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ABSTRACT 

This paper proposes an effective method for converting any 

fast DCT algorithm into an approximate multiplierless 

version. Basically it approximates any constant in the 

original transform by a signed digit representation. We 

developed an efficient algorithm to convert any constant into 

a signed digit string with a minimum number of non-zero 

signed digits and a reduced length. As the accuracy of an 

approximated algorithm depends critically on the assignment 

of signed digits to the constants, this paper formulated an 

effective algorithm for finding an effective signed digits 

configuration which could minimize the MSE of an 

approximated DCT algorithm with a specified complexity. 

Experiment results show that the AAN’s fast DCT algorithm, 

approximated by the proposed method and using an 

optimized configuration can be used to reconstruct images 

with high visual quality in terms of PSNR. 

1. INTRODUCTION 

In signal processing, fast algorithms of 1-D DCT has been 

investigated extensively. In image and video signal 

processing, 2-D DCTs are being widely used. Since a 2-D 

DCT is separable in its matrix form, it can be implemented 

by the row-column application of the 1-D DCT.  

In order to speed up the transform, many fast algorithms 

have been proposed for floating-point DCT [1]. To achieve 

even faster transform, multiplierless implementation has 

been investigated for more than one decade. In [2], the 

eight-point integer DCT (ICT) used in image and video-

coding standards was developed based on the principle of 

dyadic symmetry. However, this method can hardly be used 

to implement fast DCT algorithms. Tran [3] and others [4,5] 

proposed techniques to convert fast floating-point DCT 

algorithms of a certain type into their approximate integer or 

multiplierless versions, and developed two integer DCTs 

known as BinDCT and IntDCT respectively. 

Chan and Yiu [6] proposed a family of multiplierless 

discrete cosine and sine transforms represented in sum-of-

power-of-two (SOPOT) form. They approximated Wang’s 

fast algorithm [7] by first factorizing the rotation matrices in 

the fast algorithm to triangular matrices and then converting 

them into the SOPOT representation. They used a random 

search to find the SOPOT coefficients. 

However, the foregoing methods require the presence of 

rotation matrices or butterfly structures in any fast algorithm 

to be converted. So, they cannot be used to approximate 

other fast algorithms such as AAN’s [8] and Lee’s [9] DCT 

algorithms, which do not have the required structures. 

Moreover, the above publications only approximate an 

algorithm’s kernel constants; it is expected they still need to 

use real arithmetic in the normalization step. This paper 

addresses two important issues: (1) how to convert fast 

algorithms without butterfly structures; (2) how to assign 

signed digits to approximate the constants in order to 

minimize the errors of an approximated DCT algorithm 

having a certain target complexity.  

2. MULTIPLIERLESS DCT CONVERSION 

DCT is a kind of linear transform; this section introduces a 

method for linear transform approximation which is related 

to our proposed methodology for converting any fast DCT 

algorithm into an approximate multiplierless version. 

2.1 Linear Transform Approximation 

Any real number c can be approximated by a sum of several 

power-of-two terms; that is, 2
m i

ii k
c a r  where 

{ 1, 0,1}ia , k and m are positive integers, and r is the 

remainder term or the error term. Any float operation c x

involving a constant multiplied by a data point x can be 

converted into a number of shift-and-add operations on x by 

approximating c with a number of power-of-two terms. For 

any linear transform Y C X  involving a real constant 

multiplication, where X , C , and Y  are the domain vector, 

the transform matrix consisting of real constants, and the 

range vector respectively, we can apply the above technique 

to convert each of the real constant multiplications into shift-

and-add operations; then a multiplierless version of the 

transform can be obtained. This kind of conversion can, 

however, introduce an approximation error. The size of the 

error would depend on the magnitude of r .

To reduce the complexity of a linear transform, we need 

to approximate each constant with the minimum number of 

non-zero digits. The algorithm below converts any constant 
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c into its signed digit representation with the minimum 

number of non-zero signed digits. This algorithm has a 

complexity O(n), where n is the desired number of non-zero 

digits.  

2.2 Minimum Signed Digits Conversion Algorithm 

The proposed algorithm for finding the MSD for a given 

constant c consists of the following steps: 
1. Let { }S    // the set of binary tuples for non-zero signed digits. 

2. if c  0 then m=
2

log c else m=
2

log ( )c ;

3. find minimum of 
( )

( )2
m i

c c s  where s {-1,1}, and i {-1,0,1}; 

4. Add  (s, m+i) to S; let c c ;

5. if termination condition not satisfied then goto 2; 

6. Convert the tuples in S into a signed digits string; 

7. Replace the most significant digits in the signed digit string having the 

pattern 10 1 by 11

The above algorithm generates the minimum number of 

non-zero signed digits for a given real constant. It is actually 

a greedy algorithm that picks the most significant digit in 

each iteration as a signed digit. It is different from the CSD 

[10] generation method that eliminates consecutive non-zero 

digits from their binary representation. Besides, the power-

of-two terms generated here are in decreasing order in 

magnitude. For any power-of-two term generated, it is larger 

than the sum of other terms generated afterwards. 

Mathematically, we have
1

2 2
m

m i

i k
, for all integer m

and k<m. The last step of the above algorithm is an attempt 

to reduce the length of the signed digits representation of a 

constant by 1 without jeopardizing its accuracy. 

 Below are three possible termination conditions for the 

above algorithm:  

1. A specified number of non-zero digits (d) has been found. 

2. The approximation error (r) is less than a given value ( ).

3. A certain power-of-two index (m) has been reached. 

For example, to approximate the number 3.141592654 

with the proposed MSD representation, the respective 

signed digit strings based on the above three different 

termination conditions will be: 

1.  11.0010010001-- termination condition with d = 5; 

2.  11.001001-- termination condition with = 310 ;

3.  11.001-- termination condition with m = 32

The last step of the above algorithm would convert each 

of the above signed digit strings into an equivalent one with 

its length reduced by 1. For instance, the signed digit string 

101.0010010001 would be changed to 11.0010010001 . In 

converting a DCT algorithm into an approximate 

multiplierless version, we can employ the above technique 

to find an MSD representation for each constant. The 

number of digits actually used to approximate a constant 

would depend on the approximation error allowed. In 

general, if more digits are used, we have a better 

approximation of the constant, and more shift-and-add 

operations. Therefore, to determine the number of digits to 

be used, we need to consider the allowable approximation 

error, and the target complexity of the algorithm. 

3. CONVERSION OF AAN’S FAST ALGORITHM 

The scaled DCT fast algorithm proposed by AAN [8] has 

the smallest number of multiplications. Its kernel requires 

only 5 multiplications, and its normalization step involving 

eight multiplications is expected to be incorporated into the 

quantization step. Fig. 1 shows the original signal flow 

diagram of AAN’s forward transform algorithm. It contains 

a butterfly structure involving C2 and C6 and two non-

butterfly structures involving C4. A butterfly structure has 

the form shown in Fig.2a, which is equivalent to the 

structure shown in Fig. 2b, which can be further converted 

into the lifting steps as shown in Fig. 2c. We converted all 

AAN’s butterfly structures into lifting steps before using our 

proposed method to approximate the DCT algorithm.
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Fig. 1. Forward AAN’s fast algorithm 

Tran [3] proposed a method to convert Chen & Smith’s 

[11] and LLM’s [12] DCT algorithms, with each 

multiplication inside a butterfly structure, into their 

approximate multiplierless versions. However, this method 

cannot convert any DCT algorithm having a constant not 

included in a butterfly structure. In AAN’s DCT algorithm, 

there are two non-bufferfly structures involving a 

multiplication with the constant 
4C  as shown in Fig.1. These 

non-bufferfly structures violate the conditions 11 0r  or 

11 22 21 22 0r r r r in [3] required for using Tran’s conversion 

method which, therefore, cannot be employed to 

approximate AAN’s algorithms. 

However, using our proposed method, we can replace 

the multiplications involving the constants 
4 1 1 2
, , ,C by 

shift-and-add operations only. Then we can make AAN’s 

DCT kernel free from real arithmetic. Thus, the approximate 

multiplierless version of the forward transform and that of 
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the inverse transform can be easily obtained. We can also 

convert all the multiplications involving the normalization 

constants into shift-and-add operations so that the whole fast 

algorithm can be made multiplierless. 
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Fig. 2. Converting butterfly structure (2b) obtained from (2a), into lifting 

step structure (2c). 

4. FINDING A SIGNED DIGITS CONFIGURATION 

Suppose there are n constants C1, C2, …and Cn in a fast 

DCT algorithm and they are assigned d1, d2, …and dn signed 

digits respectively. Then (d1, d2, …dn) is called a signed 

digits configuration of the algorithm being approximated. 

The total number of all the signed digits is defined as the 

length of the configuration. The complexity of the algorithm 

depends partly on the length of its signed digits 

configuration. An algorithm approximated by two different 

configurations should have the same complexity as long as 

they have the same length. However, the two different 

configurations with the same length may lead to different 

MSEs. The reason is that the MSE of an algorithm can be 

more sensitive to some constants and less sensitive to others. 

If a configuration assigns more digits to the sensitive 

constants and fewer to those less sensitive ones, we can get a 

smaller MSE. It is not easy to know which constants are 

sensitive, however, they could be searched by examining all 

possible configurations of a given length and compute the 

MSEs. Then we can find an optimized configuration with 

the smallest MSE. However, this exhaustive approach could 

be infeasible especially when there are many constants. The 

algorithm outlined below aims at finding an optimized 

configuration.  

Algorithm for finding an optimized configuration with 

length L for a DCT algorithm having n constants 
1. Let P=(d1, d2, …dn) be the initial signed digits configuration and its 

length is L; e = MSE of algorithm with configuration P; /* Number 

of additions contributed by configuration P would be L-n. Assume 

the target complexity of the algorithm allows only L-n additions 

from the signed digits configuration. */ 

2. for each {1... }i n ; Qi = P; increment di of Qi by 1; compute MSE 

,P i
e  of algorithm with Qi;   // no. of additions from Qi = L-n+1.

3. find the minimum
,P i

e ; let  Q = Qi;

4. for each {1... }i n ; let Qi=Q;  decrement di of Qi by 1; compute 

MSE 
,Q i

e of algorithm with Qi; // no. of additions from Qi : L-n

5. find the minimum
,Q i

e ; let P = Qi;

6. if (e not equal to 
,Q i

e ) then {e= 
,Q i

e ; goto 2;} 

7. exit  // minimum MSE: e; optimized configuration: P with length L

Fig.3 shows the MSEs of the approximated AAN’s 

forward transform algorithm with optimized configurations 

of different lengths and those for configurations with equal 

number of digits assigned to each constant. Clearly using an 

optimized configuration can achieve a substantial 

improvement in MSE especially when the configuration 

length is small.  
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Fig. 3. MSEs of AAN’s forward transform algorithm with different 

signed digits configurations for various target complexities (A: 

optimized configurations; B: configurations with equal number of 

digits for each constant) 

5. RESULTS

The performance of different approximate multiplierless 

DCT algorithms can be evaluated based on three different 

types of results, namely, the mean square error (MSE), the 

algorithm complexity, and the PSNR. 

5.1. Algorithm Complexity and MSE 

The complexity of an approximate multiplierless DCT 

algorithm can be measured in terms of the number of 

additions and the number of shifts. Table 1 shows the 

complexities of the different configurations of AAN’s 

algorithm with approximated forward transform. The 

complexity depends on the number of digits assigned to each 

constant, whether the normalization step has been converted 

into add-and-shift operations. If the normalization step has 

not been converted, there will be 8 float multiplications. 

TABLE 1: THE COMPLEXITIES OF DIFFERENT CONFIGURATIONS OF THE 

CONVERTED AAN’S DCT ALGORITHM 

Config. 

No. 
Description of constants 

Norm. multi-

plications 

No. of 

Adds 

No. of 

Shifts

#1 All 2 digits, float norm. 8 34 5 

#2 All 4 digits, float norm. 8 44 15 

#3 All 2 digits, converted norm. 0 42 13 

#4 All 4 digits, converted norm. 0 68 39 

The MSE, defined in [3], can be considered as a kind of 

approximation error of a converted DCT algorithm. We note 
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that the MSE of an approximated algorithm can be affected 

by its complexity measured by the number of additions. In 

general, a higher complexity could result in a lower MSE. 

Further, using more bits/digits to approximate a constant can 

increase the number of additions, resulting in a higher 

complexity of the algorithm.  

5.2. Peak Signal to Noise Ratio 

A common metric used to estimate the quality of a 

reconstructed image compared with the original image is the 

peak signal-to-noise ratio (PSNR), which is defined as 

2 2
10 ( , ) ( , )

1 1

1
10 log 255 [ ]

m n

i j i j

i j

PSNR
mn

 in dB  

for any two m n images, where ( , )i j and ( , )i j denote 

respectively the original image pixel value and the 

reconstructed image pixel value at position ( , )i j .

TABLE 2: COMPARISON OF PSNRS (DB) OF APPROXIMATED AAN’S DCT
ALGORITHM WITH DIFFERENT CONFIGURATIONS

Configuration Non-Optimized Config. Optimized config. 

Image/No of + All 2 All 3 All 4 42* 55** 68***

Lena 24.36 36.73 46.25 44.81 46.06 46.11

Baboon 24.17 36.54 46.09 41.64 45.62 45.98

Peppers 24.46 36.80 46.16 44.69 46.05 46.07

Girl 38.02 48.80 47.76 47.62 46.78 46.78

Boat 23.77 36.07 45.75 43.16 45.90 46.04

Camera man 24.03 36.08 45.69 41.47 45.72 46.14

Saturn 28.00 39.55 46.86 46.07 47.13 47.19

where the constants are 
1 1 2 4 4 0 1 2 3 4 5 6 7

{ , , , , , , , , , , , , }
a b

C C n n n n n n n n

    * (2,2,2,2,3,4,2,1,2,1,1,2,2),   ** (3,3,3,4,4,5,3,2,3,2,2,2,3) 

*** (4,3,4,5,5,5,5,4,3,4,3,3,4).  

All 2, All 3, and All 4 have complexities 42, 55, and 68 respectively. 

Table 2 shows the PSNRs of the AAN’s DCT algorithm 

with our proposed multiplierless forward transform and 

normalization based on different signed digits configurations 

for seven commonly used images. When the complexities 

are small, an optimized signed digits configuration could 

achieve a significant improvement in PSNR when compared 

to a non-optimized configuration.  

6. CONCLUDING REMARKS 

This paper presents an effective method to convert any float 

1-D DCT transform into an approximate multiplierless 

version with only shift-and-add operations. Using the 

proposed method, we have converted AAN’s fast DCT 

algorithms into their multiplierless versions. As AAN’s fast 

algorithms do not have the required butterfly structures, they 

cannot be approximated by other published methods. The 

approximation error of a multiplierless algorithm can be 

minimized by exploiting two algorithms proposed in this 

paper: (1) the algorithm for converting any constant into its 

MSD representation (minimum number of signed digits); (2) 

the algorithm for finding an optimized signed digits 

configuration to minimize the MSE of an approximated 

algorithm. The proposed algorithm for finding an MSD 

representation of a constant is efficient and gives a signed 

digit string which could be shorter than a CSD 

representation. While an optimized configuration found by 

the proposed algorithm can minimize the approximation 

error of the multiplierless algorithm in terms of MSE, it can 

also improve the algorithm’s performance in PSNR. 

Experiment results showed that the approximated AAN’s 

DCT algorithm based on an optimized configuration could 

achieve a high performance in PSNR. 

We will explore exploiting the proposed methodology 

to approximate 2-D and 3-D DCT algorithms. 
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