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ABSTRACT
In this paper, a new watermarking scheme in the joint time-
frequency domain is introduced. Wigner distribution is used
to transform an image into the spatial-spectral domain. The
proposed method selects the time-frequency cells to be wa-
termarked based on the particular image’s energy distribution
in the joint domain. This approach ensures the imperceptibil-
ity of the embedded watermark. It is shown that embedding
in the time-frequency domain is equivalent to a nonlinear
embedding function in the spatial domain. A correspond-
ing watermark detection algorithm is also introduced. The
performance of the proposed watermarking algorithm under
possible attacks, such as noise, re-sampling, rotation, filter-
ing, and JPEG compression is illustrated.

1. INTRODUCTION

The past research on image watermarking focused on embed-
ding the watermark in the spatial and the spectral domains.
In the spatial domain, the regions to be watermarked are se-
lected based on the texture of the given image [1]. While
in the spectral domain, the watermark is embedded in the
transform domain using methods such as DCT and DWT, in
the mid-frequency range to ensure transparency and robust-
ness of the watermark, simultaneously [2, 3]. In order to take
full advantage of both the spatial and the transform domains,
researchers started looking at the joint spatial-spectral repre-
sentation of the image, which gives a more comprehensive
representation of the image [4, 5, 6, 7]. The joint spatial-
spectral domain provides flexibility in how much data can be
hidden and where it should be hidden inside an image.

Most work in the time-frequency domain concentrated
on using Wigner distribution as the transform domain. In
[4], the authors used a two-dimensional chirp signal with
a variable spatial frequency as the watermark. The water-
mark is characterized by a linear frequency change and can
be detected by using 2-D space/spatial-frequency distribu-
tions. The projections of the 2-D Wigner distribution and
the 2-D RadonWigner distribution are used to emphasize the
watermark detection process.

In [5], the Wigner distribution is used for watermarking.
The watermark is embedded in a subset of the transformed
cells selected such that the watermark will survive the JPEG
compression. Since the resultant watermarked distribution is
not a valid Wigner distribution, a least square error estimate
is used in watermark detection. This algorithm detects the
presence of the watermark under JPEG attacks.

In [6], a fragile image watermarking method based on
time-frequency representation is presented. The watermark
is an FM modulated signal which is embedded in the diag-
onal elements of the image. The particular features of this
signal in the time-frequency domain are used to identify the

watermark. The Wigner distribution is used to analyze the
content of the extracted watermark.

In this paper, a new time-frequency based watermarking
method will be introduced using the Wigner distribution. A
complete mathematical derivation for both embedding and
detection stages will be given. An equivalent simplification
of this Wigner domain method in the time domain will also
be shown. The robustness for this algorithm under attacks
will be tested experimentally.

2. BACKGROUND

For a discrete signal, s(n), the discrete Wigner distribution is
given by,

WD(n,ω) = 2∑
m

s(n+m)s∗(n−m)e− j2ωm. (1)

where n and ω = 2πk/N are the discrete time and frequency
variables respectively.

The resulting Wigner distribution has some important
properties that make it a good choice in watermarking ap-
plications; it is always real, satisfies the marginals, invertible
and symmetric. These properties make the Wigner distrib-
ution a good choice in watermarking applications. Invert-
ibility is especially important in watermarking applications
where detecting the watermark is one of the primary goals.
In the case of images, where we have positive and real pixel
values, the Wigner distribution is symmetric and the origi-
nal signal, s(n), can be retrieved completely from its Wigner
distribution as,

s(n) =
√

∑
ω

WD(n,ω). (2)

Equation (2) implies that for a positive real valued signal,
the original signal can be retrieved from its Wigner distrib-
ution by taking the inverse Fourier transform of the Wigner
distribution evaluated at m = 0 and taking the square root of
each element in this row. This result will simplify the em-
bedding and the detection of the watermark.

3. WATERMARK EMBEDDING

The watermark embedding algorithm can be summarized as
follows:
1. Transform each row of the image, I(x,y), to the Wigner

domain:

WDx(y,ωy) = 2∑
m

I(x,y+m)I(x,y−m)e− j2ωym. (3)
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2. Transform the watermark sequence w to the Wigner do-
main:

WDw(y,ωy) = 2∑
m

w(y+m)w∗(y−m)e− j2ωym. (4)

3. Embed the Wigner distribution of the watermark se-
quence into the Wigner distribution of each row:

ŴDx(y,ωy) = WDx(y,ωy)+Ax(y,ωy)�WDw(y,ωy),
(5)

where Ax(y,ωy) is the time-frequency dependent weight-
ing matrix for row x, and Ax(y,ωy)�WDw(y,ωy) is an
element by element multiplication of the two matrices.

4. Take the inverse transform to obtain the watermarked im-
age:

Î(x,y) =
√

∑
ωy

ŴDx(y,ωy). (6)

One important issue is the inversion of ŴDx(y,ωy). It
is well-known that not all time-frequency surfaces are valid
Wigner distributions. Therefore, some restrictions apply
when choosing the weighting matrix Ax(y,ωy). This implies
that Ax(y,ωy) should be symmetric with respect to the cen-
ter and the additive component in (5) should correspond to
the Fourier transform of a local autocorrelation function. As-
suming that the distribution in (5) is still a valid Wigner dis-
tribution, as shown in section 4, the inversion in (6) is still
true and the embedding algorithm can be simplified as fol-
lows,

Î(x,y) =
√

∑
ωy

ŴDx(y,ωy), (7)

=
√

∑
ωy

(WDx(y,ωy)+Ax(y,ωy)WDw(y,ωy)), (8)

=
√

2∑
m

I(x,n+m)I(x,n−m)δ (2m)+ ∑
ωy

Ax(y,ωy)∗w2(y),

(9)

Î(x,y) =

√√√√I2(x,y)+

(
∑
ωy

Ax(y,ωy)

)
∗w2(y), (10)

where ∗ corresponds to convolution. The simplification in
(10) reduces Î(x,y) to a nonlinear function of the image and
the watermark sequence in the spatial domain. The time-
frequency dependence of the embedding function is through
the time-frequency dependent weighting matrix Ax(y,ωy).
Although the result in (10) is only true when ŴDx(y,ωy) is
a valid Wigner distribution, we will use this result in embed-
ding the watermark because of the ease of implementation
and its proximity to time-frequency embedding as discussed
in section 4. The time-frequency dependence of the water-
marking algorithm is ensured through the time-frequency de-
pendent weighting matrix Ax(y,ωy). The weighting matrix
Ax(y,ωy) should be determined based on the Wigner distri-
bution of the corresponding row. In this paper, Ax(y,ωy)
is chosen such that the watermark is embedded in the mid-
frequency range, which ensures a robust and perceptual wa-
termark,

Ax ∝

{
WDx(y,ωy)

max(WDx(y,ωy))
, ω1 ≤ |ωy| ≤ ω2

0, elsewhere
, (11)

where ω1 and ω2 determine the range of frequencies where
a watermark is embedded with typical values of ω1 = 1

6 and
ω2 = 1

3 .

4. ERROR INTRODUCED IN WIGNER
DISTRIBUTION INVERSION

In the previous section, we assumed that the watermarked
Wigner distribution in equation (5) is a valid Wigner distrib-
ution. However, this is hard to be satisfied in all cases, and
an error is introduced in (5). Our goal is to study the effect of
this approximation by looking at how different the Wigner
distribution of the signal in equation (6) and the Wigner
distribution in equation (5). Let the Wigner distribution of
Î(x,y) be WDx. Ideally, WDx and ŴDx should be identical.
However, an error is introduced by equation (6) in the in-
version process. We compute the Normalized Mean Square
Error (NMSE) between WDx and ŴDx. Table 1. shows the
average NMSE for different images over all time-frequency
points for all rows. The NMSE is computed from the er-
ror introduced in the inversion of the Wigner distribution for
different images. The results in Table 1 suggest that the ap-
proximation used for the inversion of the Wigner distribution
is valid and introduces a small amount of error.

Table 1: The average Normalized Mean Square Error intro-
duced by the approximation of the Wigner distribution.

Image NMSE Standard deviation (sd)
Lena 4.6×10−11 2.1×10−12

Barbara 4.5×10−11 2.3×10−12

Camera Man 4.3×10−11 2.2×10−12

Peppers 4.4×10−11 2.3×10−12

We can further study the locations where the error is con-
centrated by finding the difference between the two Wigner
distributions,

WDD = WDx(y,ωy)−ŴDx(y,ωy). (12)

At each time point, i.e every column in WDD, we find the
histogram of the maximum differences over frequency. Fig.
1 shows that the maximum error is concentrated around the
low frequencies. Therefore, in our embedding algorithm we
choose the weighting matrix such that the watermark is em-
bedded in the middle frequency range, which is less effected
by this approximation error.

5. WATERMARK DETECTION

For copyright protection applications, it is important to detect
the existence of the watermark even after the watermarked
image is attacked. In order to study the performance of the
detector, a threshold is derived such that the probability of
error is minimized. Let us define two hypotheses: H1, where
the embedded watermark exists and H0, where the embedded
watermark does not exist. In this paper, we assume that we
have access to the original image. Therefore, we can extract
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Figure 1: The average histogram for the difference of the two
Wigner distributions.

a function that depends on the watermark by squaring (10)
and subtracting the square of the original image from it. The
extracted function is compared with a series of possible wa-
termarks to determine which watermark has been embedded.
The corresponding correlation based detector obtained from
(10) is, 〈

Ax(y)∗w2(y), ŵ2(y)
〉 H1

>
<
H0

η , (13)

where Ax(y) = ∑
ωy

Ax(y,ωy).

Since convolution in time corresponds to multiplication
in frequency, we can equivalently rewrite this correlation de-
tector as,

〈C(n)Y1(n),Y2(n)〉
H1
>
<
H0

η , (14)

where C(n), Y1(n) and Y2(n) correspond to the Fourier trans-
forms of Ax(y), w2(y) and ŵ2(y), respectively. For the case
that the a priori probabilities of H0 and H1 are 1

2 , the proba-
bility of error Pe is,

Pe =
1
2
P

(
∑
n

C(n)Y1(n)Y2(n) > η
)

+
1
2
P

(
∑
n

C(n)Y 2
1 (n) < η

)
. (15)

In order to derive the minimum probability of error de-
tector, we need to find the distributions of z1 = ∑nC(n)Y 2

1 (n)
and z2 = ∑nC(n)Y1(n)Y2(n). Using the central limit theorem,
the pdfs of z1 and z2 are assumed to be Gaussian with means
and variances defined as,

µz1 = Nσ4
1

[
2∑

n
C(n)+NC(0)

]
, (16)

σ2
z1 = 8N2σ8

1

[
∑
n

C2(n)+NC2(0)
]
, (17)

µz2 = N2σ2
1 σ2

2C(0), (18)

σ2
z2 = 4N2σ4

1 σ4
2

[
∑
n

C2(n)+NC2(0)
]
. (19)

The minimum probability of error detector is found by
setting ∂Pe

∂η = 0. Using the fact that the weighting matrix,
Ax(y,ωy) has values less than one based on equation (11) to

insure imperceptibility, the threshold η can be approximated
by,

η ≈
N2 ∑

y
Ax(y)σ4

1

[(
2σ 2

1

σ2
2

−1

)
±
√

2

(
σ2

1

σ2
2

−1

)]
(

2σ4
1

σ4
2
−1

) . (20)

For the special case when σ 2
1 = σ2

2 = σ2, equation (20)
reduces to,

η ≈ N2σ4 ∑
y

Ax(y). (21)

The threshold derived in (20) shows that the thresh-
old is image dependent. This dependency on the image
is reflected through the time-frequency weighting matrix,
Ax(y,ωy). Therefore, the image’s spatial and spectral distri-
bution is taken into account when choosing the appropriate
threshold. It is also important to note that this threshold is
different for each row of the image and an average thresh-
old can be evaluated for the whole image. The special case
threshold given in equation (21) shows that the embedding
method depends on N 2 which makes it more dependent on
the image size.

6. SIMULATION RESULTS

The watermark embedding algorithm proposed in this paper
has been applied to a number of images. The watermark is
a normally distributed random sequence. The robustness of
the watermark embedding algorithm has been studied experi-
mentally. For the case of the Lena image, the performance of
the proposed algorithm has been tested under different types
of attacks including additive white Gaussian noise (AWGN),
median filtering, rotation, re-sampling and JPEG compres-
sion. The detector for the algorithm described by (13) is
tested for a series of watermarks. Fig. 2 shows the normal-
ized correlation function under different attacks. This func-
tion reaches its maximum value when the embedded water-
mark and the tested one are the same and is close to zero for
all other watermarks.
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Figure 2: The normalized correlation detector response for
the proposed embedding method applied to (256×256)Lena
image under different attacks, a. AWGN (variance 20),b.
Median filtering (size 4× 4), c. Rotation (10◦), d. Re-
sampling (22%), e. JPEG compression with Quality factor
of 80%, f. JPEG compression with Quality factor of 60%.

The performance of the proposed embedding method for
different images has also been studied. We have applied the
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embedding method to a 256×256 lena1, a 512×512 lena2,
a 512× 512 barbara and a 256× 256 camera man images.
Table 2 summarizes the probability of error in detecting the
watermark under different types of attacks for the four test
images. The embedding method provides a small probability
of error under most of the attacks regardless of the image
type. Increasing the image size improves the performance of
the embedding algorithm.

Table 2: The probability of error in detecting the watermark
under different types of attacks for different images.

Image Lena1 Lena2 Barbara Camera
AWGN (Variance=10) 0.0225 0.076 0.0653 0.0429
AWGN (Variance=20) 0.0258 0.086 0.0776 0.0539

Rotation(5◦ ) 0.0536 0.098 0.0724 0.0839
Rotation(10◦ ) 0.0652 0.104 0.0921 0.104

Resampling (22%) 0.0306 0.111 0.1095 0.0987
Resampling (32%) 0.0521 0.156 0.153 0.136

JPEG compression (Q=40%) 0.0182 0.118 0.129 0.101
JPEG compression (Q=60%) 0.0163 0.0845 0.102 0.084
JPEG compression (Q=80%) 0.0144 0.0414 0.065 0.0391

The results show that the proposed method performs well
under most attacks with a very small error rate. The maxi-
mum probability of error occurs under resampling with worst
case value of 0.156. Since convolution spreads out the water-
mark over the whole image, the resultant watermark is robust
to most attacks as it is clear from the simulation results.

7. CONCLUSION

A new watermarking algorithm based on the Wigner distrib-
ution has been introduced. It has been shown that for positive
and real signals, the signal can be retrieved from its Wigner
distribution without any error. This realization inspires the
use of the proposed time-frequency information for both the
image and the watermark. The embedding algorithm in the
joint domain is simplified to a nonlinear embedding function
in the spatial domain. The error introduced by this simpli-
fication is analyzed and is shown to be concentrated at low
frequencies. Therefore, the time- frequency embedding al-
gorithm chooses a weight function that emphasizes the mid-
frequencies. This simplification reduces the computational
complexity of embedding and detecting the watermark. A
non-blind correlation based detector is derived using the non-
linear embedding function and the minimum probability of
error threshold is found. The proposed algorithm is shown
to be transparent and robust under attacks, through experi-
ments.
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