
Efficient Hand Gesture Rendering and Decoding Using A Simple

Gesture Library

Jason A. Smith and Lijun Yin

Department of Computer Science, State University of New York at Binghamton

Binghamton, NY, 13902

ABSTRACT

 Recent work in hand gesture rendering and decoding has treated

the two fields as separate and distinct. As the work of rendering

evolves, it emphasizes exact movement replication, including more

muscle and skeletal parameterization. The work in gesture decod-

ing is largely centered on trained systems, which require large

amounts of time in front of a camera rendering a gesture in order to

decode movement. This paper presents a new scheme which more

tightly couples the gesture rendering and decoding processes.

While this scheme is simpler than existing techniques, the render-

ing remains natural looking, and decoding a new gesture does not

require extensive training.

1. INTRODUCTION

 Interest in the field of gesture rendering and decoding has grown

in the past several years with the advent of powerful graphics proc-

essors, and camera based hands-off user interfaces – interfaces that

use cameras to decode gestures and movement. Work done in

gesture rendering has been largely un-related to work done in ges-

ture decoding, and vice versa. These two fields have taken dis-

similar approaches to a similar problem.

 As the work in gesture rendering evolves, it produces more

realistic motion, modeling, and animation[1][2]. This increased

realism comes at the expense of increased complexity. Describing

muscle and skeletal motion used to encode a simple gesture now

contains several intermediate steps to define each minutia of

movement.

 As the work in gesture decoding evolves, it has moved from

basic computer peripheral input decoding[3][4], to glove based

decoding[5][6], to visual decoding[7][8]. Today’s systems lean

more heavily on glove based systems or purely visual systems that

require extensive and specific training [5][6][7][8]. These visual

systems attempt to decode and describe motion. This work re-

quires hours of manually training a complex system for each ges-

ture added to the list of known gestures, although current work is

making strides in reducing and eliminating extensive training[9].

 As the two bodies of work continue to advance, there is no

apparent middle ground. Additionally, not all rendering schemes

will require a complex and vividly realistic motion model. Video

games or simple motion capture systems do not need excessive

realism, and would benefit from a reduced data set used to describe

motion. Decoding methods should be able to leverage work done

in motion rendering. This paper presents a scheme that more

closely couples the work of gesture rendering and decoding.

The scheme presented here is a joint angle based system that can

be used to render simple hand gestures. The system is adaptable

for most skeletal based motion, but this paper will focus on hand

based gestures. A simple gesture is defined as having a predeter-

mined end point, one that does not require crossing finger patterns,

and one that can be completed in a single motion – that is, a finger

that begins moving by curling or closing into the palm, will con-

tinue to curl until the end of the gesture. Examples of a simple

gesture include the gestures “one” “three” and “horns” as shown in

Figure 1.

 In this system, both gesture rendering and decoding are driven

from this end-position joint angle model. A joint angle structure

defines the angle of rotation for each finger, as well as the final

joint angle for each joint in a finger. A library of simple gestures is

created, each entry consisting of one joint angle structure.

Once this library is constructed, a gesture is rendered by moving

between any two of these joint-angle structures. Any two simple

gestures can be moved between in any order.

Decoding the gesture requires taking a snapshot of the overall

joint positions once a gesture has been rendered. Determining

when a gesture has been rendered is discussed later in this paper, as

well as the algorithm to determine which gesture was rendered.

 It is not the goal of this paper to provide a complete framework

to render and decode complex gestures. The goal of this scheme is

to more tightly couple the work of rendering and decoding ges-

tures; provide simple, yet realistic hand gesture motions based on

final joint positions; and to provide a simple angle based decoding

scheme for rendered gestures.

2. GESTURE DEFINITION

 There are two methods used to define a gesture. A gesture can

either be described as the motion of fingers, or as an end position

of the fingers. Most common gestures are ones that can be defined

by their end position. For example, the “number one,” “OK,” and

“Peace,” are gestures that are described by the position of their

fingers. An example of a motion based gesture would be using the

index finger to “trace” a letter or figure in the air, such as moving

the tip of the index finger in a circular motion to trace a “zero” or

“O.”

 The methods presented in this paper work on gestures that are

described by finger positions, not motion. The methods described

also are intended to work off “simple” gestures – gestures that do

not require awkward or unnatural motion. This is motion that the

finger cannot support physically by itself. The act of “crossing

your fingers” is such an example. The index finger is required to

restrain the middle finger from returning to its natural position.

This crossing is considered awkward for the sake of this paper.

The extension of the middle finger across the index finger, and the

use of a restraining index finger make this motion complex.

18571424403677/06/$20.00 ©2006 IEEE ICME 2006

Figure 1 Simple gestures “one” (a) “three” (b) and “horns.” (c), and the gesture decoding algorithm detecting the gesture “one” (d)

 There are four parameters that must be defined per finger. They

are the two joints above the base joint of a finger, the tip of the

finger, and the angle of rotation of the finger. These parameters

are shown in Figure 2. An entry in the gesture library is structured

as :

 gesture {

 float [0][0] // Thumb joint 0 position

 float [0][1] // Thumb joint 1 position

float [0][2] // Thumb joint 2 position

float thumb_rot // Thumb angle of rotation

float [1][0-2] // Index joint positions

float index_rot // Index angle of rotation

 …

 float [4][0-2] // Pinky joint positions

 float pinky_rot // Pinky angle of rotation

 }

By defining each value, we define a specific gesture. The gesture

library is then an array of gestures. The library that was built con-

tains gestures for the numbers one through 5, the peace sign - ex-

tending the index and middle fingers with 35 degrees separation,

the letter L – with the index finger and the thumb fully extended

with 90 degrees separation, and several other simple gestures.

3. RENDERING MOTION

 Once two gestures have been defined, the end positions are fed

into the motion model. The motion model determines how the

skeleton must move between any two gestures. Each joint has a

starting and end position, but the joint cannot simply move to the

new position through simple methods like standard linear interpo-

lation. There are a series of requirements imposed on skeletal

motion such as, the skeleton cannot change shape while in motion,

the motion of each subsequent bone and joint is dependent on the

motion and position of the preceding joint, the motion of all joints

and bones must be coordinated so that all bones and joints arrive at

their final position at the same time.

 As an example, the index finger in a “number one” position

will be curled into a “number zero” position, as shown in Figure 2.

In this example, the index finger is curled about the x-axis. The

starting angles of each joint (in this paper, the tip of a finger is also

referred to as a joint for simplicity of presentation) A, B and C are

π/2. The final angle for joint A is 0, B is -π/2, and C is –(3π)/2. In

order for all three joints to reach their final position together, the

motion of each joint must be scaled. Joint C has to move three

times farther than joint A, so it will move 3 times faster than joint

A. Joint B has to move twice as far as joint A, so it will move

twice as fast.

 More specifically, a gesture is rendered in one “gesture frame”

which is composed of ‘s’ smaller “minor frames.” That is, the

motion of rendering a gesture is broken into ‘s’ smaller move-

ments. The angle through which a joint will move through for

each minor frame (∠) is then:

∠ = (∠final - ∠starting) / s

 Where ∠final is the final joint angle, and ∠starting is the starting

joint angle. These values are obtained from the gesture library,

using the previous and current gesture entries. Likewise, the angle

of rotation is computed for each finger :

 = (final - starting) / s

 Where is the delta angle of rotation, final is the final angle

of rotation, and starting is the starting angle of rotation. These

values are obtained from the gesture library, using the previous and

current gesture entries.

 We can then apply standard transformation formulas to rotate a

point in space about an arbitrary axis, using (+ previous) as

the arbitrary axis and ∠ as the distance to rotate that point. Ap-

plying these transformations to each joint each minor frame, the

hand gesture will be completely rendered, in a smooth manner -

each joint reaching the end position at the same time, in s minor

frames.

 The basic motion algorithm for any given joint is then:

∠ = (∠final - ∠starting) / s

 = (final - starting) / s
for (gesture_frame = 0; gesture_frame < s; gesture_frame++)

{

 move joint to origin.

 ∠current += ∠
 current +=

 rotate joint “∠current degrees” about “angle current “
move joint off origin

}

 This simple example is the basis for all joint motion in this sys-

tem. A finger will move from a beginning angle to a final angle

(d) (c)(b) (a)

1858

Figure 2: The index finger as seen from the front extended (a), side extended (b), and side curled (c), showing the axis of rotation,

and the joints A, B and C with their relationship to each other.

about a common axis of rotation which runs through the preced-

ing joint.

Similarly, a starting and ending axis of rotation is given for

each finger. The finger will move to its new axis of rotation in

the same amount of time as the individual joints need to move to

their locations. This allows for natural appearing motion - hav-

ing a gesture rendered with one continuous and smooth motion.

4. GESTURE RECOGNITION

 In order to decode a gesture, the system must first recognize a

gesture that has been rendered. There are two simple ways to

determine if a gesture has been rendered – either a finger

changes its direction, or a finger stops moving. As an example,

the gesture “one” is our starting point. When we start to render

the “two” gesture, the middle finger begins to move. The ges-

ture “two” is complete when the middle finger is fully extended

and stops moving.

Alternately, rendering the gestures “one, two, one” in se-

quence without pauses is detectable by detecting direction

changes in a given finger. Starting with gesture one, and mov-

ing to two, the middle finger becomes fully extended. Then to

render the gesture “one” without a pause, the middle finger be-

gins to curl. The system detects a direction change in the middle

finger from “opening” to “closing” and realizes a gesture that

has been rendered.

 Once the system realizes a gesture has been rendered, a

snapshot of joint positions is taken.

 Once a gesture snapshot has been taken, the system runs

through a “best fit” algorithm to determine which gesture has

been recorded. A library of gestures is built up, similar to the

gesture library used to render gestures above. This library only

contains required joint positions, and has a counter for the num-

ber of essential fingers for a given gesture. The system runs

through the library, and matches as many joints angles as it can

to find a best fit. The library is organized according to the num-

ber of essential fingers. Gestures that require only 1 finger are

entered in the library first, then gestures that require 2 fingers,

etc. Once n fingers from the snapshot have been matched, the

algorithm will jump to the position in the library containing n+1

essential fingers until the gesture library has been exhausted.

Although this algorithm has a worst case linear runtime, the

average runtime is not linear since the entire library is not nor-

mally examined. In the following, we will use the “horns” ges-

ture to illustrate this concept.

 The algorithm first tries to match one finger of the gesture

being rendered to the gestures in the gesture library. If 1 finger

can be matched, the first guess is recorded. The algorithm would

skip over the remainder of the “1 finger” gestures since a best

guess for 1 essential finger has been made. The algorithm

would then attempt to match 2 fingers, and continue on this way

until the library is exhausted, or 5 fingers have been matched.

The last recorded gesture is returned as the best guess.

 Checking a single finger, the equation below is used, where

FIT is a Boolean indicating if the finger has been matched, ∠An

is the angle of the A joint of the gesture in the gesture library

currently being matched against, ∠Ac is the angle of joint A that

is currently being rendered, T is the tolerance applied to this

gesture. If joints A, B, and C, and angle of rotation R, are within

tolerance for the current gesture for the given finger, that finger

is matched.

FIT = (| ∠An - ∠Ac | < T)

 & (| ∠Bn - ∠Bc | < T)

 & (| ∠Cn - ∠Cc | < T)

 & (| ∠Rn - ∠Rc | < T)

The algorithm becomes

0: n = 1, best_guess = NULL

1: IF a gesture has been rendered, compare the snapshot against

the first record for n essential fingers

2: if FIT is true, record best guess. Increment n and go to step 1.

3: if FIT is false, move to next gesture with n essential fingers

The algorithm exits when the library is exhausted, and the best

guess is returned.

5. EXPERIMENTS AND ANALYSIS

 The gesture library was built up using snapshots of a human

hand posing for various gestures. Joint angles were calculated

and entered into the gesture library. The motion system ran-

domly moves between any of these gestures in a natural looking

fashion.

 The rendering system uses a set of static hand bone models.

The individual bones are mapped to the base position of each

corresponding joint, and use the output of the motion model to

determine rotation.

(c)(a) (b)

1859

A separate gesture library was created for the purposes of

gesture decoding. This library only identifies essential fingers

and bone angles, and is purposefully smaller than the encoding

library.

 The only hook between the motion layer and the decoding

layer is a call from the decoding layer to get the current joint

positions. The decoding layer has no knowledge of the encod-

ing library, the gesture being rendered, or when a gesture has

been completed. The decoding layer compares current and pre-

vious joint positions to determine direction of motion for each

joint, and determines when that direction changes. Once direc-

tion for any joint changes, a snap shot is taken, and the decoding

algorithm attempts to decode the gesture. The graphic in Figure

1-d shows the decoding system identifying the “one” gesture.

The output of the decoding algorithm is shown as text below the

figure being rendered. The decoding library is still in its in-

fancy, and at the time of this paper contains approximately 10

gestures in total. A gesture has never been misidentified. Ad-

ditional graphics and a video clip of the rendering and decoding

system randomly counting and identifying gestures one through

five can be seen on the project website.1

 Gestures were added to the libraries in minutes, the gestures

were rendered in real time, and the gestures were accurately

decoded within the space of a few gesture frames – a matter of

milliseconds.

 The gesture library was built with variations on several ges-

tures. Because there is no absolute way to render the gesture

“one” several variations were given with varying joint angles for

each finger. The decoding system was always capable of cor-

rectly identifying a gesture. The rendering library had several

gestures that were not in the decoding library. In these cases, the

decoding system decoded these as “unknown gestures” or re-

turned a best guess which matched as many fingers as possible.

So while the decoding system was not, in the strictest terms,

correct in identifying the given gesture, it was correct in that it

most closely matched the gestures present in its library to the

one being rendered.

 The gesture rendering system is simple. This system allows

for the easy rendering of simple gestures, and allows realistic

looking motion between any two simple gestures. Although the

motion appears natural and realistic, it is not 100% anatomically

correct.

 It is not meant to be a perfect replication of human motion. It

does, however, allow for natural looking motion with minimal

data. The trade off is a gain in simplicity for a loss in absolute

realism.

 The simplicity of the decoding system allows for quick addi-

tion of gestures, in comparison to trained systems. Adding a

gesture can take minutes, opposed to hours. By decoding ges-

tures solely based on joint angle, there is no additional work to

decode gestures on other hands, as there is on trained systems

that must account for an individual’s hand position and finger

length.

6. CONCLUSION AND FUTURE WORK

 The goal of this work was to simplify and couple the gesture

rendering and decoding processes. In that regard, the program is

a success – it allows for similar libraries to be used in the ren-

dering and decoding processes. The system also allows for

1 http://www.cs.binghamton.edu/~lijun/decode_demo.mov

natural looking motion between any two simple gestures using a

relatively small data set. The decoding system takes extensive

training out of the equation, and allows for quick addition of

gestures to the library. Both the rendering and decoding system

work with any arbitrarily sized skeleton. This allows the motion

system to couple to any skeletal models without extensive re-

work. This also allows the decoding system to work for any

given hand – not having to be re-trained for different sized

hands. While more work needs to be done in this system to

further enhance the natural appearing motion, and to allow for

more complex gestures, it successfully found middle ground

between gesture rendering and decoding, and simplified both

processes.

 For the decoding system to be truly worthwhile, it must be

taken out of the computer simulation. Adding a video capture

front end to capture the joint position rendered by a live person

is the next step in the decoding work. This translation from

video to gesture recognition is the next major focus of this work.

Currently, techniques are available which process live video

feed and can find and track human features. The most readily

available and reliable technique is used to track the position of

the human eye – finding the eyes on the face, and tracking their

motion. It is believed that this video processing technique can

be applied to tracking joint position. Determining joint position

using this technique will quickly make the existing gesture de-

coding system applicable.

REFERENCES

[1] Horace Ip, Sam C.S. Chan, Maria S.W. Lam, "Hand Gesture

Animation from Static Postures Using an Anatomy-Based

Model," cgi, p. 29, Computer Graphics International 2000

(CGI'00), 2000.

[2] Irene Albrecht , Jörg Haber , Hans-Peter Seidel, “Construc-

tion and animation of anatomically based human hand models,”

Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation, 2003

[3] K. Mardia, N. Ghali, T. Hainsworth, M. Howes, and N.

Sheehy. “Techniques for online gesture recognition on worksta-

tions.” Image and Vision Computing, 11(5):283-294, June 1993.

[4] Dean Rubine. “Specifying gestures by example.” Computer

Graphics, 25(4):329-337, July 1991.

[5] Kouichi Murakami and Hitomi Taguchi. “Gesture recogni-

tion using recurrent neural networks.” Journal of the ACM,

1(1):237-242, January 1991.

[6] Mohammed Waleed Kadous. “Machine Recognition of

Auslan Signs Using Power Gloves: Towards Large-Lexicon

Recognition of Sign Languages.” Workshop on the Integra-

tion of Gestures in Language and Speech, Wilmington

Delaware, 1996.
[7] Pattie Maes, Trevor Darrell, Bruce Blumberg, and Alex

Pentland. “The Alive System: Full-body interaction with

autonomous agents.” In Computer Animation ’95 Conference,

IEEE Press, Geneva, Switzerland, April 1995.

[8] Thad Starner and Alex Pentland. “Visual recognition of

American Sigh Language using Hidden Markov Models.” IEEE

International Symposium on Computer Vision, November 1995.

[9]Mathias Kölsch and Matthew Turk. Robust Hand Detection.

In Proc. IEEE Intl. Conference on Automatic Face and Gesture

Recognition, May 2004.

1860

