
CONTROLLED COMPLEXITY MAP DECODING OF CABAC ENCODED DATA

Salma Ben Jamaa, Michel Kieffer and Pierre Duhamel

LSS – CNRS – Supélec – Université Paris-Sud XI
Plateau de Moulon, 91192 Gif-sur-Yvette, France

ABSTRACT

In this paper, we present a joint source-channel decoding tech-
nique based on exact MAP estimation for data encoded by CABAC
(Context-based Adaptive Binary Arithmetic Coding) in standards
like H.264/AVC. Soft decoding is put at work using an improved
sequential decoding technique, achieving a trade-off between com-
plexity and efficiency of the proposed algorithms. Error detection
is realized by exploiting the binarization scheme and redundancy
left in the code string, so that CABAC compression efficiency is
preserved and no additional redundancy is compulsory.

1. INTRODUCTION

To overcome noise and packet loss problems occurring in data
transmission through noisy packet-switched channels, e.g., wire-
less Internet, one popular approach is to use joint source-channel
(JSC) decoding. Such decoding techniques keep efficient data
compression and improve robustness against errors. A significant
part of the work in JSC decoding is related to the reliable decoding
of variable length codes (VLC), see, e.g., [1].

Arithmetic Coding (AC) [2] is currently the object of a grow-
ing interest as it yields higher compression efficiency when com-
pared to other compression methods. This is why AC has been in-
corporated, e.g., in JPEG 2000 and H264/AVC [3]. However, this
compression efficiency makes AC particularly vulnerable to trans-
mission errors. This point has motivated the recent development
of JSC decoding techniques for AC encoded data [4–8]. The er-
ror detection and correction are usually performed by introducing
redundancy in the compressed bitstream, thus reducing the com-
pression efficiency. In [9], a forbidden symbol (FS) is introduced
in the coding alphabet and used to detect errors. This technique
is coupled with ARQ in [10]. In [7], both depth first and breadth
first decoding algorithms have been considered. Error detection is
again achieved with the help of a FS and error correction is per-
formed via maximum-likelihood (ML) estimation. Sequential de-
coding with MAP estimation of the encoded sequence is combined
with the use of a FS in [5]. The AC decoder proposed in [6] esti-
mates the state transitions of a Markov process modeling the AC.
Redundancy is introduced by considering a reduced precision AC
and adding synchronization markers before the encoding process.

The CABAC [11], used in the H.264/AVC standard, supple-
ments the AC with an adaptive binary encoding technique based on
context modeling. An improved compression efficiency is achieved
especially in presence of non-stationary sources. Nevertheless,
as CABAC uses binary AC and precomputed probabilities, tech-
niques for robust decoding of VLC encoded data cannot be applied
unless important changes of the CABAC are performed.

This work exploits previous results on exact MAP estimation
of CABAC encoded data [8]. Here, MAP estimation is performed

by sequential decoding algorithms [12]. As improving error re-
silience performances usually goes with increasing decoding com-
plexity, an objective test based on the exact MAP metric is pro-
posed to allow an adjustment of the trade-off between complexity
and efficiency.

2. CONTEXT OF THE WORK AND NOTATIONS

Transmission scheme

Data are assumed to be compressed by a CABAC encoder, packe-
tized and transmitted over a radio mobile channel. Packets undergo
some alteration during the transmission. The purpose is to detect
and correct transmission errors. As CABAC handles only binary
data, a binarization step converting non-binary information into
binary source symbols according to a binarization scheme [11] is
needed. Soft estimates are obtained from the output of the channel
and fed to the CABAC decoder.

On Figure 1, the sequence SK
1 = {S1, ..., SK} consists of a

succession of binarized source symbols belonging to a set of binary
words. Bins stand for bits obtained by the binarization process.
The last binarized source symbol of SK

1 , EOS (for End Of Se-
quence), indicates the end of the binarized stream. The succession
of CABAC output bits, XN

1 = {X1, ..., XN} is mapped using
BPSK signaling into RN

1 with Ri = ±√
Eb. RN

1 is assumed to
be transmitted within a single channel packet. Finally, the chan-
nel output is Y N

1 = {Y1, ..., YN}. Only the transmitted bitstream
length N is supposed to be known at the decoder side. Capital
letters are for random variables, and small letters for their values.
Integers n and k denote respectively the current length of the de-
coder input bitstream, and the current number of decoded bins.

Fig. 1. Transmission scheme

Binary arithmetic coding (BAC)

Basic principles of BAC are explained in [13] and recalled here.
At each iteration, a subinterval of [0, 1) is iteratively constructed.

14411424403677/06/$20.00 ©2006 IEEE ICME 2006

The current interval [low, low+range) is divided into two subin-
tervals, the size of which is proportional to the probabilities of the
source bins 0 and 1 and one of these intervals is selected, depend-
ing on the value of the current bin. Once the last bin of EOS is
encoded, the algorithm computes the real value V , belonging to
the obtained interval which can be represented by the minimum
number of bits. The binary representation of V forms the code
string. Based on V , the decoder is able to recover the source bin
stream.

For long source sequences, subintervals may get too small to
be accurately handled by a finite precision processor. To over-
come this precision problem, most AC encoders are implemented
using integers [11]. The interval [0, 1) of reals is then replaced by
the interval [0, 2p) of integers, where p is the bit-size of low and
range. Each time a division and selection has been performed,
one checks whether range is smaller than the quarter of [0, 2p).
If it is the case, renormalization, consisting in doubling low and
range, is performed and some encoded bits may be output. If
the current interval (before renormalization) overlaps the midpoint
of [0, 2p), no bit is output. The number of times low and range
have been doubled without outputting encoded bits is stored in the
follow variable. If the current interval (before renormalization)
entirely lies in the upper or lower half of [0, 2p), the encoder emits
the leading bit of low (0 or 1) and follow opposite bits (1 or 0).
This is called the follow-on procedure [14].

3. MAP ESTIMATION

The encoded data is estimated using the exact MAP estimate pro-
posed in [8], briefly recalled here. The aim is to evaluate, at any
n � N , the sequence

�
xn

1 maximizing the a posteriori probability
(APP) given by P (Xn

1 = xn
1 |Y n

1 = yn
1), written as P (xn

1 |yn
1) to

make notations shorter.
The decoder input sequence xn

1 is decomposed into three parts.

First, x
n′(sk

1)
1 is the code string of n′(sk

1) bits that would be emit-

ted by an encoder fed with sk
1 . Second, x

n′(sk
1)+F (sk

1)

n′(sk
1)+1

are the post-

poned bits [4], which would be emitted by an encoder fed with sk
1

if the encoder emits bits when encoding the k+1−th bin. The post-
poned bits may only take values {1, 0, . . . , 0} or {0, 1, . . . , 1}.
The last part of xn

1 , xn
n′(sk

1)+F (sk
1)+1

, are bits assumed indepen-

dent of sk
1 .

The channel is assumed memoryless. Variables Xn′
1 , Xn′+F

n′+1 ,
and Xn

n′+F+1 are assumed independent. As a consequence, it is

also the case for Y n′
1 , Y n′+F

n′+1
, and Y n

n′+F+1. Moreover, as XN
1 is

the output of an arithmetic encoder, ∀i = 1 . . . N, P (Xi = 0) =
P (Xi = 1). Under these assumptions, the APP is expressed as

P (xn
1 |yn

1) = P
�
sk
1 � P (yn

1 |xn
1)

P (yn
1)

P (xn
n′+F+1)P (xn′+F

n′+1 |sk
1). (1)

4. SEQUENTIAL DECODING

In order to compute sequence maximizing (1), P (xn
1 |yn

1) has to
be evaluated for all possible xn

1 . Nevertheless, to an observation
Y n

1 , one may assign a decoding tree with up to 2n paths repre-
senting possible values of the code string. For relatively large n,
examining the whole decoding tree is infeasible. The purpose of
sequential decoding is to find the best path, according to a given
metric, without examining too many branches. The most popular

sequential decoders are the stack algorithm (SA) [15, 16], the M-
algorithm (MA) [12] and their derivatives, such as the generalized
stack algorithm [17]. The proposed sequential decoders use the
logarithm of (1) as a metric, denoted by MMAP (xn

1), allowing to
sort the stored paths. In addition, drop and stop conditions, relying
on some constraints which have to be satisfied by the code string
and the decoded sequence, are employed.

Drop conditions

Drop conditions allow the sequential decoders to identify paths
not deserving to be further examined. A first drop condition re-
sults from the complexity constraint imposed by the sequential
decoders. The number of simultaneously stored paths is limited.
When the limit is reached, paths with the worst metrics are dropped.
If the correct path is dropped in this way, the decoding fails and de-
coder may not output any solution. This event is called erasure.

Using the fact that the code string is N bits long and that the
last binarized symbol is the EOS, one may derive two drop condi-
tions. First, if a n length bitstream xn

1 leads to sk
1 containing an

EOS while n < N , then xn
1 is dropped. Second, if a N length bit-

stream xN
1 leads to sk

1 not ending with EOS, xN
1 is then dropped.

In both cases, paths are dropped with no risk of erasure.
Paths may also be dropped if they have a null APP, as they are

very likely to be automatically discarded when explored paths are
sorted and the constraint on the maximum number of stored paths
holds. First, due to the incomplete binarization scheme (e.g., zero
order Exp-Golomb codes [11]), all sequences of bins are not nec-
essarily valid, thus P (sk

1) may be equal to zero and lead to a null
APP. Second, if the postponed bits are neither equal to {1, 0, . . . , 0}
nor to {0, 1, . . . , 1}, then P (xn′+F

n′+1) = 0 leading again to a null
APP.

Stop conditions

The decoding tree exploration stops when a N bits path xN
1 yields

a sequence of binarized symbols sK
1 ending with EOS and satis-

fying the binarization scheme. Then, xN
1 is the path maximizing

MMAP (xN
1) among all the stored paths at the current iteration.

In some cases, decoding stops if all paths have been dropped, or
if the maximum allowed computational effort has been reached.
Both of these situations may lead to erasure. The lost packet may
be re-emitted if ARQ is implemented.

4.1. Objective adjustment of the efficiency-complexity trade-
off

The decoding performances in terms of error resilience efficiency
are improved as more paths are explored in the decoding tree, espe-
cially when the beginning of the code string is strongly corrupted.
Nevertheless, this improvement usually goes with increasing de-
coding complexity. Therefore, in order to judiciously adjust this
trade-off between the complexity and efficiency, an objective test
corresponding to a new drop condition is proposed.

Assume that the path to be extended is xn−1
1 . Two extensions

can be considered, xn = 1 and xn = 0. The hard decoder discards
systematically one extension and thus, explores only one path on
the decoding tree. The idea is to derive a test allowing to decide
if both of the two choices deserve being considered or if a hard
decision on the current bit is sufficient. In [7], a 2∆ width null
zone is used to determine whether a hard decision on yn is reliable.

1442

In our case, we consider that if a path has a relatively low metric,
it is very likely to be dropped in the next iterations. Thus, omitting
exploring and storing such paths saves computational effort. The
idea here is to derive an objective criterion in order to characterize
a low metric for a controlled amount of decision errors.

At the node corresponding to xn−1
1 on the decoding tree, three

actions may be taken:

• An
0 : only the branch corresponding to xn = 0 is explored.

• An
1 : only the branch corresponding to xn = 1 is explored.

• An
0|1: both branches are explored.

Let Λn be the logarithm of the APP ratio

Λn = MMAP(x
n−1
1 , 1) − MMAP(x

n−1
1 , 0).

The purpose is to derive a decision threshold T such that

Λn

An
0|1
≶
An

1

T and − Λn

An
0

≶
An

0|1
− T.

According to (1) and assuming Xn independent of Xn−1
1 , one gets

Λn = log P (xn−1
1 , Xn = 1|yn

1) − log P (xn−1
1 , Xn = 0|yn

1)

= log P (yn|Xn = 1) − log P (yn|Xn = 0). (2)

Let Pe = P (An
0 , Xn = 1)+P (An

1 , Xn = 0) be the probabil-
ity of error, i.e., the probability of loosing the correct path. Using
the assumption that P (Xn = 1) = P (Xn = 0) = 1

2
, Pe may be

expressed as

Pe =
1

2
P (Λn < −T |Xn = 1) +

1

2
P (Λn > T |Xn = 0).

Let PAT = P (A0|1, Xn = 1) + P (A0|1, Xn = 0) be the
probability of unnecessary additional treatment, i.e., the probabil-
ity of extending a path with two branches, resulting in a complexity
increase. One gets

PAT =
1

2
P (−T < Λn < T |Xn = 1)

+
1

2
P (−T < Λn < T |Xn = 0). (3)

The idea to obtain T is to minimize PAT for a fixed Pe. The
threshold T is derived assuming that the channel is zero-mean
AWGN, of variance σ2. For other kinds of channels, such as an
UMTS channel, an equivalent AWGN channel may be estimated,
and the derivation of an equivalent objective test is straightforward.
For AWGN channel, (2) is written as

Λn =
2
√

Eb

σ2
yn.

Thus, Pe and PAT may be expressed as

Pe =
1

2
(1 − erf(

−Tσ2

2
√

Eb

+
√

Eb

σ
√

2
)).

PAT = erf(

Tσ2

2
√

Eb

+
√

Eb

σ
√

2
) + erf(

Tσ2

2
√

Eb

−√
Eb

σ
√

2
).

where erf(z) = 2√
π � z

0
e−t2dt.

One can finally express the threshold T as

T (σ, Pe) =
2
√

Eb

σ2

� �
σ
√

2erf−1 (1 − Pe) � −√
Eb � . (4)

Several choices may be considered for Pe. Here, we constrain
Pe to be a fraction of the probability PHard(σ) that the hard decoder
locally fails, expressed in the AWGN case by

PHard(σ) = � +∞

0

P (y|Xn = 0)dy + � 0

−∞
P (y|Xn = 1)dy

= 1 − erf(

√
Eb

σ
√

2
). (5)

Then, Pe can be expressed as

Pe(σ, n) = α · PHard(σ, n), with α < 1. (6)

The parameter α allows one to adjust the decoding complexity-
efficiency trade-off, as shown in Section 5.

5. SIMULATIONS

Simulations are performed using the CABAC defined in the H.264
standard. Binarized source symbols belong to the first 9 binary
codewords of the zero-order Exp-Golomb scheme (EG0) [11]. A
simplified context modeling with three contexts is considered. The
Symbol Error Sate (SER) is evaluated for different values of the
Signal to Noise Ratio (Eb/N0). When an erasure occurs, the de-
coder may not output any solution and all symbols emitted by the
source are considered as erroneous, and counted in the SER. Hard
decoding provides the bit value xn using the sign of the channel
output yn. Hard decoding fails if debinarization fails or if the EOS
is not decoded from this bitstream.

MAP decoders based on both SA and MA are considered, and
the following abbreviations are adopted. BSA and BMA(M) stand
for the basic SA and MA, M being the number of paths kept at
each MA iteration. GSA(�) is the generalized SA, extending �
paths at each iteration. Finally FGSA(�, α) and FMA(M , α) de-
note the Fast SA and the Fast MA embedding the test presented in
Section 4.1. In all the SA based decoders, the maximum number
of simultaneously stored paths is 10000.

Figure 2 illustrates the error resilience, in terms of SER, and
complexity performances, in terms of average number of visited
branches during erasure-free decoding, corresponding to the hard
decoder and four versions of the decoder using the MA. Figure 3
depicts the same performances for decoders using the SA.

When compared to a standard decoder carrying out hard deci-
sions on noisy bits, sequential decoders present an important gain
in terms of error resilience: up to 4 dB for the MA based decoders
and 3 dB for the SA. These performances are improved as the num-
ber of simultaneously explored paths (M and �) increases, and as α
decreases. On the other hand, one can notice that the more decod-
ing is efficient in recovering errors, the higher is the complexity.
At SER = 10−3, FMA(20, 10−4) presents 20 times less complex-
ity when compared to MA(10), with a gain of 2.5 dB. For the same
SNR, compared to the BSA, the FGSA(3, 10−4) reaches a gain of
1.8 dB, at SER=10−3 for a doubled complexity at 12 dB.

1443

Fig. 2. Error resilience and complexity performances of the de-
coder using the MA

6. CONCLUSIONS

The main drawback of the high compression rate CABAC is its
vulnerability to transmission errors. In this paper, we have pre-
sented a soft CABAC decoding technique based on an exact MAP
estimation associated to sequential decoders. An objective test al-
lowing to adjust the trade-off between decoding complexity and
error resilience performances is proposed. Current work is dedi-
cated to embedding the soft MAP decoder and the objective test
within the H.264/AVC decoder.

7. REFERENCES

[1] M. Park and D. J. Miller, “Joint source-channel decoding for
variable length encoded data by exact and approximate MAP

sequence estimation,” IEEE Trans. on Comm., vol. 48(1), pp.
1–6, 2000.

[2] P. G. Howard and J. S. Vitter, “Practical implementations of
arithmetic coding,” Image and Text Compression, vol. 13(7),
pp. 85–112, 1992.

[3] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. on Circuits and Systems for Video Technology, vol.
13(7), pp. 560–576, 2003.

[4] J. Sayir, On Coding by Probability Transformation, PhD
Thesis Nr. 13099, EE Department, ETH Zurich, Switzerland,
1999.

[5] M. Grangetto, P. Cosman, and G. Olmo, “Joint
source/channel coding and MAP decoding of arithmetic
codes,” IEEE Trans. on Comm., vol. 53(6), pp. 1007–1016,
2005.

[6] T. Guionnet and C. Guillemot, “Soft decoding and synchro-
nization of arithmetic codes: Application to image transmis-
sion over noisy channels,” IEEE Trans. on Image Processing,
vol. 12(12), pp. 1599–1609, 2003.

Fig. 3. Error resilience and complexity performances of the de-
coder using the SA

[7] B. D. Pettijohn, M. W. Hoffman, and K Sayood, “Joint
source/channel coding using arithmetic codes,” IEEE Trans.
on Comm., vol. 49(5), pp. 826–836, 2001.

[8] S. Ben Jamaa, M. Kieffer, and P. Duhamel, “Exact map de-
coding of cabac encoded data,” submitted to Proceedings of
ICASSP, 2006.

[9] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and I. Wit-
ten, “Integrating error detection into arithmetic coding,”
IEEE Trans. on Comm., vol. 45(1), pp. 1–3, 1997.

[10] J. Chou and K. Ramchandran, “Arithmetic coding-based
continuous error detection for efficient ARQ-based image
transmission,” IEEE Trans. on Comm., vol. 18(6), pp. 861–
867, 2000.

[11] D. Marpe, H. Schwarz, and T Weigand, “Context based
adaptative binary arithmetic coding in the H.264/AVC video
compression standard,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 13(7), pp. 620–636, July 2003.

[12] J. B. Anderson and S. Mohan, Source and channel cod-
ing: an algorithmic approach, Kluwer Academic Publishers,
Norwell, MA, 1991.

[13] P. Elias, “Universal codeword sets and representations of the
integers,” IEEE Trans. on Information Theory, vol. 6(3), pp.
194–203, 1975.

[14] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM, vol.
30(6), pp. 520–540, 1987.

[15] K. Zigangirov, “Some sequential decoding procedures,”
Probl. Peredach. Inform., vol. 2(4), pp. 13–15, 1966.

[16] F. Jelinek, “A fast sequential decoding algorithm using a
stack,” IBM J. Res. Develop., vol. 13, pp. 675–685, 1969.

[17] D. Haccoun and M. J. Ferguson, “Generalized stack algo-
rithms for decoding convolutional codes,” IEEE Trans. on
Information Theory, vol. 21(6), pp. 638–651, 1975.

1444

