”λ′

Mode” are adopted
in our R-D-C framework to control the tradeoff between the R-D
feature and complexity consumption. Parameter ”λ′

Motion” is used
to determine the motion search process in one block mode while pa-
rameter ”λ′

Mode” is employed to decide whether the motion search
of subsequent block modes (of smaller block sizes) should be con-
ducted or not.

We can include the complexity cost in the R-D optimization cost
in (1) via

JR,D,C
Motion = JR,D

Motion + λ′
MotionCMotion, (4)

where JR,D
Motion is the R-D cost function defined in (1), CMotion

is the complexity cost function for given block type B and mode
M , λ′

Motion is the Lagrange multiplier for the complexity term,
and JR,D,C

Motion is the newly defined joint R-D-C cost function in our
scheme, which replaces JR,D

Motion in Fig. 1(a). By using JR,D,C
Motion, the

motion search process of a specific block mode will be terminated
at the point where the R-D joint cost function JR,D

Motion reduction
is not worth the complexity cost. Due to the low-efficiency of 7-
block-mode search for H.264, some simplified algorithms have been
developed to eliminate unnecessary modes. In [4], instead of testing
all block modes from the largest to the smallest blocks, this fast al-
gorithm tests mode 8× 8 after mode 16 × 16 as shown in Fig. 1(b).
If the combined R-D cost of mode 8 × 8 is less than mode 16 × 16,
the search jumps directly to mode 4×4 while ignoring modes 16×8
and 8×16. By doing so, unnecessary modes are skipped to speed up
the search process. A similar idea can be used to skip modes 8 × 4
and 4 × 8.

Table 1: Block modes and their SAD complexity.

Index
Block

IC
ET

WeightIC WeightETMode (cycle)
1 16 × 16 1180 631 15 13
2 16 × 8 634 337 8 7
3 8 × 16 662 363 8 8
4 8 × 8 325 183 4 4
5 8 × 4 152 88 2 2
6 4 × 8 168 95 2 2
7 4 × 4 80 49 1 1

Due to the large number of capacity misses occurring in the
switch of modes, the complexity cost should include the decision
whether it is worthwhile to continue to search in subsequent modes.
Thus, instead of using JR,D

16×16 and JR,D
8×8 in the comparison modules

for the simplified algorithm [4] as shown by grey rhombuses in Fig.
1(b), we define a new cost function as

JR,D,C
Mode = JR,D

Motion + λ′
ModeCMode, (5)

where JR,D
Motion is the R-D cost function given in (1), CMode is the

complexity due to search using block modes of 8×8 or 4×4, λ′
Mode

is the Lagrange multiplier, and JR,D,C
Mode is the newly defined R-D-C

cost function, which is used in the simplified algorithm to decide
whether motion search should be continued in subsequent modes or
not. That is, once the reduction of joint R-D cost function JR,D

Motion

is not worthwhile, the price paid by motion search for mode 8×8 or
4 × 4, its subsequent block modes is saved to accelerate the motion
estimation process.

For simplification, we adopt the restriction given in Eq. (3) to
limit the search space for the complexity Lagrange parameters. In
the experimental section, i.e., Sec. 3, the following relationship be-
tween λ′

Motion and λ′
Mode will be employed

λ′
Mode =

p
λ′

Motion. (6)

For the joint R-D-C function discussed earlier, we need a quan-
titative model for the complexity associated with each candidate mo-
tion vector and the block mode. Generally speaking, there are two
types of complexity measurement: instruction count (IC) based and
execution-time (ET) based. The former employs the instruction count
as a metric to determine the weight of SAD operations under differ-
ent block modes. This method works for the situation where cache
miss does not play an important role in program execution, e.g., a
GPP system or an embedded system with a reasonably large cache.
An even simplified estimation can be given by considering the block
size alone. For example, if the SAD cost of one 4 block is one unit,
then the SAD cost of one 16 × 16 block is 16 units. The ET-based
method is more accurate since it uses the profiling data to decide the
weight assigned to each mode. The instruction-based and ET-based
results are listed in Table 1 for comparison.

Then, the complexity cost of the ith block mode motion search
can be expressed by

Ci = Ni × Wi, (7)

where Ni is the SAD number of block mode i (1 ≤ i ≤ 7), and Wi

is the associated complexity weight. The ET-based weight given in
Table 1 is used in our experiment. Please also note that the complex-
ity weight is for block modes i = 4 or 7 only (i.e. 8 × 8 and 4 × 4
blocks) in the computation of CMode. The complexity of a video
frame is the weighted complexity sum of all the SAD calculations
required by this frame.
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Fig. 2: Relationship between the Lagrange multiplier and average

complexity per frame.

2.3. Complexity Control

Complexity control, which is analogous to rate control, is a proce-
dure to determine parameters such as Lagrange multipliers λ′

Motion

and λ′
Mode so as to allocate complexity costs among different cod-

ing units. In this section, we will describe complexity modeling and
multiplier selection which is used to characterize the relationship be-
tween the target complexity and the Lagrange multiplier.

For complexity control, an important task is to determine the re-
lation between the complexity and the control parameter such as the
Lagrange multiplier. There is little theoretical analysis available for
H.264 motion search. Consequently, we resort to simulations. The
relationship between the average complexity per frame and param-
eter γ, which is related to the Lagrange multiplier λ′

Mode via (9) is
shown in Fig. 2 for P and B frames. Experimental data points are
indicated by various symbols while the fitting curves are polynomial
functions in Fig. 2. Thus, we can derive a complexity model as

C = a0(t) +
a1(t)

γ + 1
, (8)

where C is the weighted average complexity of each frame, a0(t)
and a1(t) are model parameters to be learned during the coding pro-
cedure. and

γ =

j
log2(λ

′2
Mode) + 1, λ′

Mode ≥ 1,
0, λ′

Mode = 0.
(9)

Therefore, by the adjustment of the Lagrange parameters in our pro-
posed method, the weighted complexity can be efficiently reduced.
Due to a different coding mechanism, P and B frames have different
model parameters and they have to be handled separately.

Table 2: Description of Experimental Data and Parameters.
Sequence information

Sequence name Akiyo, Foreman, Mobile and Stefan
Frame size CIF (352 × 288 pixels)
Video format 30fps, GOP 300, IPBPB sequence

Simulation Parameters
QP 1, 4, 10, 16, 22, 28, 34, 40, 46 and 51
λ′

Motion 0 to 1024
H.264 Encoder

Block mode All on
Motion estimation Diamond
S-P Frame No
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Fig. 4: Frame-to-frame computational complexity and video quality

comparison.

3. EXPERIMENTAL RESULTS

The experiment environment used in our simulation, including the
test data and chosen parameters, is listed in Table 2. Four typical test
sequences, representing the low, medium, high and very high motion
conditions, are chosen. Due to the speed and code size concern ,
x.264 [5] is used as our H.264 reference codec.

Due to the limited space, only the results of ”Foreman” and ”Ste-
fan” sequences are exhibited here. Fig. 3 shows the rate-distortion
(R-D) curves and the rate-complexity (R-C) curves parameterized
by different λ′

Mode values. The complexity value is measured in
terms of the accumulated weighted SAD complexity required by 100
frames in the motion search process. We have several important ob-
servations. First, by choosing different values of λ′

Mode, it is effi-
cient to control the computation complexity. Up to 35% of the SAD
search cost can be eliminated within a small range of λ′

Mode. Sec-
ond, the R-D performance is well maintained while the complexity
decreases. As shown in these figures, the PSNR degradation is less
than 0.2dB and the bit rate increase less than 3% when compared to
the original bitstream with λ′

Mode = 0.
Furthermore, the frame-to-frame complexity and quality com-

parison over the entire ”Stefan” sequence with QP equal to 28 are
shown in Fig. 4(a) and Fig. 4(b), respectively. We see a saving of
up to 26.2% complexity cost with less than 2% bit rate increase and
0.02 dB quality loss.

The R-D-C performance at different QP values for λ′
Mode = 32

is summarized in Table 3, where we show the difference in the PSNR
degradation (PD) between the bit stream generated by the original
H.264 encoder and our complexity control algorithm. The results
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Fig. 3: The rate-distortion (R-D) and rate-complexity (R-C) curves for ”Foreman” and ”Stefan” under different Lagrange multipliers.

Table 3: R-D-C performance.
Quantization Parameter

4 16 28 40

Akiyo
PD (10−2dB) 0.033 0.029 0.024 0.415
CS (%) 6.58 5.43 7.54 7.15
BI (%) 0.78 1.58 0.33 0.98

Foreman
PD(10−2dB) -1.625 1.73 10.2 0.064
CS (%) 27.0 25.1 29.4 34.2
BI (%) 0.90 2.39 0 2.24

Mobile
PD (10−2dB) 0.56 2.82 4.07 3.32
CS(%) 13.7 12.0 9.76 14.2
BI (%) .865 1.41 1.39 0.576

Stefan
PD (10−2dB) 13.75 7.37 1.30 0
CS (%) 26.7 25.9 26.2 26.0
BI (%) 0.424 0.655 1.65 2.40

confirm that a large amount of complexity saving (CS) is achieved
at the cost of a small bit-rate increase (BI) and almost zero quality
degradation. Complexity saving for different test sequences can vary
depending on the content type such as motion activity. There is little
motion in the “Akiyo” sequence so that its motion search cost is low.
For the “Mobile” sequence, there is steady camera motion (slowly
panning to the left) so that it is challenging. Although every MB is
moving, yet the motion vector for each MB is small due to the steady
slow motion. Even for this challenging case, our proposed method
can still achieve about 15% complexity saving while keeping the R-
D characteristics. The excellent performance of the proposed algo-
rithm can be explained below. During the local refinement process in
motion search, not every round of search can achieve an equal effect
in SAD reduction. Removing those less efficient ones for complex-
ity saving only increases the prediction error slightly. Thus, the bit
rate goes up slightly while the PSNR value is maintained.

4. CONCLUSION

A joint rate-distortion-complexity motion estimation was proposed
for H.264 motion search in this work. The complexity of H.264 mo-
tion search is measured by the execution time of SAD calculation,
which is a function of the block size. Specifically two Lagrange pa-
rameters are used to cut off the complexity-inefficient motion search
rounds and skip redundant motion search of small block modes re-
spectively. Then, the relationship between the weighted complexity
and the Lagrange parameters is explored to determine the complex-
ity costs in different coding units. A wide spectrum of test sequences
with low to high motion was chosen to demonstrate the strength of
our proposed complexity-adaptive motion search algorithm. Up to
35% of motion search complexity can be saved at the encoder with
less than 0.2dB PSNR loss and a maximum increase of 3% bit rate.
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