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ABSTRACT

To be viable advertising platforms, methods for in-program

content placement in sports video must balance against 

clutter. We propose viewer relevance (VR) measures of 

video frames in the temporal and spatial domain. Video sub-

segments with low temporal VR are first selected, within

which actual content is emplaced on regions with low

spatial VR. We compute VR measures using color, motion,

texture and domain features, upon which spatio-temporal

techniques are used to segment spatial regions for actual

content placement. Results from preliminary subjective 

viewing trials on soccer and tennis video indicate that our 

approach is promising.

1. INTRODUCTION 

Because of its global appeal, sports video is a key driver

content for distribution on consumer and mobile devices.

Recent progress in the automatic extraction of sports 

highlights [1-3] has also herald a secondary market for

mobile game highlights. In such context, traditional fixed-

slot advertising model may not be applicable. In-program

placement are more suitable, and are already used in sports 

broadcast showing attendant data such as play time/score-

bar or advertising effects such as trademark logos and 

animation overlays. There is a need to balance between

maximizing exposure and minimizing clutter. Image overlay

systems are simple but the logo “pop-out” must be sporadic.

Realistic 3D content blending systems can support more

frequent exposures but only at the expense of elaborate

sensor-based tracking [5] and image processing [6].

In this paper, we extend our initial work in [4] to

explore content placement in sports video, where we seek to 

automate the sporadic logo “pop-out”. Figure 1 shows the

work-flow. Short highlight clips (~30secs) in a sports video

(manually segmented or automatically extracted) are input

to the system. Using ideas from an attention model [7], a 

Temporal Viewer Relevance (TVR) curve is computed by 

fusing various visual features over time. The aim is for TVR

to return high values on video segments that depict

“relevant” game moments. Contiguous frames along a

trough on the TVR curve are the supposedly “low” points in

the game, and deemed to be amendable for content

placement. To locate a “suitable” placement location on

each of these frames, we assign Spatial Viewer Relevance 

(SVR) values to the local spatial regions. A spatio-temporal

approach is used to define a saliency value based on the

dynamic pixel variations in the frames. More precisely,

image frames are first divided into fixed-size overlapping

blocks, on which color, texture and motion features are

extracted. Accumulating over all frames, we obtain a feature 

volume for each block. A SVR value is then computed for 

each block based on the entropy of its feature volume.

Ideally, low SVR values should be assigned to blocks of 

crowd clutter and moving background.

In summary, TVR first tells us when to do content

exposure. SVR then points us to where to do the placement.

In what follows, Section 2 and 3 will provide details of the

temporal and spatial VR measures we have implemented for 

soccer and tennis video. Results and discussions of 

subjective viewing trials are presented in Section 4 before 

concluding on some future work in Section 5. 

2. TEMPORAL VR 

A typical sports video highlight is likely to straddle across 

multiple scenes depicting pre-event play, main event and

post-climax. For example, a soccer video highlight showing 

a goal would include short segments of the action leading
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Figure 2. “Problem” with arbitrary placement 
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up to the goal (high VR), the climactic goal (peak VR) and

finally the celebratory response (lower VR). The aim is for

TVR to mirror these relevance values by a non-linear fusion

of three visual features extracted from every frame:

dominant color (dc), motion (mv) and texture (tx):

2.1. Dominant Color

Sports video is frequently characterized by the presence of a

dominant color, eg, green soccer field. In a sports video 

highlight, the non-dominant color frames are usually the

post-climax frames depicting player close-up or celebratory

response. Ignoring low intensity pixels, denote

and , , as the 

histogram of the HSI-color component of all pixels in a 

frame f. The histogram entropy for H component P
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and PI are similarly computed. PH, PS and PI will be low

whenever there is a dominant component in their histograms.

The final dc is computed as a reciprocal: 
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2.2. Motion

To obtain mvf of a frame f, each pixel is first computed for

its optical flow using [8]. The magnitude of flow vectors

and their direction uniformity provide an indication of the

global motion. Define mfi,j,f as the magnitude of pixel (i,j)

with flow vectors (dx,dy) normalized over all frames as: 
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For flow direction, we quantize every flow vector in frame f 

into D=8 direction-bins and accumulate into histogram HM.

The direction entropy mpf is computed as: 
D

d

MMf dplogdpmp ))(()( , where

d
M

M
M

dH

dH
dp

][

][
)(

fmp is low when the flows are aligned. The final mvf is:
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2.3. Texture

Texture measures based on the Gray Level Co-occurrence

Matrix (GLCM) are used. Let p(i,j,d, ) be the normalized

GLCM of pixels (i,j) separated by distance d in orientation

. The Contrast thw is the moment of inertia around the

matrix’s diagonal and indicates the smoothness of pixel

variation within a window w:
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The final texture txf is computed by summing thw over all w

and normalizing by the maximum over the video.
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2.4. Fusion

To obtain the final TVR curve, we use a priori formulation:

ff

f
f txmv

dc
TVR

This encodes the observation that frames characterized by a

high dominant color dc (usually pre- and main event frames)

are intuitively more important. Frames showing high motion

mv and background clutter tx (usually post-climax frames)

will return lower TVR values. Content placement, if any, 

ought to be performed on the latter. Low TVR segments can

now be selected using a straightforward duration-based

scheme. A sliding window, corresponding to the desired

exposure duration, accumulates the TVR values under the 

curve. The window with the least cumulative TVR sum can

then be used as the starting frame for content exposure. An

empirical threshold T is applied to ensure that the TVR

cumulative sum is sufficiently low.

3. SPATIAL VR 

Once TVR isolates the post-climax frames, content can 

arguably be placed anywhere outside the “Rule of Third” 

(RoT) center area. However, as Figure 2 shows, arbitrary

placement may not yield the best effect. The wide area at

the top is a better choice as it has the most background

uniformity and contrast. Its elongated geometry would also

fit a horizontal text ticker well. These considerations lead us

to develop a block-based spatio-temporal approach. 

3.1. Block-based Spatio-Temporal Entropy

In this method, overlapping fixed-size spatial blocks are 

first defined over each image frame, from which visual 

features are extracted and quantized. If we think of the

quantized features in a block as its states along the temporal

1894



Figure 3. Spatio-Temporal Entropy maps 

(a) Key-frame (b) Color STE (c) Texture STE

axis, the distribution of the state (feature) transitions may be

obtained by a temporal histogram, and the corresponding

probability distribution function (pdf) approximated by

normalization. Accumulating features over a block also

encodes into the pdf the collective spatial relationship of

pixels within their local neighborhood. Once a feature pdf of 

a block is obtained, its entropy can be used as a measure of 

feature consistency.

For example, in the case of color, we extend the HSI

color component histograms defined in Section 2.1 to

accumulate colors from pixels in the same spatial blocks 

over all frames in the sequence. Denote CSTHb as the new 

spatio-temporal color histogram for the bth block.

Normalizing, we obtain the block color-pdf : 
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where  is the HSI quantization space. The color spatio-

temporal entropy at block b is then given by:
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Without further elaboration, the block-based feature entropy

for texture can similarly be built. The feature entropy values

can be projected onto an energy map. Figure 3 shows some

examples. Given a modality, a high feature consistency

within the temporal accumulation window will induce a low 

STE value. For example, the central blocks in the soccer 

frames (top-row) show a greater color uniformity compared

to the background clutter. This is a result of the camera

tracking the celebrating player in his red jersey throughout

the shot. Similarly, the texture STE map in the tennis frames

(bottom-row) registers a higher texture consistency in the

middle blocks covering the spectator area. In contrast, the

blocks covering the stadium top and tennis court area show

more changes as a result of camera panning. 

3.2. Spatial Segmentation and Placement 

Additional steps are needed to segment each STE map into 

candidate regions. A Gaussian smoothing filter is first 

applied to remove high frequency noise before collating all

blocks with STE below a threshold. This threshold is

iteratively raised so that the cumulative area of all blocks

covers one-tenth of the image area. Morphological closing

and opening with a horizontal kernel is then used to join

neighboring blocks. Examples of the final regions are 

shown in red bounding boxes in figure 3. 

There are several considerations as to which candidate 

regions to use and the appropriate type of content

placement. Firstly, all regions overlapping with the center 

RoT area are rejected. Secondly, candidate regions from the

Color-STE maps tend to have greater background

uniformity and hence are suitable for a text/image overlay

using alpha keying. This is a relatively unobtrusive

placement. Enhanced text visibility can also be achieved by 

selecting a foreground color with the best contrast to the

mean background. On the other hand, candidate regions in

Texture-STE maps tend to be clutter areas and moving

background. An overlay needs to have its own background

for better contrast. This type of placement is visually more

intrusive, but is arguably acceptable as it only occludes

“irrelevant” video data. Lastly, the geometry of the

candidate regions can be used to decide whether a text,

image or animation is more suitable.

Figure 4. Average TVR profiles of video from the 4 types of test data, 
normalized to unit duration and unit cumulative TVR area. 

4. EXPERIMENTAL RESULTS 

We examine the validity of our priori VR formulation by

running the content placement algorithm on broadcast sports

editorial video. Data from two sports domain are tested:

soccer from the weekly highlights of the English Premier

League/Euro-2004, and tennis from the daily highlights of 

the French Open/Wimbledon Open. We manually segment

the video into individual short highlight clips, removing all

non-game segments such as interviews and commercials.

Because our VR is formulated to model the boundaries of a

single game event, we also removed the replays. A total of 

53 soccer highlights and 42 tennis highlights are segmented.

Figure 4 shows the average TVR profiles of video from the

4 tournaments normalized to unit duration and unit

cumulative TVR area. The troughs are clearly seen. Usually,

these are the transition to the post-climax scenes. The slight 

variations among the 4 profiles are due to the difference in

broadcast style and venue ambience. For instance, the EPL 

highlights tend to show a lot more of the post-climax scenes,

and hence their troughs are generally earlier.
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Of the 95 input clips, 13 (throughput=86%) fail to

detect their TVR troughs below the cumulative threshold T

(Section 2.4; empirically set to 0.019 in our experiments).

This happens when the post-climax scenes are too short. An 

example is when play resumes very quickly and the camera

switches back to the far-view focus on the dominant color

field. The TVR would then treat that as part of the main

event segment, and fail to register a trough. In general, our 

TVR model works best when there is a clear demarcation of 

pre-event, main-event and post-event boundaries. This is

also why when applying TVR on automatic video highlights

generated by [3,4], throughput drops to only ~30%.

Once post-climax frames are segmented, SVR saliency

values are computed to find a placement location. In our

experiments, we used spatial blocks of size 8 by 8, each of 

which overlap with its adjacent blocks by 4 pixels (overlap 

of 50%). We found that visual features in a frame sequence

increase in entropic randomness over time. As a result,

many high entropy blocks are rejected (Section 3.2). On

shorter temporal accumulation window (<3-secs), the STE 

maps show better homogeneity. Hence, all segmented TVR

troughs must first be minimally 3-secs long. Then, using a

fixed sliding window of 3-secs, the entire feature volume of 

each spatial block is divided into overlapping sub-volumes.

The final STE value of the spatial block is the least STE 

value computed on all its sub-volumes.

To assess the suitability of placement locations, we 

conduct simple subjective viewing trials as follows. First,

25 short video highlight clips are randomly selected.

Content placement is performed on 16 of these clips, using a

short list of famous trademarks such as Nike, McDonald,

etc. Some examples are shown in figure 5. The 25 clips are 

then merged in random order. To minimize bias, subjects

are asked to watch the video to answer some trivia questions

and are only told of the deliberate content placement after

the viewing. They are then asked to write down all the

trade-mark names in the video, including whether the

placements are visually acceptable. From the answers, we

compiled 2 subjective statistics: Subtlety, which measures

the subjects’ ability to recall the logos, and Acceptability,

whether people can accept the “extra” content in the video 

presentation. Subtlety is computed as the percentage of 

logos correctly recalled and is indicative of the “eye-

catchiness” of the placements. Acceptability is calculated by

the normalized scale index. 

Table 1. Subjective results from 23 subjects, 16 placements 

Sports (duration, # of placement) Subtlety Acceptability

Soccer (2:53, 8) 57% 52%

Tennis (4:03, 8) 43% 67%

Average 50% 60%

The cumulative results over 23 viewers are shown in 

Table-1. Most commented that they only noticed the pattern

of placements only after a few have appeared. Given that 

our logo exposures were only over small screen area, we

consider the subtlety rate of 50% to be a fairly high recall 

rate, which is good news for advertisers.

5. CONCLUSIONS AND FUTURE WORK 

A framework for automatic content placement in sports 

video highlights is developed in this paper. A combination

of generic visual features are computed from the video and 

combined to form a measure of viewer relevance in both the

temporal and spatial domain. Our results on editorially-

created clips show that our VR model is fairly accurate. 

This can be seen as domain-specific user attention 

modeling, where a priori knowledge such as the presence of 

a dominant color in sports video is factored into the VR. It

is interesting to see how this can be generalized in other

video domain such as movie trailers and Music TV. 
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Figure 5. Examples of content placement 
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