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ABSTRACT

It is well-known that supervised learning techniques such as linear

discriminant analysis (LDA) often suffer from the so called small

sample size problem when apply to solve face recognition problems.

This is due to the fact that in most cases, the number of training sam-

ples is much smaller than the dimensionality of the sample space.

The problem becomes even more severe if only one training sample

is available for each subject. In this paper, followed by the well-

known unsupervised technique, kernel principal component analy-

sis(KPCA), a novel feature selection scheme is proposed to estab-

lish a discriminant feature subspace in which the class separabil-

ity is maximized. Extensive experiments performed on the FERET

database indicate that the proposed scheme significantly boosts the

recognition performance of the traditional KPCA solution.

1. INTRODUCTION

Face recognition(FR) has received more and more attentions with a

wide range of applications such as access control, forensic identifi-

cation and human computer interface. Although numerous FR algo-

rithms have been proposed in the past two decades with the state-of-

the-art reported in the survey of [1],it still remains as a difficult prob-

lem far from well solved. This is due to the fact that faces exhibit

significant variations in appearance due to illumination, expression,

pose and aging factors. At the same time, examples available for

training a FR machine are usually limited. To the extreme case, when

each subject only has one image sample, the recognition problem

becomes even more challenging. In such a case, some well-known

supervised learning techniques such as linear discriminant analysis

(LDA)[2] even fail to apply since the intrapersonal information can

not be obtained from one image sample per subject.

One training sample problem is a realistic problem existing in

many applications such as surveillance photo identification. One

possible solution to this problem is to apply an unsupervised learn-

ing technique on the given samples such as the so-called projection

combined principal component analysis ((PC)2A)[3] and SVD per-

turbation method (SVD)[4] which are extensions of the well-known

principal component analysis (PCA) solution [5]. The proposals in-

troduced pre-processing schemes followed by a standard PCA. An-

other possible solution is to artificially generate extra samples for

each subject under consideration such as moving the original image

in four directions[6]. However, as stated in [7], the generated sam-
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ples are usually highly correlated and should not be considered as

truly independent training samples.

Different from the above mentioned solutions which only use the

given samples to train FR machines, in [8], based on the traditional

eigenface (PCA) solution, we proposed a feature selection scheme

in a generic learning (GL) framework. Within the GL framework,

a PCA machine is built by using a generic database which contains

the subjects other than those to be recognized in real operations. This

is based on the assumption that human faces exhibit similar intrap-

ersonal variations so that the discriminant information among the

specific subjects could be learnt from other subjects. Since PCA is

an unsupervised learning technique without considering the class la-

bel, inter- and intra- personal variations are coupled together in the

extracted PCA space. Therefore, a feature selection scheme was pro-

posed to apply on the extracted eigenfaces. The selected eigenfaces

span a feature subspace in which the class separability is maximized.

In this paper, we extend the proposed method [8] into a non-linear

space by using the so-called kernel machine techniques. By combin-

ing the strength of the proposed feature selection scheme in [8] and

the kernel techniques[9], a novel kernel eigenface selection scheme

is proposed which allows for a non-linear solution to the problem. A

KPCA machine[10] is firstly trained on the generic database, and a

feature selection procedure is applied on the extracted kernel eigen-

faces thereafter. It will be further observed that the method proposed

in [8] is a special case of the proposed here algorithm when a linear

kernel function is used.

The rest of the paper is organized as follows. We start by briefly

reviewing the eigenface selection scheme in section 2. Following

that, the kernel eigenface selection procedure is discussed in section

3 with the selection criterion and procedure described in details. Ex-

perimentations on the FERET [11] database are presented in section

4 followed by a conclusion drawn in section 5.

2. REVIEW OF EIGENFACE SELECTION

In this section, the idea of selecting eigenfaces will be briefly re-

viewed. Let G be the gallery set containing G subjects to be recog-

nized. Each subject is represented by a face image gi, i = 1, 2, ..., G.

Let Z = {Zi}C
i=1 be the generic data database, containing C sub-

jects with each subject Zi = {zij}Ci
j=1, consisting of Ci samples zij

with a total of N =
PC

i=1 Ci samples, where zij ∈ RS . Please

note, there is no overlapping between G and Z . PCA is then ap-

plied on the generic training set obtaining at most N −1 meaningful

eigenvectors with non zero eigenvalues when the number of training

samples is smaller than the dimensionality of the sample space.

PCA is an unsupervised linear technique which produces the

most expressive subspace for face representation but not necessary
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be the most discriminating one. This is due to the fact that the

eigenspace computed from total scatter C = 1
N

PC
i=1

PCi
j=1(zij −

z̄)(zij−z̄)T includes both intrapersonal and interpersonal variations.

Therefore, in order to make PCA more attractive to classification

applications, we proposed a selection scheme to select a subset of

eigenfaces spanning a subspace in which the interpersonal variations

are maximized and intrapersonal variations are minimized[8]. Let

(Aopt
m ) be the optimal feature subset with cardinality of m which

is obtained by maximizing the ratio of the trace of between- and

within- class scatter. The proposed selection criterion is as follows:

Aopt
m = argAm

max J(Am) (1)

J(Am) =
tr(Sb)

tr(Sw)
=

tr(ηSbGen(Am) + (1 − η)SbGal(Am))

tr(SwGen(Am))
(2)

where Am is any feature subset with cardinality of m. SbGen and

SbGal are the between class scatters calculated from generic samples

and gallery samples while SwGen is the within class scatter calcu-

lated from generic samples. It can be observed that Sb is estimated

by using both the generic samples (SbGen) and the gallery samples

(SbGal). If only gallery samples are used (η = 0), due to the limit

sample size for each gallery subject, the estimation of Sb is unre-

liable, giving rise to high variance[12]. On the contrary, if generic

samples of other subjects are included to reduce the estimation vari-

ance (η = 1), the estimation becomes biased from the optimal one

which aims at the discrimination of the gallery subjects only. There-

fore, a regularization parameter η is applied to balance the estimation

bias and variance.

With the proposed selection criterion, a so-called Forward Selec-

tion procedure[13] is applied to select the optimal m combinations

to optimize the criterion J .

3. SELECTING KERNEL EIGENFACES

3.1. Kernel Feature Space

Compared to linear solutions, non-linear algorithms provide better

ways to solve the recognition problem when the sample distribution

is no longer Gaussian or convex. Kernel machine technique is the

key component in the available nonlinear FR algorithms. The basic

idea behind the kernel machine is to find a nonlinear transform from

the original sample space (RS) to a so-called kernel feature space F
by using a nonlinear function φ(·),

φ : x ∈ RS → φ(x) ∈ F (3)

It is expected that in the feature space F , the sample distribution

becomes Gaussian and convex so that a traditional linear method-

ology can be applied[9].Without determining the explicit nonlinear

function φ(·), the kernel machine technique provides an implicit so-

lution to the problem. The nonlinear mapping is implemented im-

plicitly by using a kernel function. It is revealed that the dot prod-

ucts in the feature space F can be replaced by a kernel function k(·)
defined in the original sample space as long as the kernel function

satisfies Mercer’s condition[9], i.e., for any two vectors in the sam-

ple space xi, xj ∈ RS , k(xi, xj) = φ(xi) ·φ(xj). Therefore, the key

task of designing a kernel-based algorithm is to select an appropri-

ate kernel function and represent the linear procedure by using dot

product forms.

3.2. Kernel Principal Component Analysis (KPCA)

KPCA [10] is actually a standard PCA solution performed in F .

For any input pattern x, its feature representation in the KPCA fea-

ture subspace ϕKPCA(x) can be obtained by using the dot product

computed implicitly through the kernel function:

ϕKPCA(x) = ΓT
KPCAKx, Kx = (k(zij , x))j=1,...,Ci

i=1,...,C (4)

where ΓKPCA = [γ1, ..., γF ] consists of the first F significant

eigenvectors of the gram matrix K (N × N) corresponding to F

largest eigenvalues, where K = (k(zim, zjn))
m=1,...,Ci;n=1,...,Cj

i,j=1,...,C

and Kx is a N × 1 vector.

3.3. Calculating Selection Criterion

Within the KPCA space, the corresponding feature selection crite-

rion becomes

Γopt
m = argΓm

max J(Γm) (5)

J(Γm) =
tr(S̃b)

tr(S̃w)
=

tr(ηS̃bGen(Γm) + (1 − η)S̃bGal(Γm))

tr(S̃wGen(Γm))

where Γm is any m− dimensional KPCA feature subset and S̃b, S̃w
are the corresponding between- and within-class scatters defined in

the kernel space F . In the following, the detailed calculation of

the selection criterion will be discussed. Let yij = ΓT
mKzij and

si = ΓT
mKgi

be the feature representations of the generic sample zij

and gallery sample gi in the feature subspace spanned by Γm. Then,

tr(S̃bGen) = 1
N

PC
i=1 Ci(ȳi − ȳ)T (ȳi − ȳ)

= 1
N

PC
i=1 CiȳT

i ȳi − ȳT ȳ
= 1

N

PC
i=1

1
Ci

1T
Ci

Ky
ii1Ci − 1

N2 1T
N Ky1N

(6)

tr(S̃wGen) = 1
N

PC
i=1

PCi
j=1(yij − ȳi)

T (yij − ȳi)

= 1
N

PC
i=1

PCi
j=1 yT

ijyij − 1
N

PC
i=1 CiȳT

i ȳi

= 1
N

tr(Ky) − 1
N

PC
i=1

1
Ci

1T
Ci

Ky
ii1Ci

(7)

tr(S̃bGal) = 1
G

PG
i=1(si − s̄)T (si − s̄)

= 1
G

PG
i=1 sT

i si − s̄T s̄
= 1

G
tr(Ks) − 1

G2 1T
GKs1G

(8)

where ȳi = 1
Ci

PCi
j=1 yij ,ȳ = 1

N

PC
i=1

PCi
j=1 yij ,̄s = 1

G

PG
i=1 si

and 1m is a m × 1 vector with all elements equal to 1. Ky(N ×
N),Ky

ii(Ci × Ci) and Ks(G × G) are the gram matrices of generic

samples and gallery samples in the KPCA subspace spanned by Γm,

which are defined as follows:

Ky = (yT
ipyjq)

p=1,...,Ci;q=1,...,Cj

i,j=1,...,C Ky
ii = (yT

ipyiq)
p,q=1,...,Ci

Ks = (sT
i sj)i,j=1,...,G

(9)

It can be further observed that Ky and Ks can be obtained from

the gram matrix defined in the original sample space with the pre-

defined kernel function, i.e.,

yT
ipyjq = KT

zip
ΓmΓT

mKzjq

Ky = KΓmΓT
mKT (10)

sT
i sj = KT

gi
ΓmΓT

mKgj

Ks = KGΓmΓT
m(KG)T

KG = (k(gi, zmn))i=1,...,G
m=1,..,C;n=1,...,Cm

(11)

Ky
ii is the submatrix of Ky corresponding to the samples belong-

ing to ith subject, KG is a G × N gram matrix, Kzip and Kgi
are
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N × 1 vectors such that Kzip = (k(zmn, zip))n=1,...,Cm
m=1,...,C , Kgi

=

(k(zmn, gi))
n=1,...,Cm
m=1,...,C .

With the calculations of the selection criterion described above,

Forward Selection procedure[13] is also applied to select the optimal

m combinations in Γ to maximize J defined in Eq.(5). Similar to [8],

other than selecting from all N − 1 obtained kernel eigenfaces, the

complete kernel eigenfaces set Γ contains the first M kernel eigen-

faces corresponding to the largest eigenvalues, i.e., Γ = [γ1, ..., γM ].
Thus the optimal m kernel eigenfaces Γm are selected from Γ. The

reason for exclusion of trailing kernel eigenfaces is due to the fact

that the kernel eigenfaces corresponding to small eigenvalues are

usually unreliable since only small number of samples are used to

estimate the sample covariance in the high dimensional kernel space

F . In addition, in order to further keep the most discriminating infor-

mation, we start with the most significant feature γ1 with the largest

eigenvalue.The detailed selection procedure is listed as follows

(1) Γm(1) = [γ1]
(2) for k = 1 to m

for γi ∈ Γ − Γm(k)
with Equation.5, calculate

C(γi) = J(Γm(k) ⊕ γi)
end
Γm(k + 1) = Γm(k) ⊕ arg maxγi C(γi)

end

It can be observed, if linear kernel function is used, i.e., k(xi, xj) =
xT

i xj , KPCA is reduced to the traditional PCA solution and the de-

scribed above method is reduced to the eigenface selection scheme

proposed in [8]. Therefore the proposed here solution is a general-

ized algorithm which includes [8] as a special case.

4. EXPERIMENT

4.1. Experiment Setup

In order to demonstrate the effectiveness of the proposed algorithm,

the well-known FERET database is used for experimentations. We

use the same experiment setup as the one proposed in [8]. Among

all 1200 subjects included in the FERET database, a subset of 226

subjects with 3 images per subject is used as a generic training set.

In addition, 1703 images of 256 subjects with at least 4 images per

subject are used to form the gallery and probe sets. There is no over-

lapping of the subjects in the generic training set and gallery/probe

set. We randomly select 256 frontal images (one per subject) to form

the gallery set. The remaining 1447 images are considered to be

the probe set. We further partition the probe set into three subsets.

Set P1 contains 914 frontal images of 256 subjects. The camera

time difference between P1 probe images and their corresponding

gallery matches is less than half year(≤ 180days), mostly taken in

the same session. Set P2 consists of 226 frontal images of 75 sub-

jects whose camera time difference to their corresponding gallery

matches is greater than one and half year (≥ 540days). Set P3

contains 227 non frontal images of 48 subjects with no particular

consideration with respect to camera time. It can be observed that

set P1 contains small intrapersonal variations. However, P2 and P3

includes larger intrapersonal variations due to aging and pose factors

which is often encountered in real applications.

All images are preprocessed according to the recommendation

of the FERET protocol, which includes (1) images are rotated and

scaled so that the centers of the eyes are placed on specific pixels and

the image size is 150×130; (2) a standard mask is applied to remove

nonface portions; (3) histogram equalized and image normalized to

have zero mean and unit standard deviation. Then each image is

finally represented as a vector of length 17154.

KPCA is firstly applied on the generic training set obtaining 677

meaningful kernel eigenfaces. The Gaussian kernel is selected as

the kernel function with σ2 = 5 × 106, i.e., k(x, y) = exp(−(x −
y)T (x − y)/σ2). The first 246 KPCA features are kept to form

the complete kernel eigenface set Γ which captures 95% of the en-

ergy. The cardinality of the selected feature subset Γm is up to

m = 100. The recognition is performed by comparing the Eu-

clidean distance between the probe and each gallery image in the

feature space spanned by Γm, i.e., d(p, gi) = ||ΓT
m(Kp − Kgi

)||
A probe is in the top H if the distance to its corresponding gallery

match is among the H smallest distances for the gallery. Thus the

recognition rate at rank H is the number of probe images in the top

H divided by probe size.

For comparison purposes, the traditional KPCA solution, the

(PC)2A solution proposed by [3] ((PC)2A) and SVD solution pro-

posed by [4] (SVD) are also performed.

4.2. Results and Analysis

The best found the correct recognition rate(BstCRR) at rank 1 and 20

are listed in table.1 for our proposed method (FS), KPCA, (PC)2A
and SVD. It is well-known that CRR is a function of the feature

number and the best found CRR is the one with the peak value cor-

responding to the optimal feature number (Nopt) which is obtained

by exhaustively searching all possible feature numbers. Bold case

indicates the best performance. In addition, Fig.1 depicts the corre-

sponding recognition rate at rank 20 of these 4 methods with various

number of features.

It can be observed from table.1 that no obvious improvement of

BstCRR can be observed from the proposed method in P1. How-

ever, in P2 and P3, the BstCRR of the proposed method at rank

20 (74.30% and 71.81%) are the highest among all four algorithms

while all these methods fail in rank 1 evaluation (< 50%). The

similar result can be observed from fig.1. The rank 20 recognition

rate of the proposed method (FS) is similar to that of the traditional

KPCA solution in P1 which is slightly better than that of (PC)2A
and SVD solutions. When evaluated in P2, the proposed solution

outperforms significantly other three methods. While in P3, the pro-

posed solution also demonstrates the best performance. These obser-

vations can be explained as follows. In P1, probe images are quite

similar to their corresponding gallery templates, i.e., the intraper-

sonal variations are considerably small. Thus interpersonal varia-

tions dominate recognition performance. In such a case, the tradi-

tional KPCA solution provides a better performance. This is due

to the fact that the traditional KPCA selects the features with large

eigenvalues, i.e., the large total variations. Therefore, when actual

intraperosnal variations are small, it is equivalent to select a feature

subspace which contains large interpersonal variations. However, in

P2 and P3, intrapersonal variations are much larger, throwing more

effect on the recognition performance. Therefore, the proposed here

solution which selects the features maximizing the ratio of inter- and

intra-personal variations demonstrates a better performance.

Table.2 lists the BstCRR at rank 20 with various η. It can be

observed that a larger η value is preferred in P2 and P3. This in-

dicates that under the one training sample scenario while intraper-

sonal variations are considerably large, high estimation variance re-

sulting from the using of gallery samples only is a more serious prob-

lem. Therefore, a generic learning framework by including unrelated

generic face samples is an appropriate choice. In addition, the best

performance is achieved between two extreme cases when η = 0
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Table 1. Best found CRR (%) on P1, P2 and P3 at rank 1 and 20

with optimal feature number Nopt; For FS η = 0.6.

RK(P1) RK(P2) RK(P3)

1 20 1 20 1 20

FS 72.65 91.90 23.46 74.30 19.38 71.81
Nopt 86 39 91 92 99 96

KPCA 75.05 93.87 17.88 62.01 21.15 67.84

Nopt 95 92 84 75 79 94

PC2A 65.10 89.06 13.14 58.10 17.62 58.59

Nopt 82 44 91 25 33 13

SVD 74.18 91.90 24.58 66.48 25.99 69.60

Nopt 85 63 97 28 74 31

and η = 1. This coincides our claim that balancing bias (η = 1)

and estimation variance (η = 0) is necessary to further improve the

recognition performance.

Fig. 1. Correct Recognition Rate at Rank 20 v.s. Feature Number

Evaluated on Probe set 1,2 and 3; For FS, η = 0.6

5. CONCLUSION

In this paper, a novel feature selection scheme is proposed to se-

lect kernel eigenfaces. The proposal calls for the establishment of a

discriminant feature subspace spanned by the selected kernel eigen-

faces in which the interpersonal variations are maximized and intrap-

ersonal variations are minimized. Considering the one training sam-

ple per subject situation, the feature selection scheme is performed

within the generic learning framework. The interpersonal variations

are estimated from both the generic samples and the given gallery

samples so that the estimation bias and variance are balanced. Ex-

Table 2. Best found CRR (%) of the proposed method (FS) on P1,

P2 and P3 at rank 20 with different η.

η

0 0.2 0.4 0.6 0.8 1.0

P1 92.77 92.66 91.68 91.90 92.01 92.12

P2 58.10 63.68 73.74 74.30 73.74 73.74

P3 66.96 67.84 72.68 71.80 71.80 70.92

perimentation results indicate that the proposed algorithm outper-

forms the traditional kernel principal component analysis solution

and other state-of-the-art FR algorithms.
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