
A Novel Reverse Frame Selection Scheme for
Video Streaming over VBR Channels

Dayong Tao Jianfei Cai
School of Computer Engineering

Nanyang Technological University, Singapore 639798
Email: {taod0001, asjfcai}@ntu.edu.sg

Abstract— In this paper, we propose a Reverse Frame Selection
(RFS) scheme based on dynamic programming to solve for the
problem of video streaming over VBR channels. In particular, we
first consider forward frame selection (FFS) for video streaming
over CBR channels. We propose to discard non-optimal states in
FFS to reduce the computational cost of dynamic programming.
Then we find that the problem can also be solved by RFS with one
additional benefit of finding all the optimal results for different
preloads in one round. Furthermore, we extend RFS for video
streaming over VBR channels where we do not know when and
how the channel is going to change in the future. The major
advantage of our proposed scheme is that we only need to run
RFS several times, and the obtained results can be applied to
any type of VBR channels with bandwidth changes occurring at
any time. Preliminary results show the good performance of our
proposed scheme.

I. INTRODUCTION

Bandwidth smoothing techniques are commonly used to
optimize the resources required for delivering variable bit-rate
(VBR) encoded video without loss of data [1]–[3]. However,
under both constrained bandwidth and limited buffer size
condition, lossy smoothing has to be adopted. In [4], Ng
and Song suggested to delete frames when the transmission
exceeds the rate limit. In [5], Zhang et al. proposed a selective
frame discard algorithm to minimize the number of frames
that must be discarded in order to meet the bandwidth and
buffer size constraints. In [6], Zhou and Liou proposed a
nonlinear frame sampling strategy to maximize the delivery
of the video’s accumulated semantic scores. These approaches
usually assume either constant bit-rate (CBR) channel or the
channel behavior is known a priori. In practice, the time-
varying channel rate, especially in the wireless communica-
tions, is hardly predictable. In [7], Feng and Liu proposed
two solutions for video streaming over VBR channels: 1) pre-
compute a smoothing plan and adaptively drop frames under
bad channel conditions, and 2) run the smoothing algorithm
online under the new bandwidth condition for the rest of
the frames. The second approach requires online computation
of smoothing plans which may introduce delays and the
situation becomes even worse when there are many concurrent
connections. In [8], Gan et al. proposed a more robust dual-
plan bandwidth smoothing scheme for layer-encoded video
streaming. Upon bandwidth renegotiation failure, the scheme
adaptively discards the enhancement layer data to maintain the
original frame rate.

Besides the problem for VBR channels, most existing lossy
smoothing algorithms do not consider packet loss caused by
network congestion or physical-layer bit corruption. Recently,
we have seen extensive studies on rate-distortion optimized
(RDO) video streaming over lossy channels [9]–[11]. The
most representative work is the one in [9], where Chou et
al. proposed a framework for streaming packetized media
over a lossy packet network in a RDO way. The proposed
framework is able to minimize the end-to-end distortion under
a rate constraint by choosing the right packets to transmit
at a given transmission opportunity. Although the framework
is very comprehensive and theoretically sound, it requires an
accurate network delay model, which is very difficult to obtain
for a network such as the Internet. In addition, the proposed
optimal packet scheduling in [9] is very complex, which might
limit its implementation in practice.

In this paper, we assume the packet loss problem can be
well handled by the error control techniques deployed in
the transportation layer and the link layer. We only focus
on optimal lossy smoothing based on the a priori motion
information in the video. We adopt the Pixel Change Map
(PCM) mechanism [12] to compute the amount of motion
in each frame. Our goal is to select a set of frames out of
the video that can maximize the accumulated motion values
while being guaranteed transmittable and playable under both
bandwidth and buffer size constraints. The reason for adopting
the heuristic PCM mechanism is for simplicity. In fact, any
frame or content classification scheme can be used in our
proposed system. The PCM mechanism by no means is the
only or the best way to measure content importance.

The rest of the paper is organized as follows. In section II,
we analyze the problem of video delivery over CBR channels
and propose to discard non-optimal states in the forward
frame selection (FFS) scheme. In section III, we present
our reverse frame selection (RFS) scheme, which has one
additional benefit of finding all the optimal results for different
preloads in one round. In section IV, RFS is further extended
to solve the problem of video streaming over VBR channels.
We only need to run RFS k times, where k is the number
of channel bandwidth samples, and the obtained results can
be applied to any type of VBR channels with bandwidth
changes occurring at any time. In section V, we evaluate the
performance of RFS under different VBR channel conditions.
Finally, we summarize the paper in section VI.

18451424403677/06/$20.00 ©2006 IEEE ICME 2006

II. FORWARD FRAME SELECTION FOR CBR CHANNELS

Fig. 1 shows a commonly used discrete-time model at frame
level for client buffer management. Each discrete-time point
along the horizontal direction is identified by the moment
when the frame is being fetched out for decoding, and each
buffer fullness level at a frame is called a state indicated by an
arrow endpoint. The length of each downward arrow represents
the frame size. The slope of the slanted lines determines the
amount of data that can be transmitted in one frame time-slot
period and is given by bandwidth/framerate.

Let bj
i denote the buffer fullness level at the j-th state at

frame i. If state bl
q is created by state bk

p , or in other words, bl
q

is directly linked with bk
p , then we have the following relation:

bl
q = min{bk

p + (q − p) · (bandwidth/framerate), B}− fq, (1)

where B is the buffer size and fq is the size of frame q. Note
that bl

q becomes a full buffer state (bl
q = B − fq) if buffer

overflow occurs during state transition from bk
p to bl

q. In this
case, the server has to stay idle for some time or transmit at a
reduced rate in order to accommodate bl

q. From our experience,
a full buffer state is rarely on the final optimal frame selection
path unless it is at an I frame or the channel rate is very high.
Let M j

i denote the accumulated motion values at bj
i . For state

transition from bk
p to bl

q, M l
q = Mk

p + mq, where mq is the
motion value associated with frame q. If another state bt

s also
leads to state bl

q, we resolve the collision with:

M l
q = max{Mk

p , M t
s} + mq (2)

In addition, there is a preload at the initial stage just before
playback starts. The time required to build up preload is called
startup delay and is given by preload/bandwidth.

Theoretically, the number of possible states increase expo-
nentially with frame number, which makes dynamic program-
ming computationally prohibitive. However, in this research,
we find that the number of states at each frame can be largely
reduced by three factors:

1) buffer size because no state can fall outside the given
buffer range;

2) inter-frame dependency because P and B frames need
their references for proper decoding;

3) non-optimal state such as b2
5 with M2

5 = 0.23 at P5 in
fig. 1.

I
1

0.00

P
5

B
4

B
3

P
2

0.110.070.040.08

0.00

0.08

0.12

0.15

0.19

0.26

0.30

Buffer Overflow

Non-optimal

Preload

0.23

Fig. 1. The discrete-time model for client buffer management.

Lemma 1: For any two optimal states bj
i and bk

i at frame i
(an optimal state means a state that could be included in the
final optimal path), if bk

i < bj
i , then Mk

i ≥ M j
i , and vice versa.

In other words, for optimal states, M j
i increases monotonically

as bj
i decreases.

Due to space limitation, we do not present the proof in this
paper. According to Lemma 1, we can conclude that for any
two states bj

i and bk
i , if bj

i > bk
i but M j

i > Mk
i , then bk

i is a
non-optimal state and should be discarded. The elimination of
non-optimal states can dramatically reduce the computational
complexity because it not only reduces the number of states
at each individual frame but also prevents those non-optimal
states from propagating into subsequent frames.

III. REVERSE FRAME SELECTION FOR CBR CHANNELS

In this section, we present our reverse frame selection (RFS)
scheme to solve the problem of video streaming over CBR
channels. Unlike the forward frame selection (FFS) scheme,
our proposed RFS applies dynamic programming to the video
sequence starting from the last frame until the first one. At the
first frame, RFS generates all the optimal results for different
preloads. Compared with FFS, which needs to run exhaustive
searching for different preloads, RFS can find all the optimal
paths in one round. In the following, we describe RFS in detail.

A. RFS in Normal Mode

As shown in fig. 2(a), each symbol above the full buffer line
represents the frame type (I, P, or B) and the frame number
in the video sequence. Frames are arranged from left to right
in reverse order. Each real number below the empty buffer
line represents the motion value associated with the frame.
Obviously, after the last frame is consumed, the buffer should
become empty. So the first state at the last frame BN is created
from the empty buffer line, which we refer it as an empty
buffer state. The arrows are pointing up because we can only
create a state and record its accumulated motion values when
the arrow end is within the buffer. In other words, an upward
arrow means consumption of data up to the length of the arrow
in order to create a state. In contrast, reception of data is
reflected by the downward slanted lines between frames. In
case of “buffer underflow”, such as that from BN to PN−1,
an empty buffer state is created. It means that the amount of
data transmitted during the period is more than enough for
creating the current state, and the server needs to stay idle for
some time or reduce the transmission rate. Because an path
may terminate at any frame, if there is no empty buffer state
at a frame, we will create one such as that at BN−2.

B. RFS with Buffer Mirroring

Fig. 2(a) is not easy to interpret. We use a simple technique,
which we call “buffer mirroring”, to make the computation
easier and more intuitive. Suppose a mirror is aligned with
the empty buffer line in fig. 2(a). Looking from the full buffer
line side, we shall see a mirrored buffer model as shown
in fig. 2(b). Fig. 2(b) appears just like FFS except that the
selection starts from the end of the video sequence until

1846

BN

0.03

PN-4BN-3BN-2PN-1

0.070.060.040.05

. . .

. . .

I1

0.00

. .
 .

 .
 ..

 .
 .

 .
.

 .
.

 .

 .

 .

 .

0.03

0.08

0.12

0.14

0.18

0.12

. . .

. . .

. . .
0.19

0.21

0.25

0.04 0.10

(a)

BN

0.03

PN-4BN-3BN-2PN-1

0.070.060.040.05

. . .

. . .

I1

0.00

.

0.03

0.08

0.12

0.14

0.18

0.12

. . .

. . .

. . .

0.19

0.21

0.25

0.04 0.10

(b)

Fig. 2. The RFS scheme (a) in normal mode (b) with buffer mirroring.

the beginning. The computation procedures and the concepts,
including Lemma 1, discussed for FFS can also be applied
to fig. 2(b) with minor modification. Note that fig. 2(a) and
fig. 2(b) are a pair of mirrors for each other. During path
retrieving, the actual buffer occupancy status is obtained from
fig. 2(a), which is the buffer mirror of fig. 2(b).

At the first frame I1, RFS generates multiple states with
different accumulated motion values. Each state corresponds to
the optimal result that we can achieve at that preload. For those
preloads that are not exactly matched with any of the states at
I1, they are the same as their nearby lower preloads. With RFS,
we only need to run the scheme once and get all the optimal
results for different preloads. It saves a lot of time to compute
optimal paths for different start-up delay requirements. On the
contrary, FFS has to run exhaustive searching for different
preloads, which is very time-consuming.

IV. REVERSE FRAME SELECTION FOR VBR CHANNELS

For VBR channels, the optimal frame selection becomes
extremely difficult because we do not know when and how
the channel is going to change in the future, i.e., we can
not perform global optimization when the channel variation
is unpredictable. Suppose we know the average bandwidth
and the range of bandwidth variations. One possible approach
(Approach 1) is to compute the optimal path according to
the minimum channel bandwidth in order to completely avoid
buffer underflow. We may also compute the path according
to the maximum bandwidth, but it is likely to cause high
occurrence of buffer underflows during transmission. Another
possible approach (Approach 2) is to compute the optimal
frame selection path according to the average bandwidth, and
during transmission, the just-in-time (JIT) algorithm [5] is
applied for on-the-fly adaptation to bandwidth changes. If the
current bandwidth is larger than the average, JIT can gradually
raise the path in buffer to reduce the probability of future
buffer underflows. But the amount that the path can be raised
is limited by the buffer size. During bad channel conditions
when buffer underflow occurs, JIT adaptively drops frames
from the path. Clearly, with these approaches, the number of
actually transmitted frames can not be more than those on the
pre-computed path.

In this paper, we propose to use the RFS scheme for video
streaming over VBR channels. In particular, we sample the
bandwidth variation range into a finite sequence of channel
rates. For a given client buffer size, we run the RFS scheme
for each sampled channel rate. During transmission, if the
starting buffer state is b1 and the current bandwidth is C, we
first classify it into one of the pre-selected channel rates C1

and then retrieve the optimal path for channel rate C1 with
starting buffer state b1. Later at frame N2, if the buffer state
is b2 and the bandwidth is changed to C2, we can retrieve
the optimal path starting at frame N2 with buffer state b2 for
the new channel rate C2. In this way, the global optimality is
approximately preserved under dynamic changing bandwidth
conditions. The key advantage here is that we only need to run
RFS k times, where k is the number of bandwidth samples,
and it can be applied to any type of VBR channels as long as
the bandwidth changes are within the variation range.

V. EXPERIMENTAL RESULTS

In this section, we describe two experiments to evaluate both
the performance of different algorithms for video streaming
over VBR channels and the effectiveness of non-optimal state
elimination for reducing the computational cost of dynamic
programming. We use two MPEG-4 video traces, foreman
and stefan (see table I), in the experiments. Both videos are
encoded in the pattern “PBBP...”, with a GOP size of 90.
The foreman video has moderate motion and is encoded at
relatively low bit rate. The stefan video contains lots of high-
motion frames and is encoded at a much higher bit rate.

A. Performance of Different Algorithms for VBR Channels

We compare the frame selection results of four algorithms:
Approach 1 and 2 (see section IV), RFS, and UB. UB gives
the upper bound assuming a priori known channel behavior,
which is hardly attainable without an accurate channel model.
To simulate VBR channel conditions, we divide each video
into three 100-frame segments. Different segments are subject
to different bandwidth conditions. For foreman video, the VBR
channel rate sequence is R(f)={300, 210, 120} kbps with an
average bandwidth of 210 kbps. For stefan video, R(s)={810,
600, 390} kbps with an average bandwidth of 600 kbps.
In addition, R(f) and R(s) are each tested under two buffer

1847

TABLE I

THE PROPERTIES OF TWO MPEG-4 VIDEO TRACES.

Video Length No. of Ave. Bitrate Total Motion
Title (sec) Frames (kbps) Values

foreman 10 300 288.25 63.20
stefan 10 300 977.00 127.0

TABLE II

THE SELECTION RESULTS UNDER VBR CHANNEL CONDITIONS

Constraint Algorithms
Conditions Approach 1 Approach 2 RFS UB
R(f)+B(f1) 140 / 30.88 202 / 38.29 243 / 46.25 249 / 47.98
R(f)+B(f2) 156 / 37.47 222 / 49.51 266 / 54.60 270 / 55.42
R(s)+B(s1) 185 / 76.26 242 / 97.29 247 / 100.0 247 / 100.1
R(s)+B(s2) 209 / 83.84 255 / 104.5 256 / 104.5 255 / 104.6

conditions: {B(f1)=50, B(f2)=100} kbytes for foreman and
{B(s1)=150, B(s2)=250} kbytes for stefan. For each buffer,
the preload is set at half of the buffer size.

Table II shows the frame selection results using different
algorithms under different constraint conditions. Each result is
represented by two values: the integer value indicates the total
number of selected frames and the decimal value indicates the
accumulated motion values. From table II, Approach 1 has
the worst performance under all conditions because it is too
conservative. Approach 2 exhibits average performance under
constrained buffer conditions and achieves better results with
increased buffer sizes. A larger buffer allows Approach 2 to
raise the frame selection path during good channel conditions
and subsequently reduces the chance of dropping frames
during bad channel conditions. In contrast, our proposed RFS
is able to perform consistently well, with results comparable to
those of UB, under all conditions especially for the constrained
buffer conditions.

B. Effectiveness of Non-Optimal State Elimination

Fig. 3 shows the number of states at each frame with
and without non-optimal state elimination. For RFS, we only
implemented the scheme with non-optimal state elimination.
From fig. 3, the two plots for FFS and RFS with non-optimal
state elimination are more or less symmetrical around the
middle frame. We set the parameters: bandwidth = 600 kbps,
buffer = 150 kbytes, and preload = 75 kbytes (the preload
parameter is used by FFS). As shown in fig. 3, the initial
state increment is almost linear, which implies an exponential
growth of states with frame number (note the use of a log scale
in the vertical axis). The curves then become relatively flat
because of the buffer size constraint. The discontinuous points
are mainly due to the inter-frame dependency constraints.
From the two FFS plots, we can see that the non-optimal
state elimination can effectively reduce the number of states
by approximately two magnitudes or one hundred times.

VI. SUMMARY

In this paper, we have studied the problem of optimal
frame selection for video streaming over both CBR and
VBR channels. Our contributions are threefold. First, we have
proposed the elimination of non-optimal states, which can

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Frame Number

N
um

be
r

of
 S

ta
te

s
(lo

g1
0)

Non−Optimal State Elimination in FFS and RFS

FFS without Non−Optimal State Elimination
FFS with Non−Optimal State Elimination
RFS with Non−optimal State Elimination

Fig. 3. Effectiveness of non-optimal state elimination for stefan video at
bandwidth = 600 kbps and buffer = 150 kbytes.

effectively reduce the computational cost of dynamic program-
ming by several magnitudes. Second, we have proposed the
RFS scheme for CBR channels, which can find all the optimal
results for different preloads in one round. Third, we have also
extended the RFS scheme for VBR channels, for which the
experimental results have demonstrated that our proposed RFS
scheme can achieve very good performance, close to global
optimization, under dynamic bandwidth conditions.

REFERENCES

[1] J. D. Salehi, Z. L. Zhang, J. F. Kurose, and D. Towsley, “Supporting
stored video: Reducing rate variability and end-to-end resource require-
ments through optimal smoothing,” IEEE Transactions on Networking,
vol. 6, no. 4, pp. 397–410, Aug. 1996.

[2] W. Feng and J. Rexford, “A comparison of bandwidth smoothing
techniques for the transmission of prerecorded compressed video,” in
Proceedings of IEEE INFOCOM97, Apr. 1997, pp. 58–66.

[3] W. Feng, “Rate-constrained bandwidth smoothing for the delivery of
stored video,” in SPIE Multimedia Compting and Networking, Feb. 1997,
pp. 316–327.

[4] J. K.-Y. Ng and S. Song, “A video smoothing algorithm for transmitting
MPEG video over limited bandwidth,” in Proceedings–Fourth Interna-
tional Workshop on Real-time Computing Systems and Applications, Oct.
1997, pp. 229–236.

[5] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, and R. P. Tsang, “Efficient
selective frame discard algorithms for stored video delivery across
resource constrained networks,” in Proc. IEEE INFOCOM’99, Mar.
1999, pp. 472–479.

[6] X. S. Zhou and S.-P. Liou, “Optimal nonlinear sampling for video
streaming at low bit rates,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 6, pp. 535–544, Jun. 2002.

[7] W. chi Feng and M. Liu, “Extending critical bandwidth allocation
techniques for stored video delivery across best-effort networks,” In-
ternational Journal of Communication Systems, vol. 14, pp. 925–940,
Sep. 2001.

[8] T. Gan, K.-K. Ma, and L. Zhang, “Dual-plan bandwidth smoothing for
layer-encoded video,” IEEE Transactions on Multimedia, vol. 7, no. 2,
Apr. 2005.

[9] P. A. Chou and Z. Miao, “Rate-distoration optimized streaming of
packetized media,” Micorsoft Research Technical Report, Feb. 2001.

[10] J. Chakareski and P. A. Chou, “Application layer error-correction coding
for rate-distoration optimized streaming to wireless clients,” IEEE Trans.
on Communications, pp. 1675–1687, Oct. 2004.

[11] J. Chakareski, S. Han, and B. Girod, “Layered coding vs. multiple de-
scriptios for video streaming over multiple paths,” Multimedia Systems,
pp. 275–285, Jan. 2005.

[12] H. Yi, D. Rajan, and L.-T. Chia, “Global motion compensated key frame
extraction from compressed videos,” in ICASSP, vol. 2, Mar. 2005, pp.
453–456.

1848

