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ABSTRACT 

In this paper, temporal segmentation of 3D video based on 

motion analysis is presented. 3D video is a sequence of 3D 

models made for a real-world dynamic object. A modified 

shape distribution algorithm is proposed to realize stable 

shape feature representation. In our approach, representative 

points are generated by clustering vertices based on their 

spatial distribution instead of randomly sampling vertices as 

in the original shape distribution algorithm. Motion segmen-

tation is conducted analyzing local minima in degree of mo-

tion calculated in the feature vector space. The segmentation 

algorithm developed in this paper does not require any pre-

defined threshold values but rely on relative relationships 

among local minima and local maxima of the motion. There-

fore, robust segmentation has been achieved. The experi-

ments using 3D video of traditional dances yielded encour-

aging results with the precision and recall rates of 93% and 

88%, respectively, on average. 

1. INTRODUCTION 

In recent years, great interests have been paid to dynamic 

three-dimensional (3D) modeling using synchronous multi-

ple cameras [1]-[4]. Such sequential 3D models (we hereaf-

ter call them 3D video) can provide faithful and accurate 3D 

information of the real-world objects from the points of view 

of shape, color, and motion. In this regard, they are different 

from conventional 3D computer graphics and 3D motion 

capture data. 

Our goal is to construct a large-scale database of 3D 

video and to develop efficient tools for their exploitation. 

One of the most essential functions in managing the database 

is motion segmentation of video sequence. It is the first step 

towards automatic annotation, indexing, browsing, retrieval, 

and so forth. In particular, segmenting 3D video into as 

small but meaningful pieces as possible is desired. Important 

to note here is that this motion segmentation is different 

from conventional segmentation for 2D video [5][6], which 

depends on scene changes.  

Related works for motion segmentation can be found in 

2D video [7][8] and in 3D motion capture data [9]-[13]. In 

2D video, object segmentation to extract moving objects was 

usually conducted in the first step. Then, in [7], optical flow 

of moving objects was analyzed by singular value decompo-

sition (SVD) and motion discontinuities in trajectories of the 

basis coefficients over time were detected. In [8], local min-

ima in motion and local maxima in direction change were 

searched. 

There are also a number of segmentation techniques for 

3D motion capture data [9]-[13], since structural features 

such as motion of joints and other feature points are easily 

located and tracked. In [9], local minima in motion were 

analyzed. The idea of searching local minima in kinematic 

parameters was also employed in [10]. Some other ap-

proaches were proposed based on estimation error using 

SVD [11] and least square fitting [12]. In addition, model-

based approaches were reported using Hidden Markov 

Model (HMM) [13] and Gaussian Mixture Model [11]. 

In contrast to motion segmentation of 3D motion cap-

ture data, that of 3D video is much more challenging be-

cause structural features are not available. 3D video is basi-

cally generated frame by frame independently. Therefore, it 

is hard to reveal the correspondence of joints and feature 

points of the object among frames. Therefore, the number of 

3D video segmentation reported so far is quite limited 

[14][15]. In [14], a histogram of distance among vertices on 

3D mesh model and three fixed reference points was gener-

ated for each frame, and segmentation was done when the 

distance between histograms of successive frames crossed 

threshold values. And, more efficient histograms based on 

spherical coordinate system were developed in [15]. The 

problem of these two approaches is that they strongly relied 

on “suitable” thresholding, which was defined only by em-

pirical study (try and error) for each sequence. In addition, 

sensitivity to rotation and translation of the 3D models still 

remained in the histograms. 

Therefore, in this paper, we propose a motion segmenta-

tion technique based on a 3D shape feature extraction algo-

rithm called shape distribution [16]. We have modified the 

original shape distribution algorithm to obtain more stable 

histograms. In addition, we have developed a simple but 

effective segmentation criterion based on the motion. It does 

not require a pre-defined threshold value. In the experiments 

using 3D video of traditional dances, high precision and 

recall rates of 93% and 88%, respectively, have been 

achieved. 
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2. MODIFIED SHAPE DISTRIBUTION 

For 3D video segmentation, two steps of processing are 

needed: feature extraction and motion analysis. With regard 

to feature extraction from 3D models, a number of tech-

niques have been developed aiming at static 3D model re-

trieval [17]. In this study, features of each frame are ex-

tracted and their temporal change is analyzed. 

Among the feature extraction algorithms, shape distri-

bution [16] is known as one of the most effective methods. 

In [16], a number of points (e.g., 1024) were randomly scat-

tered on the 3D model surface and distance between all pos-

sible combination of points was calculated. Then, the histo-

gram of distance distribution was generated as a feature vec-

tor to express the shape characteristics of a 3D model. The 

shape distribution algorithm has a virtue of robustness to 

objects’ rotation, translation, and so on. 

However, histograms using the original shape distribu-

tion cannot be generated stably because of the random sam-

pling of the 3D surface. Fig. 1 shows 30 histograms gener-

ated for the same 3D model selected from our 3D video. The 

histograms were generated by scattering 1024 vertices and 

setting the bin number as 1024 (divided the range between 

maximum and minimum values in distance into 1024). It is 

observed that the shapes of the histograms fluctuate and 

sometimes a totally different histogram is obtained. In [16], 

deviation in the histograms was not so significant because 

rough feature extraction was pursued for similar shape re-

trieval of static 3D models. On the other hand, in our case, it 

is required to clarify a slight shape difference among frames 

in 3D video. 

Therefore, we have modified the original shape distribu-

tion algorithm for more stability. Since vertices are mostly 

uniform on the surface in our 3D models, they are firstly 

clustered into 1024 groups based on their 3D spatial distri-

bution employing vector quantization as shown in Fig. 2. 

The code vectors are regarded as representative vertices for 

calculating distance. Although such clustering process is 

computationally expensive, it needs to be carried out only 

once in advance. Therefore, the computational cost can be 

neglected. As a result of the clustering, representative points 

are distributed uniformly and generation of more stable his-

tograms has been made possible. In our algorithm, the bin 

number is set to 1024. After obtaining histograms, smooth-

ing is applied to them to remove noise. 

The changes in the shape of generated histograms corre-

spond to those in posture or shape of 3D models. Therefore, 

in our algorithm, the distance between histograms are util-

ized to express the degree of motion. 

3. MOTION SEGMENTATION 

In motion segmentation, for dance sequences in particular, 

motion speed is an important factor. When human change 

motion type or motion direction, the motion speed becomes 

small. More importantly, motion is shortly paused at seg-

mentation points to make the dance look elegant.  

Searching the points when the motion speed becomes 

small is achieved by looking for local minima in distance 

between the histograms of the successive frames. In this re-

gard, our approach is similar to [8][9]. The difference is that 

since movement of feature points of human body in 3D 

video is not clear like motion capture data, the degree of 

motion is calculated in the feature vector space. 

In [9], the extracted local minima in motion speed were 

verified by thresholding whether they were truly segmenta-

tion points or not. The local minimum values should be 

lower than a predefined threshold value and the local maxi-

mum values between the local minima should be higher than 

another threshold. In this respect, threshold optimization 

depending on input data was still required in [9]. 

In our scheme, local minima are regarded as segmenta-

tion points when the two local maxima on both sides of the 

local minimum value (Dlmin) are greater than 1.1 x Dlmin.

Since the verification is relative, it is robust to data variation 

and no empirical decision is required. In addition, one di-

mensional data of motion speed goes thorough smoothing 

process with a Gaussian-like filter. 
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Fig. 1. Thirty histograms for the same 3D model (shown on 

the upper side) using the original shape distribution [16]. 

Fig. 2. Concept of modified shape distribution. Vertices of 

3D model are firstly clustered into 1024 groups by vector 

quantization in order to scatter representative vertices uni-

formly on 3D model surface and to generate histogram 

stably. 
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4. EXPERIMENTAL RESULTS 

In our experiments, four 3D video sequences generated by 

the system developed in [4] were utilized. The parameters of 

the data are summarized in Table 1. The sequences #1 and 

#2 are Japanese traditional dances called bon-odori and the 

dance #3 is a Japanese warm-up dance. The sequences #2-1 

and #2-2 are identical but performed by different persons. 

Fig. 3 demonstrates the subjective segmentation results 

by eight volunteers. They were asked to define motion 

boundaries without any instruction nor others’ segmentation 

results. In this experiment, when results of four (50%) or 

more subjects voted for the same points, the segmentation 

boundaries were defined. The results were used for evalua-

tion. For the sequences #2 and #3, the segmentation bounda-

ries were defined by the authors. 

The segmentation results for the sequence #1 are illus-

trated in Fig. 4. The ordinate represents the distance between 

histograms of successive frames. The dotted arrows from (a) 

to (k) represent the subjectively defined segmentation points 

shown in Fig. 3. The solid arrows are the results of our sys-

tem. There was only one over-segmentation. In addition, no 

miss-segmentation was detected. The over-segmentation 

between (f) and (g) was due to the fact that the pivoting foot 

was changed while the dancer was rotating and motion speed 

decreased temporarily.  

As another example, the first 15 segmentation points 

(approximately, out of 21 seconds) obtained from sequence 

#2-1 are shown in Fig. 5. It is observed that the 3D video 

sequence is divided into small but meaningful segments. 

There was only one over-segmentation and no miss-

segmentation for the period, which is not shown in the figure. 

In our algorithm, only the distance between two succes-

sive frames are considered. Fig. 6 shows the precision and 

recall rates when more neighboring frames are involved in 

the distance calculation using sequence #2-1. As the number 

of frames involved in the calculation increases, recall rate is 

slightly improved while precision rate declines. This is be-

cause involving more neighboring frames in calculating the 

degree of motion corresponds to neglecting small or quick 

motion. Our 3D video was captured at 10 frames/s due to the 

system constraint. In such a low frame rate case, calculating 

the distance between only the successive frames yields the 

best performance. 
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Fig. 4. Comparison of subjectively defined segmentation 

points and results of our system for sequence #1. 
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Fig. 5. First 15 segmentation points in sequence #2-1. 
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Fig. 6. Precision and recall rates when the number of 

neighboring frames involved in calculation of degree of 

motion was changed. Sequence #2-1 was used. 

Table 1. Summary of 3D video utilized in experiments. 

Sequence # 1 # 2-1 # 2-2 # 3 

# of frames 173 613 612 1,981 

# of vertices 

(average) 
83k 17k 17k 17k 

# of patches 

(average) 
168k 34k 34k 34k 

Resolution 5 mm 10 mm 10 mm 10 mm 

Frame rate 10 frames/s 
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Fig. 3. Subjective segmentation results for sequence #1 by 

eight volunteers. 
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Table 2 summarizes the segmentation performance. 

There are only a few miss- and over-segmentations per min-

ute. Since the sequence #3 contains complicated motion, 

which is hard to detect, the number of miss-segmentations is 

larger than the other sequences.  

Most of the miss-segmentations were caused because 

the dancer did not pause properly even when the motion type 

changed. On the other hand, over-segmentation occurred 

when the motion speed decreased even when the meaning of 

the motion did not change. An example is shown in Fig. 7. 

The dancer is drawing a big circle by arms, and the motion 

speed decreases at the top of the circle. To resolve the prob-

lem, high-level motion observation may be needed. 

5. CONCLUSIONS 

In this paper, motion segmentation for 3D video was dis-

cussed. A robust and stable shape feature extraction has 

been realized by the modified shape distribution algorithm 

to scatter representative points uniformly on the 3D model 

surface. Then, the degree of motion was expresses as the 

distance between histograms of successive frames. Segmen-

tation boundaries were defined by searching the local min-

ima in motion speed with a simple verification process 

which does not require pre-defined threshold values. As a 

result, such high precision and recall rates as 93% and 88%, 

respectively, on average have been achieved. In our future 

work, we are planning to apply our feature representation 

and segmentation results to similar motion retrieval of 3D 

video. 
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