
MOTION ESTIMATION BY QUADTREE PRUNING AND MERGING

Marco Tagliasacchi, Mauro Sarchi, Stefano Tubaro

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

ABSTRACT

In this paper we propose a rate-distortion optimized motion estima-

tion algorithm that is built upon a quadtree structure. Each node of

the quadtree represents a block in the current frame together with

its motion vector, and the block size decreases from the root to the

leaves. In the first step, the quadtree is pruned according to a rate-

distortion criterion in order to obtain blocks of variable sizes. A

further rate rebate can be achieved by merging those leaf nodes of

the quadtree that can be efficiently represented by the same motion

vector. The proposed merging scheme provides a reduction of up to

50% of the rate spent for the motion model with respect to the case

that performs pruning only.

1. INTRODUCTION

Accurate motion modeling plays an essential role in any video cod-

ing architecture, especially to efficiently represent video contents at

low and very low bit-rates. In fact, most of the coding gain achieved

by the latest state-of-the-art standard, H.264/AVC [1], comes from

improved motion estimation and signalling tools, including blocks

of variable sizes, quarter-pel motion accuracy, and a more efficient

entropy coding of motion information.

Motion estimation algorithms used in video coding application

cannot neglect the amount of information needed to represent the

motion model. In fact, at low bit-rates, most of the bit budget is usu-

ally allocated to describe the motion, while little remains for encod-

ing prediction residuals. Therefore, the accuracy of the motion rep-

resentation needs to be tuned according to the target bit-rate: at high

bit-rates an accurate (thus costly) motion representation is usually

desirable. When the bit-rate decreases the amount of bits allocated

to motion is usually reduces, therefore achieving a coarser motion

representation. Motion estimation algorithms used in state-of-the-

art video coding schemes always employ rate-distortion optimiza-

tion criteria in order to obtain the best motion model representation,

measured in terms of the energy of the prediction error, satisfying a

given rate constraint [2][3].

In this paper we propose a motion estimation algorithm, specifi-

cally designed for video coding applications, that produces a region

based motion representation. Here the goal is not to identify the mo-

tion models of independently moving regions but to provide a more

compact representation of the motion model, without sacrificing its

accuracy. For the sake of clarity, before illustrating the details of the

proposed algorithm, Figure 1 shows the result of the motion estima-

tion for a frame of the Table Tennis sequence. We notice that blocks

characterized by the same motion model are grouped together in or-

der to reduce the amount of bits allocated to motion.

The work presented was developed within VISNET, a Network of Ex-
cellence (http://www.visnet-noe.org), funded by the European Commission

Fig. 1. Table Tennis, SIF@30fps. Each region has a single motion

vector assigned to it.

The work presented in this paper has been inspired from [4],

where a quadtree-based coding scheme is used to efficiently encode

images that can be modeled as piece-wise polynomials. Each node in

the quadtree corresponds to an image block. A prune-merge scheme

is used to segment the input image into regions. The novelty of the

work in [4] lies in the fact that merging might involve leaf nodes

in the quadtree that are not necessarily children of the same node.

One or two polynomial models are used to approximate the image

within each region. Both the pruning and the merging phase are

rate-distortion optimized in order to achieve the best image approxi-

mation for a target rate. The idea of this work is to apply and adapt

the prune-merging scheme to the problem of motion estimation.

A similar work has recently appeared in [5], where a merging

scheme is applied to the variable block size representation provided

by H.264/AVC. The goal of the present work is to study the benefits

of merging blocks without reference to a specific coding architec-

ture.

2. QUADTREE MOTION MODEL

The proposed motion estimation algorithm is based on a quadtree

data structure, where each node represents a block of the current

frame. At the top level of the quadtree1 the block size is 16× 16. At

the third (lowest) level, the block size is 4 × 4.

First, motion estimation is performed for blocks of size 4 × 4
using an exhaustive search approach with a search window of ±W
pixels which is chosen based on the spatial resolution of the sequence

(QCIF: W = 16 pixels, CIF/SIF W = 32 pixels, 4CIF W = 48 pix-

els). In each node we store the distortion (SAD - Sum of Absolute

Differences) associated with each of the (2W+1)2 candidate motion

1the quadtree is traversed top-to-bottom going from the root to the leaves

18611424403677/06/$20.00 ©2006 IEEE ICME 2006

a) b)

Fig. 2. Table Tennis, SIF@30fps. a) Pruning with λ = 0.5. b) Pruning with λ = 1.5.

vectors (MVs). Without the need of performing further block com-

parisons, we infer the distortion associated to each candidate motion

vector for blocks of size 8 × 8. In fact, for a given candidate motion

vector for a block of size 8 × 8, the SAD is simply obtained as the

sum of the previously stored SADs of the same candidate motion

vector applied to its child 4 × 4 nodes. The same procedure allows

to compute the distortions for 16 blocks.

3. PRUNING ALGORITHM

We assume that motion vectors are encoded in a similar way as in

H.264/AVC, by encoding the prediction error between the motion

vector and its predictor using Exp-Golomb codes. The motion vector

predictor is obtained as the median of the motion vectors of its causal

neighbors. Therefore, the rate needed to encode a motion vector is:

RMV = 2|mvx − mvpx| + 1 + 2|mvy − mvpy| + 1 (1)

where (mvx, mvy) are the two components of the motion vector to

be encoded and (mvpx, mvpy) is the motion vector predictor.

The goal of pruning is to find the optimal partitioning of each

16 × 16 block into sub-blocks. Using the quadtree representation,

this is equivalent to pruning the quadtree in such a way that leaf

nodes are not necessarily represented by 4 × 4 blocks. The prun-

ing algorithm processes the quadtree according to a depth-first or-

der. This means that each 16 × 16 block is considered one after the

other and the pruning decisions for a 16× 16 block are taken before

considering the next 16 × 16 block.

The pruning algorithm can be summarized as follows.

For each 16 × 16 block

1. Compute the motion vector predictor

2. For each candidate MV k, compute the Lagrangian cost as

J16×16(k) = SAD16×16(k)+λ(RMV (k)+Rnosplit
16×16) (2)

3. Compute the lowest Lagrangian cost

J∗
16×16 = min

k
J16×16(k) (3)

4. For each 8 × 8 child block i, i = 0, 1, 2, 3

(a) Compute the motion vector predictor

(b) For each candidate MV l, compute the Lagrangian cost

as

J i
8×8(l) =SADi

8×8(l) + λ(Ri
MV (l)+

+ H8×8(split/nosplit)) (4)

(c) Compute the lowest Lagrangian cost

J i∗
8×8 = min

l
J i

8×8(l) (5)

5. Compute the total Lagrangian cost of the child blocks:

J tot∗
8×8 =

3

i=0

J i∗
8×8 + λRsplit

16×16 (6)

6. If J∗
16×16 ≤ J tot∗

8×8 do not split the block. Assign to the 16 ×
16 block the motion vector

MV = arg min
k

J16×16(k) (7)

Go to next 16 × 16 block

7. Otherwise, for each 8 × 8 child block i, i = 0, 1, 2, 3

(a) Compute the motion vector predictor

(b) For each candidate MV l, compute the Lagrangian cost

as

J i
8×8(l) = SAD8×8(l)+λ(Ri

MV (l)+Rnosplit
8×8) (8)

(c) Compute the lowest Lagrangian cost

J i∗
8×8 = min

l
J i

8×8(l) (9)

(d) For each 4 × 4 child block j, j = 0, 1, 2, 3

i. Compute the motion vector predictor

ii. For each candidate MV m, compute the Lagrangian

cost as

Jj
4×4(m) = SADj

4×4(m) + λRj
MV (m) (10)

iii. Compute the lowest Lagrangian cost

Jj∗
4×4 = min

m
J4×4(m) (11)

1862

(e) Compute the total Lagrangian cost of the child blocks:

J tot∗
4×4 =

3

j=0

Jj∗
4×4 + λRsplit

8×8 (12)

(f) If J i∗
8×8 ≤ J tot∗

4×4 do not split the block. Assign to the

8 × 8 block i the motion vector

MV i = arg min
l

J i
8×8(l) (13)

Go to next 8 × 8 block

(g) Otherwise, split the block into its four child 4×4 blocks.

Assign to each of the 4 × 4 blocks j the motion vector

MV j = arg min
m

Jj
4×4(m) (14)

where λ is the Lagrangian multiplier that can be adjusted based on

the target bit-rate. R
nosplit/split
16×16 is the number of bits used to com-

municate to the decoder the binary decision of splitting the 16 × 16
block. We use a context adaptive arithmetic coder to encode this

decision, in such a way that the average number of bits is less than

1. The context used is the decision taken for the previously encoded

16 × 16 block. The term H8×8(split/nosplit) is the estimated en-

tropy relative to the binary decision of splitting each 8×8 block into

4 × 4 blocks. In fact, when the decision of splitting the 16 × 16
block is taken, there is no clue about the splitting decision taken at

the next level. We notice that this term does not appear when taking

the decision of splitting the 8×8 block as 4×4 is the smallest block

size allowed by the proposed algorithm.

Intuitively, the proposed pruning algorithm tends to favor small

block sizes when λ is small, as the Lagrangian cost function depends

more on the distortion than on the rate needed to encode the motion

vectors. By increasing λ, block sizes becomes larger, since the rate

allocated to motion vector decreases. Figure 2 shows an example of

the block sizes obtained with two different values of λ.

4. MERGING ALGORITHM

We notice by inspecting Figure 2 that several blocks represent the

same moving object, therefore it is likely that they can be repre-

sented by the same motion vector. The idea underlying the proposed

algorithm is to merge together leaf nodes of the quadtree representa-

tion, which is the output of the pruning phase. Merging might occur

between blocks that are not necessarily children of the same node. A

coding gain is obtained if the cost of signalling the merging decision

is less than the cost of encoding the motion vector.

The proposed merging algorithm receives in input the quadtree

representation produced by the pruning algorithm. As a prepro-

cessing step, for each block a list of N target neighboring blocks

is computed. This list contains only neighbors that are not smaller

than the current block. For the problem at hand, this implies that

each block can have up to four target neighbors it can be merged to

(0 ≤ N ≤ 4).

The merging algorithm analyzes each leaf node of the quadtree

as shown in Figure 3. For each block, the algorithm evaluates if

merging is advantageous in rate distortion sense. When a block is

merged to one of its neighbors, the motion vector of the neighbor is

assigned to it and the merging decision is signaled to the decoder.

The merging algorithm proceeds as follows:

For each block i (with motion vector m):

1. Populate the list of neighboring blocks

Start

end

Fig. 3. Scanning order followed by the merging algorithm.

2. Compute the lagrangian cost when no merging occurs

Jnomerge = SADi(m) + λ(Ri
MV (m) + Rnomerge) (15)

3. For each neighboring block j, j = 0, . . . , N−1 (with motion

vector nj)

(a) Compute the lagrangian cost when the two blocks merged

Jj
merge = SADi(nj)+λ(Rnomerge+Rtarget) (16)

(b)

4. If Jnomerge < minj Jj
merge do not merge the blocks

5. If Jnomerge ≥ minj Jj
merge merge block i with block k =

arg minj Jj
merge

SADi(m) is the distortion associated with block i when its motion

vector m is used. SADi(n) is the distortion associated with block i
when its motion vector n of block j is used instead. Rnomerge/merge

is the cost of encoding the merging decision. We use a context adap-

tive arithmetic coder to efficiently encode this information. The con-

text used is the merging decision taken for the previously encoded

block. Rtarget is the rate spent to encode the index of the target

block to merged to within the list identified at step 1 and it is equal

to log N bits.

Figure 1 shows the result of the successive application of prun-

ing followed by merging on the Table Tennis sequence. We can

easily notice that large areas of constant motion (or zero motion)

are clustered together, whereas smaller regions are used to describe

more complex moving objects.

5. EXPERIMENTAL RESULTS

We carried out extensive experimental results on several test se-

quences. Figure 4 shows the rate-distortion curve for the Foreman
(QCIF), Table Tennis (SIF), Coastguard and Bus sequences (CIF).

We compare the performance of the merging algorithm with the case

where only pruning is performed. The points of the curve are gener-

ated for different values of lambda, ranging from 0 to 2.5: at lower

values of lambda, the cost of encoding the motion model increases

but the distortion decreases. The rate refers to the total number of

bits needed to encode the motion model (splitting decisions, merg-

ing decisions and motion vectors). As the merging algorithm is per-

formed after pruning, the cost of encoding the splitting decisions is

the same in both cases.

1863

Foreman-QCIF@30fps

33.0

33.2

33.4

33.6

33.8

34.0

34.2

34.4

0 16 32 48 64 80 96 112 128 144

Rate (Kbps)

P
S

N
R

 (
d

b
)

Prune

Prune + Merge

Coastguard-CIF@30fps

31.0

31.2

31.4

31.6

31.8

32.0

32.2

32.4

32.6

32.8

33.0

0 64 128 192 256 320 384 448 512 576

Rate (Kbps)

P
S

N
R

 (
d

b
)

Prune

Prune + Merge

Bus-CIF@30fps

28.0

28.2

28.4

28.6

28.8

29.0

29.2

29.4

29.6

29.8

30.0

0 64 128 192 256 320 384 448 512 576

Rate (Kbps)

P
S

N
R

 (
d

b
)

Prune

Prune + Merge

Table Tennis-SIF@30fps

30.0

30.2

30.4

30.6

30.8

31.0

31.2

31.4

31.6

31.8

32.0

0 64 128 192 256 320 384 448 512 576

Rate (Kbps)

P
S

N
R

 (
d

b
)

Prune

Prune + Merge

+0.4dB

-40%

+0.4dB-40%

-50% +0.6dB

-40% +0.3dB

Fig. 4. Comparison between the quality of the estimated motion model after the pruning step and after the proposed pruning&merging

algorithm. The quality is evaluated as the average PSNR of the displaced frame difference obtained applying either of the two motion models.

The proposed algorithm consistently outperforms the pruning al-

gorithm at all bit-rates. As expected, the coding gain of the proposed

algorithm is higher at low bit-rates (higher values of λ), as the La-

grangian cost function tends to weight more the cost associated with

encoding the motion model. A gain of up to +0.6dB is reported for

Bus. A smaller coding gain is observed for Foreman (up to +0.4dB),

Table Tennis and Coastguard (up to +0.3dB). These figures should

be interpreted carefully. In fact, the maximum coding gain is upper

bounded by the lowest distortion that can be achieved when λ = 0,

i.e when 4 × 4 blocks are used everywhere. In this case, no prun-

ing nor merging is actually performed, therefore the two approaches

converge to the same upper bound. Even with an arbitrary large bit-

budget, a value of 34.4dB is obtained for Foreman, 31.6dB for Table
Tennis, 29.9dB for Bus and 32.7dB for Coastguard. Therefore, it is

more interesting to interpret these results from the bit-rate perspec-

tive. Figure 4 shows that a 40%-50% rate rebate is achieved at low

bit-rates, and that the margin remains significant in the whole range

of bit-rates relevant for video coding applications.

6. CONCLUSIONS

This paper proposes a two-step pruning/merging motion estimation

algorithm based on a quadtree structure. Our experimental results

show that there are benefits coming from merging together leaf nodes

of the quadtree representation produced in output of the pruning

phase. Ongoing research activities are focused on integrating the

proposed algorithm into a complete video coding architecture.

7. ACKNOWLEDGEMENTS

The authors would like to thank Prof. David Taubman for valuable

discussions that inspired the work presented in this paper.

8. REFERENCES

[1] ITU-T, Information Technology Coding of Audio-visual Objects Part
10: Advanced Video Coding, May 2003, ISO/IEC International Standard
14496-10:2003.

[2] Antonio Ortega and Kannan Ramchandran, “Rate-distortion methods
for image and video compression,” vol. 15, pp. 23–50, Nov. 1998.

[3] Gary J. Sullivan and Thomas Wiegand, “Rate-distortion optimization for
video compression,” vol. 15, pp. 74–90, Nov. 1998.

[4] R. Shukla, Pier Luigi Dragotti, Mihn Do, and Martin Vetterli, “Rate-
distortion optimized tree-structured compression algorithms for piece-
wise polynomial images,” vol. 14, pp. 343–359, 2005.

[5] Raffaele de Forni and David S. Taubman, “On the benefits of leaf merg-
ing in quad-tree motion models,” Genova, Italy, Sept. 2005, vol. 2, pp.
858 – 861.

1864

