VIDEO TEXTURE AND MOTION BASED MODELING OF RATE VARIABILITYDISTORTION (VD) CURVES OF I, P, AND B FRAMES

Geert Van der Auwera, Martin Reisslein, and Lina J. Karam
Arizona State University
Dept. of Electrical Engineering
Tempe, AZ 85287-5706
\{geert.vanderauwera, reisslein, karam\}@asu.edu
http://trace.eas.asu.edu

Abstract

We examine the bit rate variability-distortion (VD) curve of I, P, and B frames of MPEG-4 VBR encoded video sequences. We show that the concave VD curve shape at high compression ratios or large quantization scales, is influenced by both the texture and the motion information. We use linear and quadratic models for the texture and motion bits statistics and devise accurate VD curve models. The model parameters are obtained from statistics that are estimated from two encodings. This work extends our previous work on modeling the VD curve, which has applications for optimal statistical multiplexing of VBR streaming video.

1. INTRODUCTION

A recent study [1] has documented the concave shape of the rate variability-distortion (VD) curve of open-loop (VBR) encoded video and proposed a crude piecewise model for the VD curve. The VD curve is the coefficient of variation (CoV) (standard deviation normalized by the mean) of the frame size (in bits) as a function of the quantization scale. In this study, we build on [1] by examining the underlying effects leading to the concave VD curve and by developing and validating a refined VD curve model. More specifically, we develop and validate quadratic models for the mean and (co)variance of the texture information (bits) in a frame. We also develop linear models for the mean and variance of the motion information (bits) in a frame, thus extending [2] where a quadratic model was used for the rate-distortion function of the entire frame size. We combine the models of the texture and motion bits statistics in an overall model of the VD curve. We demonstrate that both the texture and motion bits make significant contributions to the overall concave shape of the VD curve. We find that given the frame size contributions for encodings with only two different quantization scales, this novel model accurately predicts the VD curve across a wide range of quantization scales. This is a significant improvement over the crude piecewise model in [1] where encodings for four or
more different quantization scales were required, and which did not provide insights into how the underlying video content features give rise to the VD curve characteristics.

The VD curve has important implications for statistical multiplexing as the highest statistical multiplexing gain is typically achieved at the peak of the VD curve [1]. Thus, the refined VD curve model proposed in this paper, not only provides fundamental insights into how the content features texture and motion in an encoded video contribute to its traffic variability, but also provide a practical method for estimating the rate variability from only two sample encodings.

2. VD CURVE MODEL

2.1. Texture vs. Motion Bits

Encoded video frames have as main constituents texture, motion, and syntax bits. For large quantization scales q, the number of texture bits is comparable to the motion bits and therefore the motion information plays a significant role in the bit rate variability. In other words, the concave VD curve shape at high compression ratios is influenced by the texture information and also by the motion information. We consider the syntax bits negligible compared to the texture and motion bits, since they are more than an order of magnitude smaller. This is illustrated in Fig. 1 for a Star Wars V: The Empire Strikes Back segment (1000 QCIF frames are used). For the encoding, we used the MPEG-4 codec (ISO/IEC JTC 1/SC 29/WG 11 N2802, July 1999).

2.2. Texture and Motion VD Curve Model

For a given quantization scale q, let $\bar{R}_{q, t}$ and $\sigma_{q, t}^{2}$ respectively denote the average and the variance of the number of texture bits, and $\bar{R}_{q, m}$ and $\sigma_{q, m}^{2}$ respectively denote the average and variance of the number of motion bits. $\operatorname{cov}_{q}(t, m)$ represents the covariance of the texture and motion information. We observe that the sum of the number of texture and motion bits

Fig. 1. Average numbers of P and B texture and motion bits per frame and total frame sizes as a function of quantization scale q.
approximately equals the total frame size, i.e., when we ignore the syntax bits: $R_{q}=R_{q, t}+R_{q, m}$. We can approximate the CoV_{q} for the P and B frames by:

$$
\begin{equation*}
\operatorname{CoV}_{q}^{(P, B)}=\frac{\sigma_{q}}{\bar{R}_{q}}=\frac{\sqrt{\sigma_{q, t}^{2}+\sigma_{q, m}^{2}+2 \cdot \operatorname{cov}_{q}(t, m)}}{\bar{R}_{q, t}+\bar{R}_{q, m}} . \tag{1}
\end{equation*}
$$

For small q values, the motion bits are negligible compared to the texture bits and therefore Eqn. (1) reduces to:

$$
\begin{equation*}
\operatorname{CoV}_{\text {small } q}^{(P, B)}=\operatorname{CoV}_{q}^{(I)}=\frac{\sigma_{q, t}}{\overline{R_{q, t}} .} \tag{2}
\end{equation*}
$$

Eqn. (2) is applicable to the I frames as well, since no motion information is present. In the following sections, we formulate models for each of the constituents in Eqns. (1) and (2).

2.3. Quadratic Models

In [2], a quadratic rate-distortion model is devised and the rate control algorithm based on this model was adopted as part of MPEG-4 VM5.0. The model is formulated in the following equation, with a and b the model parameters:

$$
\begin{equation*}
R_{q}=a \cdot q^{-1}+b \cdot q^{-2} \tag{3}
\end{equation*}
$$

In this paper, we will employ Eqn. (3) to model the average number of texture bits $\bar{R}_{q, t}$ in Eqn. (1), since the average texture bits as a function of q represent a rate-distortion curve. We also show that Eqn. (3) accurately models $\sigma_{q, t}^{2}$ and is adequate for modeling $\operatorname{cov}_{q}(t, m)$.

Figs. 2-4 illustrate the quadratic modeling of the Star Wars segment statistics. We empirically conclude that the quadratic models match the average and variance statistics curves well, while adequately approximating the covariance curves. The modeling error of the covariance curves in the $q \leq 10$ range is acceptable, since in this range the covariance values are an order of magnitude smaller than the variance values. All model

Fig. 2. Comparison of actual average numbers of texture bits per frame with corresponding models.

Fig. 3. Comparison of actual variances of numbers of texture bits per frame with corresponding models.

Fig. 4. Comparison of actual covariances of texture/motion bits per frame with models.

Fig. 5. Comparison of actual average numbers of motion bits per frame with corresponding models.
parameters are obtained from the statistics corresponding to the encodings with quantization scales $q=10$ and $q=30$. In [3], we analyze the sensitivity of the choice of these two q values and illustrate the modeling for many video sequences. A method for estimating the model parameters a and b is explained next.

Let X_{1} and X_{2} represent $\bar{R}_{q, t}, \sigma_{q, t}^{2}$, or $\operatorname{cov}_{q}(t, m)$ corresponding to two quantization scales q_{1} and q_{2}. The quadratic model parameters a and b from Eqn. (3) are obtained by solving the following system of equations:

$$
\begin{align*}
& X_{1}=a \cdot q_{1}^{-1}+b \cdot q_{1}^{-2} \tag{4}\\
& X_{2}=a \cdot q_{2}^{-1}+b \cdot q_{2}^{-2} \tag{5}
\end{align*}
$$

The solution to these equations is:

$$
\begin{align*}
a & =\frac{q_{1}^{2} \cdot X_{1}-q_{2}^{2} \cdot X_{2}}{q_{1}-q_{2}} \tag{6}\\
b & =\frac{q_{1}^{2} \cdot q_{2} \cdot X_{1}-q_{2}^{2} \cdot q_{1} \cdot X_{2}}{q_{2}-q_{1}} \tag{7}
\end{align*}
$$

2.4. Linear Models

We observe in Fig. 1 that the average number of motion bits follows a linear trend as a function of q. Hence, we propose a linear model with c and d as the model parameters:

$$
\begin{equation*}
\bar{R}_{q, m}=c \cdot q+d \tag{8}
\end{equation*}
$$

The model parameters can be estimated easily by solving a system of two linear equations. Fig. 5 illustrates the linear model for the P, B motion averages of the Star Wars V segment. We observe that the linear model accurately fits the average curves. The last constituent of Eqn. (1) to be modeled is the variance of the motion bits, $\sigma_{q, m}^{2}$. Fig. 6 depicts $\sigma_{q, m}^{2}$ for the P and B frames. The linear model is also the most appropriate in this case. Now that we have developed the individual models, we are ready to assemble the VD curve model.

Fig. 6. Comparison of actual variances of numbers of motion bits per frame with corresponding models.

2.5. VD Curve Model

The complete VD curve model (Eqn. (1)) for the P and B frames can be reformulated as a function of q and ten model parameters:

$$
\begin{align*}
\sigma_{q, t}^{2} & =a_{1} / q+b_{1} / q^{2} \tag{9}\\
\operatorname{cov}_{q}(t, m) & =a_{2} / q+b_{2} / q^{2} \tag{10}\\
\bar{R}_{q, t} & =a_{3} / q+b_{3} / q^{2} \tag{11}\\
\sigma_{q, m}^{2} & =c_{1} \cdot q+d_{1} \tag{12}\\
\bar{R}_{q, m} & =c_{2} \cdot q+d_{2} \tag{13}\\
\operatorname{CoV}_{q}^{(P, B)} & =\frac{\sqrt{\frac{a_{1}}{q}+\frac{b_{1}}{q^{2}}+c_{1} q+d_{1}+2\left(\frac{a_{2}}{q}+\frac{b_{2}}{q^{2}}\right)}}{\frac{a_{3}}{q}+\frac{b_{3}}{q^{2}}+c_{2} \cdot q+d_{2}} \tag{14}
\end{align*}
$$

Analogously, the VD curve model for small q values and for the I frames is given by:

$$
\begin{align*}
\sigma_{q, t}^{2} & =a_{1} / q+b_{1} / q^{2} \tag{15}\\
\bar{R}_{q, t} & =a_{2} / q+b_{2} / q^{2} \tag{16}\\
\operatorname{CoV}_{\text {small } q}^{(P, B)} & =\operatorname{CoV}_{q}^{(I)}=\frac{a_{1} / q+b_{1} / q^{2}}{a_{2} / q+b_{2} / q^{2}} . \tag{17}
\end{align*}
$$

All model parameters are estimated from the two sample encodings as explained in sections 2.3 and 2.4. In Fig. 7, the VD curves for the I, P and B frames are depicted alongside the VD models estimated from encoding settings $q=10, q=30$. The models match the original curves well for $10 \leq q \leq 30$ and capture the concave VD curve shape. The VD-P and VDB models are also an accurate representation for small q or equivalently the highest qualities. The VD-I model matches the VD curve well for $10 \leq q \leq 30$. In Fig. 8, we present the VD curves and models for a scene from the Football sequence. In [3] we present the validation of the VD modeling for many video sequences.

Fig. 7. Comparison of actual VD curves for I, P, and B frames with corresponding models for Star Wars V segment.

Fig. 8. Comparison of actual VD curves for I, P, and B frames with corresponding models for Football scene.

In Figs. 9 and 10, the small q models for the P and B frames from the Star Wars V segment are depicted (models use $q=10$ and $q=30$). They are adequate approximations for the respective VD curves in the small q range $(q<10)$. In the range $10 \leq q \leq 30$, the statistics of the motion bits need to be modeled, as well as the covariance, otherwise the curve based on the texture statistics alone deviates strongly from the actual VD curve.

3. CONCLUSION

We have modeled the bit rate variability-distortion (VD) curves of the I, P and B frames. The coefficient of variation (CoV) of the MPEG-4 encoded frame sizes for P and B frames has been refined into the CoV of texture and motion information. We found that the VD concave curve shape at high compression ratios is influenced by the texture information and also by the motion information. Overall, the models result in good predictions of the actual curves and are based on the statistical parameters for texture and motion bits, estimated from only two sample encodings.

Fig. 9. Comparison of actual P-frame VD curve with 'small q^{\prime} VD model for the Star Wars V segment.

Fig. 10. Comparison of actual B-frame VD curve with 'small q ' VD model for the Star Wars V segment.

ACKNOWLEDGMENT

Supported in part by NSF Grant No. ANI-0136774.

4. REFERENCES

[1] P. Seeling and M. Reisslein, "The rate variabilitydistortion (VD) curve of encoded video and its impact on statistical multiplexing," IEEE Tran. on Broadcasting, vol. 51, no. 4, pp. 473-492, Dec. 2005.
[2] T. Chiang and Y.-Q. Zhang, "A new rate control scheme using quadratic rate distortion model," IEEE Tran. Circuits and Systems for Video Tech., vol. 7, no. 1, Feb. 1997.
[3] G. Van der Auwera, M. Reisslein, and L.J. Karam, "Video texture and motion based modeling of rate variability-distortion (VD) curves of I, P, and B frames (extended version)," Tech. Rep., ASU, Tempe, AZ, Apr. 2006, available at http://trace.eas.asu.edu.

