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ABSTRACT

In this paper, we developed a family of 2D and 3D invari-
ant features with applications to 3D human faces recognition.
The main contributions of this paper are: (a) systematically
deriving a family of novel features, called summation invari-
ant that are invariant to Euclidean transformation in both 2D
and 3D; (b) developing an effective method to apply sum-
mation invariant to the 3D face recognition problem. Tested
with the 3D data from the Face Recognition Grand Challenge
v1.0 dataset, the proposed new features exhibit achieves a per-
formance that rivals the best 3D face recognition algorithms
reported so far.

1. INTRODUCTION

Human face recognition has received unprecedented interest
in recent years [21]. However, a majority of current face
recognition systems are designed for 2D facial images. There
are much fewer works on 3D face recognition. Among those
reported 3D face recognition algorithms, there are three main
approaches:

The first approach [13], [10] regards a 3D facial range
image as a gray-level image and apply standard 2D algorithm
such as eigen-face to perform the classification task. The sec-
ond approach [10] is to apply a deformable 3D facial surface
model. The third approach [3], [19] is to extract features from
a 3D facial surface that are invariant to pose variations. These
approaches focus on the classical differential invariants such
as Gaussian curvature.

A fundamental weakness of differential invariants is that
the high-order derivative operations are sensitive to noisy data.
Hann and Hickman proposed a new family of integral invari-
ant [7] that are based on integration rather than derivative op-
erators. However, since their formulation is defined on con-
tinuous functions, when applied to sampled data, such as dig-
ital images, it suffers from excessive numerical errors. Sev-
eral related approaches such as the semi-differential invari-
ants [14], and affine quasi-invariant arc-length [18] are also

∗The authors have been partially supported by the National Science Foun-
dation under Grant No. CCF-0434355.

defined on continuous functions and hence share the same nu-
merical concerns as the integral invariants.

Recently, we proposed a new family of invariants, called
summation invariant [12] that is based on summation of dis-
cretized sample data. As such, these invariants are likely to
be more robust to noise and numerical errors. Based on this
preliminary result, in this paper, we developed a new family
of summation invariants in both R

2 and R
3 with respect to the

Eucledian transformation (rotation and translation). More-
over, we developed an efficient approach to extract these 2D
and 3D summation invariants from a given 3D range image
of human face and demonstrated superior performance. We
have conducted extensive experiments using the Face Recog-
nition Grand Challenge v1.0 dataset and the BEE (Biometric
Experimentation Environment) package. Our method yields
the best performance that has been reported so far [10].

The rest of this paper is organized as follows. Section
2 describes the summation invariant for the Euclidean trans-
formation group. Both 2D and 3D cases are discussed. The
application to 3D face recognition is presented in section 3,
with experimental results summarized in section 5.

2. SUMMATION INVARIANTS

We employ the method of moving frames [4] by Élie Car-
tan, to systematically construct mathematical invariants un-
der group actions. For 3D face recognition, we seek features
that are invariant to pose variations which can be modeled by
Euclidean geometrical transformations (rotation and transla-
tion). Our approach is similar to that of our early work [12]
for the affine transformation group acting on R

2.

2.1. Euclidean summation invariants of curves

Denote (x[n], y[n]) and (x̄[n], ȳ[n]) 0 ≤ n ≤ N − 1 respec-
tively to be the corresponding point on a curve in R

2 before
and after an Euclidean transformation
[

x̄[n]
ȳ[n]

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
x[n]
y[n]

]
+

[
a

b

]
(1)
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where a, b, θ ∈ R are parameters. Define the i, jth potentials
of this curve as

Pi,j =

N−1∑
n=0

xi[n] · yj [n] (2)

where i, j are nonnegative integers, i+j = k and k �= 0. Sim-
ilar, we denote P̄i,j to be the potentials after Eclidean trans-
formation.

To systematically derive a family of invariants with respct
to the Euclidean transform group, our approach is as follows:

1. Construct a prolonged potential jet space (x̄0, ȳ0, x̄1,
ȳ1, P̄ i,j) where x̄0 = x̄[0], ȳ0 = ȳ[0], x̄1 = x̄[N − 1],
ȳ0 = ȳ[N − 1].

2. Solve for parameters (called moving frame a, b, and θ of
the Euclidean transform from a set of a normalization
equations:

(x̄0, ȳ0, ȳ1) = (0, 0, 0) (3)

3. Express the analytical expression of the solution in terms
of x0, y0, and potentials. Substitute these solutions into
a transformed potential P̄i,j =

∑N−1

n=0
x̄i[n]ȳj[n]. The

result is the desired invariant ηi,j

Note that we are free to specify normalization equations
as long as they admit explicit analytical solution, i.e.a moving
frame can be found. We have derived all five first and second
order invariant functions, i + j = 1 or 2, η1,0, η0,1, η2,0, η1,1,
and η0,2. Due to space limitation, we only list the first two
here:

η1,0 = (x1 − x0)P1,0 + (y1 − y0)P0,1 + Nx0(x0 − x1)

+Ny0(y0 − y1) (4)

η0,1 = (y1−y0)P1,0+(x0−x1)P0,1 +N(x1y0−x0y1) (5)

2.2. Euclidean summation invariants of surfaces

Above procedure can readily be generalized to a surface in
R

3. Albeit, some complications must be overcome. Given a
parameterized surface (x[m, n], y[m, n], z[m, n]) with m =
0, . . . , M − 1 and n = 0, . . . , N − 1, its corresponding po-
tentials is defined by

Qi,j,k =

M−1∑
m=0

N−1∑
n=0

xi[m, n] · yj[m, n] · zk[m, n] (6)

where i, j, k are nonnegative integers, i+j+k = � and � �= 0.
In 3D, the Euclidean transformation is parameterized by

3 elementary rotation matrices R1, R2, R3, and a 3D trans-
lation vector T. This increases the number of parameters to

Fig. 1. Normalized range image and an 81 × 81 region cen-
tered at the nose tip.

six. These parameters are to be solved from a set of six nor-
mailzation equations:

(x̄[0, 0], ȳ[0, 0], z̄[0, 0], ȳ[M − 1, 0], z̄[M − 1, 0],

z̄[0, N − 1]) = (0, 0, 0, 0, 0, 0) (7)

The first three equations yields T = [x[0, 0], y[0, 0], z[0, 0]]T .
In order to satisfy the next two equations, denote A =

[x[M−1, 0], y[M−1, 0], z[M−1, 0]]T and compute its polor
coordinates (Ra, θa, φa). If two of the elementary matrics are
defined on θa, and φa respectively, then it is guaranteed that
ȳ[M − 1, 0] = 0, and z̄[M − 1, 0] = 0. Thus, the fourth and
fifth normalized equations are solved.

Finally, to solve the last equation, denote B = R2R1·([
x[0, N − 1] y[0, N − 1] z[0, N − 1]

]T
− T

)
. Again,

by representing B in polar coordinates, (Rc, θc, φc), one may
determine R3 using φc. By substituting these solutions into
the transformed potentials Q̄i,j,k, we obtain desired invariants
κi,j,k.

3. APPLICATION TO FACE RECOGNITION

We use the 3D facial images distributed with the Face Recog-
nition Grand Challenge (FRGC) dataset [15] to conduct face
recognition experiments. The 3D data contains 275 subjects
(1 to 8 range scans per subject) and a total of 943 range scans.
Each range scan has a resolution of 640 × 480 pixels.

Our experiment procedures closely follow those defined
for the baseline algorithm provided by FRGC. We extract in-
variant features from an N × N (N = 81) rectangular region
centered at the nose tip of the 3D facial map. An example is
shown in Figure 1. The positions of the nose tips are manually
selected and are provided by the FRGC dataset.

For 2D invariants ηi,j , facial range data are resampled uni-
formly with respect to arc-length. Specifically, for each row
on a range data, we first compute its arc-length and resample
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Fig. 2. For each range image, we compute summation in-
variants at each pixel: (a) Summation invariant is computed
from a 1×L horizontal window and (b) from a L× 1 vertical
window.

it uniformly with respect to arc-length. Then, we perform the
same resampling on each column. For surface invariants κi,j ,
we do not perform resampling on the normalized range data.

We extract a semi-local summation invariant from each
row and each column of the 81 × 81 rectangular region and
use the results as invariant features. For curve invariants ηi,j ,
we compute their semi-local summation invariants from a lo-
cal window. At each pixel, semi-local summation invariants
are computed both vertically and horizontally. The length of
local window is chosen to be L = 21. Similarly, we also
compute semi-local summation invariants κi,j,k from a local
window surrounding each pixel. The window size for surface
invariants is 17 × 17.

In order to reduce the size of the feature vectors, we use
principal component analysis (PCA) to compute their sub-
space projections. The PCA basis is computed using the train-
ing set (183 range images) specified by the experiment 3 of
the FRGC v1.0. The classification is accomplished by using
subspace projections. The Mahalanobis cosine distance met-
ric is used in these experiments.

The code is implemented in non-optimized C language.
The experiments are conducted under Linux operation system
with 3.40GHz XEON processor and 2GB memory.

4. EXPERIMENTAL RESULTS

We have conducted a series of experiments to assess the per-
formance of the proposed algorithm. Due to space limitation,
we only report the final results.

4.1. Effects of combining summation invariants

The purpose of this experiment is to investigate how to best
combine several different summation invariant to achieve high-
est performance. Only summation invariants that give higher
performance individually are combined. Figure 3 shows the
ROC curves of combining two summation invariants. The fu-
sion strategy is simply adding the similarity scores from two
different summation invariants. We observe that fusion does
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Fig. 3. ROC performance obtained by combining κ0,0,1 and
others.

not always yields higher recognition rate than that of a sin-
gle summation invariant. However, at low false alarm rate,
eg.0.1%, the improvement provided by fusion two or more
summation invariant is quite significant.

4.2. Comparison with other 3D face recognition algorithms

In this section, we conduct three experiments to evaluate the
performance of our algorithm and the FRGC baseline algo-
rithm. In the first, we simply run the FRGC baseline algo-
rithm on 3D data alone. In the second, we still run the FRGC
baseline algorithm on 3D data but using only the cropped re-
gion rather than the whole normalized range data. In Fig 4,
the second experiment shows a lower recognition rate than
the first one. This is reasonable because the second experi-
ment uses less data to perform recognition. In the third ex-
periment, we compute η1,1 and κ0,0,1 from the cropped re-
gion. Our algorithm yields the highest recognition rate as one
can see in Fig 4 (At 0.1% false alarm rate, the recognition
rate is 97.2%). The results clearly indicate that summation
invariants offer statistically significant better recognition per-
formance than the range data itself. Except for the FRGC 3D
baseline, Kakadiaris etal.[10] also apply their algorithm to
the range images from FRGC v1.0 dataset and report about
97.0% recognition rate at 0.1% false alarm rate. So, the pro-
posed method has the same recognition performamce as the
the best results ever published.

5. DISCUSSION AND CONCLUSION

The value of summation invariants in the context of 3D face
recognition is evaluated in this paper. We extract geomet-
ric features of facial surfaces using summation invariants and
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Fig. 4. Comparison with FRGC 3D baseline algorithm. We
apply the FRGC 3D baseline algorithm on the normalized
depth map and the cropped region shown in Fig 1. Their cor-
responding ROC curves are shown by the solid line and the
dash line respectively.

apply PCA on the resulting representation. Our results com-
pares favorably to those reported by Kakadiaris etal.[10]. We
are currently working on FRGC version 2.0 dataset, and ex-
plore additional 2D and 3D feature extraction method to im-
prove the 3D face recogntion performance.
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