
NEAR-FUTURE STREAMING FRAMEWORK FOR 3D-TV APPLICATIONS

Goran Petrovic

Eindhoven University of Technology
5600 MB Eindhoven, The Netherlands

g.petrovic@tue.nl

Peter H. N. de With

LogicaCMG / Eindhoven Univ. Technol.,
PO Box 7089, 5605 JB Eindhoven, Netherlands

P.H.N.de.With@tue.nl

ABSTRACT

This paper presents a layered framework for 3D-TV applica-
tions, combining multiview and depth-image based approaches
in a scalable fashion. To solve the problem of missing data
due to disocclusions, we add specific layers for coded oc-
clusion data and the edge-mask information for high-quality
3D rendering of key objects in the scene. We show how the
same framework can be extended towards FTV applications
by jointly addressing simulcast and multicast transmission.
By adopting a distributed delivery architecture, new interest-
ing properties can be realized such as shared processing for
the creation and streaming of virtual viewpoints.

1. INTRODUCTION

In an attempt to anticipate future deployment of 3D-video
systems [1], the MPEG community has recently singled out
two application scenarios: Three-Dimensional Television (3D-
TV) and Free Viewpoint Television (FTV), and one enabling
technology - Multi-View Video Coding (MVC) [1]. We find
these recommendations adequate in that they point the ways
in which more realism can be added to the conventional TV
and video systems. A recent survey of MVC standardization
activities [1] illustrates a strong bias towards existing stan-
dards (e.g., H.264). Although this viewpoint can be under-
stood, we believe that the opportunity exists to further ex-
plore combinations of video data, scene geometry informa-
tion, scalability and interactivity to improve the overall frame-
work and pursue a broadly applicable architecture. These
combinations will be discussed in more detail in this paper.

The 3D-TV application enables a viewer to perceive depth
in the displayed scene. Two closely spaced images of the
same scene are displayed simultaneously to create the effect
of depth. This is a well-known concept of stereoscopic video,
which 3D-TV extends from the service perspective, by defin-
ing a suitable infrastructure for broadcasting such content to
the users. With FTV, a scene can be displayed from different
viewpoints in an interactive fashion. A user either selects an
arbitrary new viewpoint and a viewing direction, or the user’s
movements are continuously tracked and the displayed con-
tent automatically adjusted to the new position.

Stereoscopic and multi-perspective scene viewing require
new approaches for content acquisition, coding, transmission
and display [1]. Our aim in this paper is to explore the de-
sign space for 3D-TV and FTV services, while focusing on
the content transmission and delivery aspects. The main mo-
tivation in doing so is that the transmission system issues cur-
rently receive little attention in 3D-video research, although
equally important as the corresponding 3D content model-
ing and recording techniques. The position we take is that
the IP-based networks are best positioned to serve as a sub-
strate for the gradual deployment of 3D-TV and FTV ser-
vices, and also as their long-term operational environment.
We justify our position on IP-based networks with the fol-
lowing arguments: (1) Internet is where the interactive appli-
cations have their natural place; (2) Service deployment over
the Internet opens access to a large client base, including a
growing number of mobile users, which is important for the
service acceptance; (3) Internet end-nodes are equipped with
programmable processors, and algorithms implementing new
functionalities can be realized in software, thereby facilitating
service deployment. Based on these observations, we first ad-
dress the following question: which of the 3D representation
formats reported in the literature is best suited for near-term
deployment in the current Internet? To this end, we propose
a solution which is based on Depth Image-Based Rendering
(DIBR) [2], and extend it with explicit disocclusion-filling in-
formation. We then focus on a problem which can be for-
mulated as follows: which service model best accounts for a
highly heterogeneous client-base in today’s IP networks in a
scalable fashion? As our second contribution, we propose a
solution based on resource sharing in groups of collaborating
network hosts.

The rest of the paper is structured as follows. In Section 2
we survey different formats for 3D video representation. Sec-
tion 3 discusses the system design from a practical standpoint
and motivates our choice of data format and communication
system architecture. In Section 4 we suggest the ways in
which our framework can be extended to allow the system
to scale to a large number of concurrent, heterogeneous users.
In Section 5 we present preliminary results. Section 6 con-
cludes the main points of the presented framework.

18811424403677/06/$20.00 ©2006 IEEE ICME 2006

2. BACKGROUND ON 3D-TV AND FTV

Shum et al. [3] give an overview of the approaches for repre-
senting real-world 3D scenes and rank those approaches de-
pending on the amount of geometric information about the
scene they recover. We adopt their general concept, but con-
fine ourselves to considering dynamic scenes only.

One approach for 3D scene modeling is to construct the
accurate 3D-shape or some other volumetric model for a num-
ber of key objects in the scene. The idea behind the approach
is to extrapolate such a model from the available camera im-
ages and then use it to render arbitrary views of the same
scene. Most commonly, a scene with a single human figure is
considered. Aiming at real-time rendering, Matusik et al. [4]
recover an incomplete, view-dependent visual hull model of
a human object off-line, distributing the processing over sev-
eral PCs. Rendering results show a good quality, while the
hulls are extracted with as few as four cameras. However,
rendering is complex and runs in parallel over four PCs to ob-
tain real-time properties. Würmlin et al. [5] also take an ap-
proach based on visual-hull reconstruction, but use dynamic-
point samples as the rendering primitive, instead of triangular
meshes. Experiments show convincing results for rendering
of human actors, captured with eight cameras. Carranza et
al. [6] assume that a generic human-body model in the form
of a triangular mesh is available, and focus on capturing the
object’s motion in the scene by tracking this model through-
out the sequence. For rendering, view- and time-dependent
textures captured by the cameras are mapped onto the model
for rendering at video rates; however, the motion capture is
performed off-line.

An alternative approach is to render multiple views of a
dynamic scene from the input images directly [7], or compute
a basic scene-geometric information (e.g., a depth map) to re-
duce the number of input images or improve the rendering
quality. Fehn et al. [2] propose to use depth streams for the
narrow-field view interpolation in 3D-TV broadcast. Geom-
etry information in a depth stream involves a depth value for
each pixel in every frame of the original stream. Multiple
nearby views of the scene are generated at the receiver by re-
projecting the original pixels into the new viewpoint, based
on the depth map.

It can be deduced from the above that different views on
3D processing exist, but the evaluation of their relative mer-
its in the absence of directly comparable data is difficult. In
such a case, it is usually beneficial to define a framework
that attempts to combine the attractive points of individual ap-
proaches. It can be readily motivated that although volumetric
object models may be attractive in advanced professional ap-
plications, this would bring little or no benefit for the 3D-TV
applications in the broadcast/simulcast case, where the user
is after a 3D experience at an affordable cost (consider e.g.,
rendering complexity at the receiver). Therefore, we believe
that the goal can be better achieved by combining the multi-

view and depth-based approaches and pursuing scalability as
an architectural property.

In summary, techniques that extract global object geome-
try, like the advanced volumetric approaches, have the poten-
tial to significantly reduce the number of images, which is at-
tractive for IP video streaming applications. However, current
techniques for global geometry extraction and rendering are
not likely to be a cost-effective solution for real-time system
operation in the near future. Furthermore, such techniques
scale poorly with the scene complexity (e.g., the number of
objects in the scene). For this reason, we exclude them from
the near-term solution.

3. TRANSMISSION FRAMEWORK FOR 3D-TV

Depth map is efficient. When considering that image-based
representations have high data volumes, broadcasting all avail-
able camera streams is impractical. A depth-map is an ef-
ficient alternative for narrow-angle viewpoint changes, as it
can be used to re-project the corresponding intensity data to a
newly chosen camera plane, in a process known as warping.

Layered extension to multiview streaming. For sufficient
scalability, we pursue a layered framework where the num-
ber of views and the associated depth-maps received can be
extended dynamically and on-demand.

Addition of occluded data. If a wide-angle perspective
change is requested, rendering artifacts come in the form of
holes in the texture of the synthesized views. This situa-
tion illustrates the “dissoclusion” problem. The solutions to
this problem are occlusion-compatible warping and filling the
holes by background extrapolation [2]. For large occlusions,
this approach will have its limitations. In our IP-networked
case, we propose to add a specific stream that provides the
occluded data explicitly.

Interactivity. Broadcasting all the layers for every avail-
able viewpoint is inefficient (although attractive for FTV ap-
plications as it allows the clients to quickly switch between
the available viewpoints) in that it treats all the streams as
equally important, while in real sessions, some streams will
be requested frequently, and others not at all. A better design
is to schedule new viewpoint transmissions reactively and on-
demand.

The framework of Fig. 1 shows a more detailed view on
our proposal. Apart from streaming multiple texture and depth
streams, it can be seen that two layers have been added: edge
and occlusion information. The former provides more accu-
rate information on key objects for high quality display [8].
All layers can be filled and coded in a scalable fashion. Ad-
ditionally, a practical multi-stream framework must imple-
ment inter-stream synchronization and joint packet schedul-
ing, congestion control, and optionally error control func-
tions with unreliable transport protocols (e.g., UDP). The rest
of the framework is based on existing streaming technology
(RTP/RTCP, RTSP, SDP) and is not further discussed here.

1882

Packet-

Scheduler

(Receiver- or

Sender-driven)

/

Stream

Coordinator

View 2

View 1

Layer

Extraction

Decoders

/

View

Generator

/

Buffer

Texture encoder

Depth map

encoder

RTP/RTCP

Packetizer

Depth channel

Texture channel

SENDER RECEIVER

Edge/mask

encoder

Occluded region

encoder

View 3

View 4

RTP/RTCP

De-

Packetizer

Display

RTSP/SDP extensions for interactive viewpoint control

Fig. 1. 3D streaming framework.

4. LARGE-SCALE 3D-CONTENT DELIVERY

In this section we address the performance issues of 3D-TV
(FTV) systems implemented within the framework of Sec-
tion 3, for the case of a large number of concurrent, hetero-
geneous users. Large data volumes in multi-camera systems
coupled with the processing for interactive viewpoint adapta-
tion pose new challenges to the design of scalable multimedia
servers and delivery architectures.

To better understand the design issues involved, we con-
sider a scenario where 3D-TV and FTV technologies are de-
ployed to enhance live broadcast. We make the following two
assumptions: (1) the event is captured by multiple, fully cal-
ibrated cameras; (2) each camera is assigned a unique logi-
cal identifier providing an interface to its calibration parame-
ters, the associated depth map, edge mask and occlusion in-
formation. Our layered model provides basic support for het-
erogeneity of display devices and client access bandwidths.
All viewers receive a 2D stream for their camera angle of
choice, while those equipped with 3D display devices also
receive the additional layers associated with that camera an-
gle (3D-streams). Optionally, 2D-viewers can receive full 3D
streams to perform narrow-angle viewpoint changes. In gen-
eral, wide-angle viewpoint changes are supported by switch-
ing to the desired camera angle. A special case of a wide-
angle viewpoint change is the viewpoint case that does not
match any of the physical cameras, nor can it be created us-
ing the available depth and occlusion-handling layers. In this
case, a virtual viewpoint needs to be constructed combining a
number of original camera streams (and the associated addi-
tional layers). Two options for implementing this functional-
ity exist. Either a server computes the desired viewpoint and
streams the result to the client, or the server sends the origi-
nal streams and the client does the reconstruction. The choice
between the two is a trade-off between the computation and
network bandwidth.

4.1. Bandwidth cost

Conceptually, IP-multicast provides for an efficient usage of
both the server-bandwidth and the wide-area network band-
width, thus improving scalability of video streaming systems
compared to the unicast case. A 3D-TV (FTV) server em-
ploying multicast delivery starts one multicast session for each
requested 2D camera stream and one for each accompanying
additional stream. Every client selects a number of multicast
transmissions to receive, based on its preferences or capabil-
ities. This way, the server-bandwidth cost depends on the
number of active viewpoints, but is independent of the num-
ber of clients. Still, global support for IP-multicast remains
limited, and the accessible client base is small [9]. This is a
serious concern for 3D-TV and FTV applications aiming to
grow to a TV broadcast-scale service and alternative delivery
methods need to be investigated.

4.2. Server-side processing cost for interactivity

From the service perspective, processing for virtual viewpoint
generation is best implemented at the server, thus reducing
the bandwidth and processing costs at the client. However,
serving a large number of such requests concurrently quickly
consumes computational resources on the server, and a more
scalable solution is required.

4.3. Developing the case for resource sharing

Motivated by the recent proposals for synchronous [9] and
asynchronous [10] content delivery using network overlays,
we illustrate the concept of resource sharing for reducing the
bandwidth and processing costs in large scale 3D-TV and
FTV systems (Fig. 2).

A 3D-TV (FTV) server transmits two different camera an-
gles (3D-streams) to Nodes 1 and 4 respectively, using unicast
connections to alleviate the lack of IP-multicast routing be-

1883

tween different ISPs. Nodes 1 and 4 in turn relay the streams
to other nodes on their IP multicast-enabled networks. Join-
ing the overlay, Node 7 (3D-viewer) acts as a proxy for sup-
plying 2D stream to a resource-constrained Node 8. Suppose
Node 9 contacts the server with a request to join an ongoing
live transmission. The server responds by sending the address
of a nearby node which is already receiving the desired view-
point (Node 7), which adds the Node 9 to its list of served
clients. Next, suppose an event occurs which generates inten-
sive interest from multiple viewers (e.g. a goal in a soccer
match). Node 8 desires to receive an instant replay of the
event from a virtual viewpoint. The server cannot fulfill this
request due to a flash crowd effect. Instead, it responds by
sending the addresses of two nodes that received and cached
the 3D-streams required for interpolation (Nodes 7 and 5).
Node 5 sends its cached data to Node 7, thus allowing Node 7
to interpolate a novel view and serve Node 8. Summarizing,
the first example shows bandwidth sharing, whereas the sec-
ond one illustrates distributed processing.

Streaming

server

View 1

Administrative

domain 1 (ISP)

Administrative

domain 3 (ISP)

Interpolated Virtual

Stream

3-D content

generation

Tree/Mesh

Overlay

Infrastructure

Node 2

Node 3

Node 6

Node 8

Administrative

domain 2 (ISP)

3D-stream 1

3D-stream 2

Node 9Node 7

Node 5

View 2

View n

Node 1

Node 4

Fig. 2. Distributed streaming and virtual viewpoint creation.

5. PRELIMINARY EXPERIMENTS

We implemented the streaming test-bed from Section 3 be-
tween two nodes on a 100Mb/s LAN. Both the sender and the
receiver were implemented on a desktop PC running Linux
OS. We streamed the “Interview” test sequence and the asso-
ciated depth-map sequence [2] at 25fps and 720 × 576 res-
olution. Both sequences were compressed in Simple Pro-
file (SP) configuration using an MPEG-4 Reference Encoder
and stored in separate files. At the start of the session, the
compressed MPEG-4 elementary streams were packetized as
specified in RTP (IETF RFC 3016). The RTP/RTCP protocol
stack implementation was provided with “Live555 Stream-
ing Media” library. The sender transmitted texture and depth
frames in succession. Different UDP ports for texture and
depth streams were used both at the sender and the receiver.
The decoding at the receiver involved two independent MPEG-
4 decoder processes, and the decoded frames were buffered
prior to display. To test the end-to-end data pipeline, our
player used the depth maps to compute and display an anaglyph
sequence. The playback was smooth and the depth cues were

well visible, even when viewed with inexpensive R/B filter
glasses. This experiment is now extended by adding more
streams for high-performance depth-map extensions contain-
ing occlusion data or adding secondary views to support mul-
tiview approaches.

6. CONCLUSION

This paper presents a layered framework for 3D-TV transmis-
sion, combining multiview and depth-based approaches in a
scalable fashion. Besides texture and depth information, spe-
cific layers are added for coded occlusion data and edge-mask
information to allow high-quality 3D rendering of key objects
in the scene. By relying on a distributed delivery architec-
ture and the concept of resource sharing for the creation and
streaming of virtual viewpoints in a network overlay, we ex-
tend the range of viewpoints selectable by the user (FTV).

7. REFERENCES

[1] A. Smolic and P. Kauff, “Interactive 3D video representation
and coding technologies,” Proceedings of the IEEE, vol. 93,
no. 1, pp. 98–110, Jan. 2005.

[2] C. Fehn, P. Kauff, M. Op de Beeck, F. Ernst, W. A. IJsselsteijn,
M. Pollefeys, L. Van Gool, E. Ofek, and I. Sexton, “Evolution-
ary and optimised approach on 3D-TV,” in Proc. Int. Broadcast
Conf. (IBC), Sept. 2002, pp. 357–365.

[3] H.Y. Shum, S.B. Kang, and S.C. Chan, “Survey of image-
based representations and compression techniques,” IEEE
Trans. Circuits & Systems Video Technol., vol. 13, no. 11, pp.
1020–1037, Nov. 2003.

[4] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-
lan, “Image-based visual hulls,” in Proc. Comp. Graphics
(SIGGRAPH’00), July 2000, pp. 369–374.

[5] S. Würmlin, E. Lamboray, O.G. Staadt, and M.H. Gross, “3D
video recorder,” in Proc. Pacific Conf. Comp. Graphics & Ap-
plic. (PG’02), Oct. 2002, pp. 325–334.

[6] J. Carranza, C. Theobalt, M. Magnor, and H.Seidel, “Free-
viewpoint video of human actors,” ACM Trans. Graphics, vol.
22, no. 3, pp. 569–577, July 2003.

[7] W. Matusik and H.-P. Pfister, “3D TV: A scalable system
for real-time acquisition, transmission, and autostereoscopic
display of dynamic scenes,” in Proc. Comp. Graphics (SIG-
GRAPH’04), Aug. 2004, pp. 814–824.

[8] L. Zitnick, S. B. Kang, M. Uyttendaele, S.Winder, and
R. Szeliski, “High-quality video view interpolation using a
layered representation,” ACM Trans. Graphics, vol. 23, no. 3,
pp. 598–606, Aug. 2004.

[9] A. Ganjam and H. Zhang, “Internet multicast video deliv-
ery,” Proceedings of the IEEE, vol. 93, no. 1, pp. 159–170,
Jan. 2005.

[10] S. Jin and A. Bestavros, “Cache-and-relay streaming media
delivery for asynchronous clients,” in International Workshop
on Networked Group Communication (NGC), 2002.

1884

