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ABSTRACT

Segmentation of foreground and background has been an im-
portant research problem arising out of many applications in-
cluding video surveillance. A method commonly used for
segmentation is “background subtraction” or thresholding the
difference between the estimated background image and cur-
rent image. Adaptive Gaussian mixture based background
modelling has been proposed by many researchers for increas-
ing the robustness against environmental changes. However,
all these methods, being computationally intensive, need to be
optimized for efficient and real-time performance especially
at a higher image resolution. In this paper, we propose an im-
proved foreground/background segmentation method which
uses Experiential Sampling technique to restrict the computa-
tional efforts in the region of interest. We exploit the fact that
the region of interest in general is present only in a small part
of the image, therefore, the attention should only be focused
in those regions. The proposed method shows a significant
gain in processing speed at the expense of minor loss in ac-
curacy. We provide experimental results and detailed analysis
to show the utility of our method.

1. INTRODUCTION

Real-time processing of video has always been a problem in
many applications including automatic video surveillance. In
automatic video surveillance, one of the major steps in video
based human-activity recognition is the foreground/background
segmentation which takes substantial amount of computation
time. In this paper, we focus on improving the computational
efficiency of an existing foreground/background segmenta-
tion algorithm to meet the real-time requirements.

The core idea of our method is to use Experiential Sam-
pling (ES) technique [1] to find the region of attention in each
video frame and to restrict the processing to it. The ES tech-
nique utilizes the past experience to model the goal based
contextual attention using which it finds the region where the
computations need to be done. The goal, in our case, is to seg-
ment the foreground from background. The ES technique pro-
vides an efficient way to derive the attention samples from the
media (sensor) samples. Once we have the attention samples,

the processing is done only on the attention samples instead
of the entire data. The ES technique has been shown useful
in many applications including face detection and monologue
detection in video [1]. We also exploit the temporal redun-
dancy of the video to reduce the number of computations.

We have used adaptive Gaussian method to model the
background as described by Stauffer et al. [2] and further
improved by KaewTraKulPong et al. [3]. These methods do
the computations on the whole image without taking into con-
sideration of the regions of interest. It consumes a significant
amount of time in doing unnecessary computations especially
in non-busy environments where most of the frames captured
by the camera has a clear background and should not be given
much attention. The proposed method that integrates ES tech-
nique with the already proposed methods of background seg-
mentation shows a significant improvement in the computa-
tional speed. This improvement in speed is achieved at the
cost of minor loss in accuracy. This loss however is accept-
able in light of the fact that any event lasts for sufficiently
large number of video frames and the number of video frames
in which the foreground is missed (in our method) is very less.
And, of course, no surveillance task ends up at the segmen-
tation of foreground only, rather it undergoes further analysis
viz events detection, monitoring and tracking etc which relies
on a series of video frames before concluding about an event.
Hence even if the foreground in a few frames are missed by
the detector, it does not affect the final objective appreciably.
We have shown through experiments that the loss in accuracy
is very small compared to the gain in computational speed.

Our contributions in this paper are summarized as follows.
We have proposed an Experiential Sampling technique based
foreground/background segmentation method which provides
improved computational efficiency at the cost of negligible
loss in accuracy.

2. RELATED WORK

Since we use both foreground/background segmentation as
well as experiential sampling, we describe the related works
in both of them. Background subtraction involves modelling
a reference frame, subtracting the current frame, and then
thresholding the result. This modelling though is simple but
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is not robust enough to account for lightning changes in the
scene. Koller et al. [4] used a Kalman filter to track the
changes in background illumination for every pixel. In their
method, only the most probable values of the background
were included in the estimated background. Stauffer et al.
[2] first came up with an adaptive modelling of background
using Gaussian mixture which was robust enough for light-
ning changes and also to the new objects being removed or
introduced into the scene which Koller’s method lacked. But
even this was not able to distinguish between foreground ob-
ject and its shadow. Moreover, the method also suffered from
slow learning. A solution to this was then proposed by Kaew-
TraKulPong et al. [3] where they removed the likelihood term
responsible for slow learning and used online Expectation
Maximization algorithm for initialization, and then switch-
ing to the L-recent window update equations in order to give
priority to the recent data and making the tracker adapt to the
changes in the environment. But all these methods do the
computations on the whole frame without taking into consid-
eration the actual region of interest.

The concept of experiential sampling is inspired by the
biological phenomenon of attention. In [1], a sampling based
method has been used to represent the visual attention. The
sampling based method provides a flexibility of representa-
tion, and can also be incorporated within a dynamical system
which models the temporal continuity of visual attention. We
have used similar method for modelling attention.

3. PROPOSED METHOD

The proposed method integrates experiential sampling tech-
nique [1] with the existing Adaptive Gaussian mixture method
for foreground/background segmentation [2]. Experiential sam-
pling is a process of selecting the most relevant information
(i.e. Attention Samples) from the available data stream. The
key idea is to concentrate in a direction which is most relevant
and rewarding based on the context and past experiences. For
example, if a person is walking in a corridor we need to focus
our attention only in his vicinity instead of the whole image.
But there is always a possibility of sudden change in context
(for e.g. another person entering the scene) while the attention
is already focused in a particular region. In order to account
for such a change in the context, we must keep on refreshing
the existing attention regularly. We do this rebuilding of at-
tention profile at regular interval. We call this interval as “At-
tention Rebuild Window (ARW)”. In our method, ARW is a
significant parameter that bears a direct relation with the gain
in processing speed and the incurred loss in accuracy. Hence,
it needs to be properly tuned to achieve the optimization be-
tween the desired level of accuracy and processing time de-
pending upon the scenario.

At any time t, the environment et is modelled by -

et = {S(t), A(t)} (1)

ta 2a 1

1 e tee 2

a t−1

a

Fig. 1. Dynamic attention evolution model

where S(t) denotes the sensor samples and A(t) denotes the
attention samples. The experiential sampling based approach
that we have used, first considers the whole of image as sen-
sor samples, and then builds the attention profile based on
the region in which the foreground is detected. The attention
samples dynamically evolve over the interval ARW and keeps
on modelling the environment, and hence the attention sam-
ples in the incoming frames as shown in figure 1. To account
for sudden change in context as discussed above, we rebuild
the attention at regular intervals by throwing sensor samples
in the whole of image.

We represent the sensor sample set as -

S(t) =
{
s(t),ΠS(t)

}
(2)

where s(t) is the set of Ns number of pixel coordinates as,
s(t) = {(x1, y1), (x2, y2) . . . (xNs

, yNs
)}. ΠS(t) is the as-

sociated weight or the importance of each sample given by,
ΠS(t) =

{
πS

1 (t), πS
2 (t) . . . πS

Ns
(t)

}
, where each of πS

i (t) is
obtained by fusing the spatial cues C(t) available from the
video data. In our case, we used the RGB color model and
each of the values of RGB of a pixel served as cues. So, the
cue set C(t) is given by -

C(t) = {cr(t), cg(t), cb(t)} (3)

where,

cr(t) = {(x1, y1, wr1), (x2, y2, wr2) . . . (xNs
, yNs

, wrNs
)}

cg(t) = {(x1, y1, wg1), (x2, y2, wg2) . . . (xNs
, yNs

, wgNs
)}

cb(t) = {(x1, y1, wb1), (x2, y2, wb2) . . . (xNs
, yNs

, wbNs
)}

and

w[r,g,b]i =

{
1 if it matches the Gaussian corresponding

to its co-ordinate
0 otherwise

Now, by employing the linear combination of sensor fu-
sion strategy, we define the weights πs

i as -

πs
i (t) =

∑
j=r,g,b

αj .wji (4)

where αj is the importance of jth cue. The dynamically vary-
ing Na number of attention samples A(t) are expressed by-

A(t) =
{
a(t),ΠA(t)

}
(5)

where, a(t) = {(x1, y1), (x2, y2) . . . (xNa
, yNa

)} is the set of
pixels within the bounding rectangle around the foreground
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Table 1. The values set for different parameters
Parameters Range

ARW 0-20
αi 0.33 for each i, 1 ≤ i ≤ 3
ξ 1.5
ρ 0

object. The associated weight ΠA(t) of each attention sam-
ple is given by ΠA(t) =

{
πA

1 (t), πA
2 (t) . . . πA

Na
(t)

}
and cal-

culated as for sensor samples. The evolution model for the
environment and attention is shown in figure 1. Initially, the
environment e0 consists of sensor samples s0 (as the whole
image) with no attention. Once a foreground is detected (say
at time t) in the environment et, the bounding rectangle across
foreground pixels becomes the attention samples at. The at-
tention samples at at time t are used to compute the sensor
samples st+1 at next time instant and hence construct the en-
vironment et+1. The function that maps previous attention to
the new sensor samples is given by -

st+1 = f(at), t > 0 (6)

The f is a linear function of the form, f(x) = ξ.x + ρ, where
ξ and ρ are constants. ξ denotes a scaling factor and ρ denotes
a displacement in the region of attention.

Performance evaluation is done by recording the comput-
ing time as well as the accuracy of the processing. The com-
puting time and accuracy are compared with the existing fore-
ground/background segmentation algorithm [2]. More specif-
ically, for computing time, we measured the time (say Tnormal)
taken to process the total number of video frames using [2]
(without ES), and also measured the time (say TES) taken by
our method. The gain G in processing time is computed as -

G = TES/Tnormal (7)

Similarly, for accuracy, let us say Nnormal and NES are the
number of video frames in which the foreground is detected
using [2] and using our method, respectively; the loss L in
accuracy is given by -

L = (Nnormal − NES)/Nnormal (8)

4. EXPERIMENTAL RESULTS

The scenario in our experiment is a corridor with the camera
at one end covering whole of the corridor. The objective is
to perform foreground/background segmentation in real-time.
The authors and other graduate students from our lab volun-
teered for performing walking, standing and running activi-
ties in the corridor. The 3000 video frames (in BMP format)
of varying resolutions (768× 576, 384× 288 and 160× 120)
were processed on an Intel P-IV 4 GHz processor. Various
parameters used in the experiment are as shown in Table 1.

We compared our method with the existing methods (with-
out ES) by analyzing the processing time and accuracy. The

Frame 190, Na = 0 Frame 196, Na = 0 Frame 202, Na = 18656

Frame 208, Na = 10837 Frame 214, Na = 4558 Frame 220, Na = 3261

Frame 226, Na = 2061 Frame 232, Na = 1993 Frame 238, Na = 1183

Fig. 2. Blob detection results: The rectangle shows the num-
ber of attention samples in that frame.

processing time includes the time taken in foreground seg-
mentation and the time consumed in connected component
analysis and morphological operations (Erosion, Dilation). The
accuracy is measured with respect to the existing method as
mentioned in equation (8). The results obtained with and
without experiential sampling are then compared both in terms
of speed and accuracy.

The overall observations from the obtained results are-

1. Figure 2 shows the frames (190 to 250) of an event “A
person walking in the corridor”. Figure 3 illustrates a
comparison between the two methods in terms of time
consumed for processing these frames. We notice that,
in the ES based method, the maximum time is taken
in the processing of the frame where re-initialization
of sensor samples is done, and subsequently the pro-
cessing time is proportional to the number of attention
samples in the frame. However, the processing time
taken in the method without using ES is approximately
constant and is much higher compared to our method.

2. As described earlier, the sensor samples are used to
build the region of attention, figure 4 shows that the
number of attention samples (Na) closely follow the
number of sensor samples (Ns) in the region between
the peaks. The peaks correspond to the re-initialization
of sensor samples at regular intervals (of ARW) to ac-
count for any contextual change. After the sensor sam-
ples are thrown on the whole of image, the evolved at-
tention samples restrict the computations to the region
of interest in the subsequent frames, thereby saving a
lot of time and computation effort.

3. The experimental results show that there is a signifi-
cant gain in overall speed for processing all the 3000
frames. In figure 5, we report the overall processing
time of ES based method against the method without
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Fig. 3. Comparison of the two methods (Fore-
ground/background segmentation with and without Ex-
periential Sampling) in terms of processing time with
ARW=10.
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Fig. 4. Plot of sensor samples (Ns) and attention samples
(Na) versus the frame number with ARW=10.

ES by varying the ARW and the image resolutions. It
can be clearly seen from the figure 5 that our ES based
method is far superior in terms of average number of
frames processed per second. For example, in case of
768 × 576 image resolution with ARW = 10, the av-
erage number of frames processed per second for ES
based method are ≈ 3000/1200 = 2.5, whereas it is
≈ 3000/4500 = 0.66 for the method without ES.

4. Finally in figure 6, we present how the gain G in pro-
cessing time and loss L in accuracy vary with ARW.
The plot shows a substantial rise in gain in computa-
tion time at the cost of marginal loss in accuracy for
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Fig. 5. Overall processing time comparison for varying frame
resolutions and Attention Rebuild Window (ARW)
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Fig. 6. Plot showing the percentage value of G (Gain in pro-
cessing speed) and L(Loss in accuracy) as a function of ARW

smaller values of ARW. However, the gain curve tends
to saturate for higher ARW while the error shows an
increasing trend. This curve serves as the optimiza-
tion curve for selecting an appropriate ARW given the
maximum allowed inaccuracy (depending on the envi-
ronment) and the speed requirements. For instance, a
smaller ARW would yield better accuracy in crowed
environments at the expense of gain in the speed.

5. CONCLUSIONS

The use of experiential sampling technique in the segmenta-
tion of foreground/background segmentation provides a sub-
stantial gain in processing speed (compared to the already
proposed methods) to meet the real-time performance objec-
tives at the cost of a minor loss in accuracy. Future work
would be to test the method to handle multiple blobs in more
crowded environment. It would also be interesting to study
how Attention Rebuild Window (ARW) can adapt to the var-
ious environmental changes.
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