
A VIDEO SCRAMBLING SCHEME APPLICABLE TO LOCAL REGION
WITHOUT DATA EXPANSION

Makoto Takayama*, Kiyoshi Tanaka*, Akio Yoneyama** and Yasuyuki Nakajima**

* Faculty of Engineering, Shinshu University, Japan

** KDDI R&D Laboratories Inc, Japan

ABSTRACT
Recently, several scrambling techniques have been proposed

for video digitally archived. These methods realize efficient

processing by partial encryption on MPEG compressed data

while keeping compatibility to MPEG format. However, they

have common drawbacks expanding the entire code. Also,

they have not reported on local shuffling in a frame. In this

work, we propose a new video scrambling scheme on MPEG

compressed domain, which shuffles a part of DC and AC co-

efficients by DCT in a frame. Our scheme is applicable to

local region without data expansion from the original MPEG

file.

1. INTRODUCTION
Scrambling is a well-known technique that makes image data

meaningless visually. However, conventional methods for ana-

log data cannot be used for video digitally archived, because

most moving pictures are recently compressed in the form

of MPEG that is the international standard for video coding.

Therefore, a new approach directly applicable to MPEG com-

pressed domain has been greatly needed for various applica-

tions such as video delivery on the internet. So far, several

approaches have been proposed for MPEG video. Spanos

and Maples [1] proposed to restrict MPEG encryption only

to I-pictures that are the basis for predicting P and B-pictures.

However, this scheme sometimes reveals visual information

because of the presence of I-blocks in P and B-pictures. Meyer

and Gadegast developed an encryption system called “SECM-

PEG” (see [2]), which provides four stages of encryption (only

header encryption; encryption of header, DC and first AC

coefficients of I-frames; all I-blocks encryption; full encryp-

tion). However, this is not compatible to MPEG because of

special file format. Zeng and Lei [3] proposed a method to

encrypt sign bits of motion vectors (MVs) with permutation

of MVs. Although this scheme achieves fast shuffling, the

encryption causes data expansion. In the similar period, Shi

et al. [4] proposed to encrypt not only sign bits of MVs but

also sign bits of DCT coefficients. Wen et al. [5] proposed

a method to encrypt VLC (Variable Length Codes) table of

MV. However, this scheme also causes small data expansion.

Wang et al. [6] proposed a DCT-based transparent scram-

bling method, which is designed to show unauthorized users

sufficiently degraded video rather than unrecognizable one.

Since they perform scrambling by modifying quantized DCT

cofficients before VLC in MPEG encoder, we cannot apply

this scheme to video already achieved. Scrambling methods

on MPEG compressed domain [3]-[5] are excellent in terms

of efficient processing by partial encryption of MPEG com-

pressed data while keeping compatibility to MPEG format.

However, they have common drawbacks expanding the en-

tire code. Also, they have not reported on local shuffling in a

frame.

From this point of view, in this work, we propose a new

video scrambling scheme on MPEG [7] compressed domain,

which shuffles a part of DC and AC coefficients by DCT in

a frame. We consider the following conditions to design our

scheme: (i) applicable to local region in a frame, (ii) no data

expansion from the original MPEG file, (iii) compatible to

general MPEG decoder (iv) 100% reversible to the original

video. Through computer simulation, we verify the basic per-

formance of the proposed scheme.

2. MPEG CODING ARCHITECTURE
In the following discussion, we describe MPEG-2 method

as one of popular MPEG coding schemes. In MPEG-1 or

MPEG-2, input frames are classified into three kinds of pic-

ture, i.e. I-picture, P-picture and B-picture. I-picture is inde-

pendently encoded within itself by removing intra-frame re-

dundancy. The entire frame is first divided into small blocks

consisting of 8 × 8 pixels. Then each block is transformed to

8 × 8 frequency components by DCT, and the coefficients

after quantization are encoded. DC components are sepa-

rately encoded by predictive coding for deferential signals

between neighbor blocks. 63 pieces of AC component (ex-

cluded DC coefficient) are encoded by using 2-dimensional

Huffman codes in a certain scanning order (e.g. Zigzag scan).

On the other hand, in P-picture and B-picture encoding, inter-

frame redundancy is removed by one-way or both-way mo-

tion compensation between frames, respectively. The mo-

tion compensation is conducted for every macro block (MB)

consisting of 16 × 16 pixels. Then a motion vector (MV) is

searched for a minimum error between the current MB and the

same size block in a specified region on a reference frame. If

the minimum error Emin is greater than a predefined thresh-

old T , intra-coding is applied to MB. Otherwise, the differ-

13491424403677/06/$20.00 ©2006 IEEE ICME 2006

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1byte 1byte

embed 0s
last bit belonging

to previous slice

slice start code of next slice

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1byte 1byte

embed 0s
last bit belonging

to previous slice

slice start code of next slice

Fig. 1. An example of byte-alignment

ential signals are divided into four blocks consisting of 8 × 8
pixels, and their frequency components by DCT are quantized

and encoded by using 2-dimensional Huffman codes similar

to the encoding of AC components in I-picture. The only

difference in P-picture and B-picture coding is that the DC

and AC components are coded together. In MPEG encoding,

byte-alignment is conducted at sequence header code, GOP

start code, picture start code, and slice start code. Fig.1 shows

an example of byte-alignment at slice start code. In this ex-

ample, 4 bits are embedded between the last bit belonging to

the previous slice and the start code of next slice.

3. PROPOSED SCRAMBLING SCHEME
In the proposed scheme, we first specify the region R to be

shuffled in a frame, and then determine blocks to be processed

included in this region. The size of R is limited to the multiple

of 8 in both horizontal and vertical direction since each block

size is 8 × 8. Our scrambling scheme consists of (i) intra-

slice shuffling of DC components, (ii) inter-block shuffling of

AC components, and (iii) intra-block shuffling of AC compo-

nents. (i) and (ii) can be applied only to I-picture but (iii) to

all pictures. This scheme focuses on MPEG-1 and MPEG-2,

but is applicable to MPEG-4 by some modification.

3.1. Intra-slice Shuffling of DC Components
Here we show the way of shuffling of DC components by us-

ing Fig.2. See a slice surrounded with a bold rectangle. In

this slice, we have nine MBs in total. From the left-hand side,

we have two MBs out of R (denoted as MBout), five com-

pletely included in R (MBin), and one that half of MV is in-

cluded in R (MBhalf), and one out of R as shown in Fig.2(a).

If all (four) Y-blocks in MB are completely included in R
(MBin case), we shuffle all the DC components of Y together

with the components of Cb and Cr. Otherwise, we do not

shuffle any components because of the scanning order of four

DC components in MB. As shown in Fig.3, four components

are scanned in order of (left, top), (right, top), (left, bottom),

and (right, bottom) in MB, and the differential signal between

neighbor components is encoded. Therefore, any change in

case of MBhalf (partial inclusion) causes some effect to the

region outside R. Inside the area R, all the differential signals

of DC components of MBin are shuffled by using a secret

key KDC as shown in Fig.2(b). We can avoid coded data in-

crease because we shuffle DC components within the same

slice. The original DC components in MBin can be recon-

structed by the inverse operation using KDC .

3.2. Inter-block Shuffling of AC Components
Next we show the way of inter-block shuffling of AC com-

ponents by using Fig.4. The region shown in Fig.4 is cor-

R : Region to be shuffled

slice

MB
in

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

MB
out

MB
half

R : Region to be shuffled

slice

MB
in

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

MB
out

MB
half

(a) before shuffling

1 2

3 4

5 6

7 8 9

10

11

1213

14

15 16

17 1819

20 21

222324

2526

27

28 29 30

31 32

33 34

35 36

shuffled

1 2

3 4

5 6

7 8 9

10

11

1213

14

15 16

17 1819

20 21

222324

2526

27

28 29 30

31 32

33 34

35 36

1 2

3 4

5 6

7 8 9

10

11

1213

14

15 16

17 1819

20 21

222324

2526

27

28 29 30

31 32

33 34

35 36

1 2

3 4

5 6

7 8 9

10

11

1213

14

15 16

17 1819

20 21

222324

2526

27

28 29 30

31 32

33 34

35 36

shuffled

(b) after shuffling

Fig. 2. Intra-slice shuffling of DC components (Y)

Fig. 3. Scanning order of four DC components in a MB

responding to R in Fig.2. AC component blocks (denoted

as BAC) consisting of 63 elements (64 elements in P and B-

picture) are independent each other. Therefore, shuffling all

the BAC inside the region R are never affected each other. In

the proposed scheme, as shown in Fig.4, all BAC of Y com-

ponents together with Cb and Cr components (only in MBin)

inside R are fully shuffled by using a secret key K
(inter)
AC . The

original order of BAC can be reconstructed by the inverse op-

eration using K
(inter)
AC .

3.3. Intra-block Shuffling of AC Components
All elements inside BAC are scanned with a certain order (e.g.

Zigzag scan), and decomposed into pairs of the length of zero-

run (denoted as Run) and the level of non-zero component

(Level). Fig.5(a) shows an example of AC components inside

BAC , where we have six pairs of (Run, Level). A codeword

in the predefined table of 2-dimensional Huffman codes is al-

located to each pair of (Run, Level). Therefore, shuffling the

order of (Run, Level) does not change the amount of codes al-

located to each pair of (Run, Level). In the proposed scheme,

the order of (Run, Level) for AC components in every BAC

is shuffled by using a secret K
(intra)
AC as shown Fig.5(b). The

original order of (Run, Level) can be completely recovered by

the inverse operation using K
(intra)
AC .

3.4. Compatibility and Secrecy
The modified MPEG file by the proposed scrambling scheme

is completely compatible to general MPEG decoder because

no MPEG syntax is modified nor additional header informa-

tion and/or special code is used. Therefore, we can playback

the scrambled MPEG file as it is. On the secrecy of the pro-

1350

67 68 69 70 71

72 73 74 75 76

77 78 79 80 81

82 83 84 85 86

87 88 89 90 91

92 93 94 95 96

2 31 4 65

1714 2118

8

23 24

15 16

97

19 22

28

11

26

10

12 20

33

13

25 322927 30 31

35 3634 37 3938

5047 5451

41

56 57

48 49

4240

52 55

61

44

59

43

45 53

66

46

58 656260 63 64

Y

(all in R)

Cb

(only in MB
in

)

Cr

(only in MB
in

)

67 68 69 70 71

72 73 74 75 76

77 78 79 80 81

82 83 84 85 86

87 88 89 90 91

92 93 94 95 96

2 31 4 65

1714 2118

8

23 24

15 16

97

19 22

28

11

26

10

12 20

33

13

25 322927 30 31

35 3634 37 3938

5047 5451

41

56 57

48 49

4240

52 55

61

44

59

43

45 53

66

46

58 656260 63 64

Y

(all in R)

Cb

(only in MB
in

)

Cr

(only in MB
in

)

67 68 69 70 71

72 73 74 75 76

77 78 79 80 81

82 83 84 85 86

87 88 89 90 91

92 93 94 95 96

2 31 4 65

1714 2118

8

23 24

15 16

97

19 22

28

11

26

10

12 20

33

13

25 322927 30 31

35 3634 37 3938

5047 5451

41

56 57

48 49

4240

52 55

61

44

59

43

45 53

66

46

58 656260 63 64

Y

(all in R)

Cb

(only in MB
in

)

Cr

(only in MB
in

)

67 68 69 70 71

72 73 74 75 76

77 78 79 80 81

67 68 69 70 71

72 73 74 75 76

77 78 79 80 81

82 83 84 85 86

87 88 89 90 91

92 93 94 95 96

82 83 84 85 86

87 88 89 90 91

92 93 94 95 96

2 31 4 65

1714 2118

8

23 24

15 16

97

19 22

28

11

26

10

12 20

33

13

25 322927 30 31

35 3634 37 3938

5047 5451

41

56 57

48 49

4240

52 55

61

44

59

43

45 53

66

46

58 656260 63 64

2 31 4 65

1714 2118

8

23 24

15 16

97

19 22

28

11

26

10

12 20

33

13

25 322927 30 31

35 3634 37 3938

5047 5451

41

56 57

48 49

4240

52 55

61

44

59

43

45 53

66

46

58 656260 63 64

Y

(all in R)

Cb

(only in MB
in

)

Cr

(only in MB
in

)

(a) before scrambling

34 91 43 3 90

45 47 56 2 16

78 73 52 21 64

26 54 80 14 62

6 76 8 69 38

86 25 75 9 68

36 9542 5 7766

3974 6361

79

46 93

12 20

8355

40 58

84

18

72

81

50 13

7

28

24 441931 41 92

4 2796 94 5710

129 8959

32

51 48

60 15

3070

17 87

71

23

37

53

22 65

82

11

85 674933 88 35

Y

Cb Cr

34 91 43 3 90

45 47 56 2 16

78 73 52 21 64

26 54 80 14 62

6 76 8 69 38

86 25 75 9 68

36 9542 5 7766

3974 6361

79

46 93

12 20

8355

40 58

84

18

72

81

50 13

7

28

24 441931 41 92

4 2796 94 5710

129 8959

32

51 48

60 15

3070

17 87

71

23

37

53

22 65

82

11

85 674933 88 35

Y

Cb Cr

(b) after scrambling

Fig. 4. Inter-block scrambling of AC components

13 2 -1 0 0 0 0 0

0 0 0 -2 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DC AC components

1

2

3

4

5

6

original

order

0

3

6

0

8

16

RL

2

-1

1

-2

4

1

Level
13 2 -1 0 0 0 0 013 2 -1 0 0 0 0 0

0 0 0 -2 0 0 0 00 0 0 -2 0 0 0 0

0 0 1 0 0 0 0 00 0 1 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 1 0 0 00 0 0 0 1 0 0 0

0 4 0 0 0 0 0 00 4 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

DC AC components

1

2

3

4

5

6

original

order

0

3

6

0

8

16

RL

2

-1

1

-2

4

1

Level

(a) original AC components

13 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

3

6

1

5

4

2

shuffled

order

6

16

0

8

0

3

RL

1

1

2

4

-2

-1

Level
13 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

13 0 0 0 0 0 0 013 0 0 0 0 0 0 0

0 0 1 0 0 0 0 00 0 1 0 0 0 0 0

0 0 0 0 2 0 0 00 0 0 0 2 0 0 0

0 0 0 1 0 0 0 00 0 0 1 0 0 0 0

0 0 0 0 -1 0 0 00 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 4 0 0 0 0 0 00 4 0 0 0 0 0 0

-2 0 0 0 0 0 0 0-2 0 0 0 0 0 0 0

3

6

1

5

4

2

shuffled

order

6

16

0

8

0

3

RL

1

1

2

4

-2

-1

Level

3

6

1

5

4

2

shuffled

order

6

16

0

8

0

3

RL

1

1

2

4

-2

-1

Level

(b) shuffled AC components

Fig. 5. Intra-block shuffling of AC components

(a) original (I-picture) (b) scrambled (I-picture, 13%) (c) scrambled (I-picture, 100%)

(d) original (B-picture) (e) scrambled (B-picture, 13%) (f) scrambled (B-picture, 100%)

Fig. 6. Examples of scrambled frame (CR=1.5[Mbps])

posed scheme, it depends on the total permutation numbers in

intra-slice shuffling of DC components, and inter-block and

intra-block shuffling of AC components. Since the number

becomes a huge one, it would be difficult to completely re-

construct the original MPEG file without knowing key infor-

mation. All the keys, KDC , K
(inter)
AC and K

(intra)
AC , should

be shared in both sender and recipient sides in advance, or

should be authenticated before content delivery.

4. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the basic performance of the proposed method, we

conducted computer simulation by using some encoded videos:

(i) “Driving” (352 × 240 pixels, 300 frames), (ii) “Flower

Garden” (352 × 240 pixels, 150 frames), and (iii) “Mobile

Calendar” (352 × 288 pixels, 300 frames). We implemented

our scheme in MPEG-1 [7], where coding rate is set in the

range CR=1.0 ∼ 2.0[Mbps]. In this paper we only show

the results for “Driving”. First we show several examples of

scrambling in Fig.6, where a local region (13% in the frame,

specified by a bold rectangle) and the entire frame are shuf-

fled by our scheme at CR=1.5[Mbps]. Both I and B-pictures

are shown with their original frames. We can see that it is

difficult to visually understand the content of the shuffled re-

gions. Comparing I-picture with B-picture in case of local

shuffling, it can be observed that scrambling is also appeared

outside the scrambled region in B-picture, which is mainly

caused by inter-frame operation using motion compensation.

1351

Table 1. Increase/decrease of code in each slice [Bytes]
I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9

slice-1 0 0 0 0 0 0 0 0 0

slice-2 0 0 0 0 0 0 0 0 0

slice-3 0 0 0 0 0 0 0 0 0

slice-4 0 0 0 0 0 0 0 0 0

slice-5 0 0 0 0 0 0 0 0 0

slice-6 0 0 0 0 0 0 0 0 0

slice-7 -83 -56 -36 -20 -53 -80 -65 -43 -64

slice-8 42 32 8 14 3 -69 -27 -131 -52

slice-9 -40 -23 -48 -11 -72 -42 -59 16 -85

slice-10 -100 -73 -29 -28 -67 -67 -28 -45 -64

slice-11 -79 -72 -89 -62 -83 -43 -56 -96 -47

slice-12 8 16 25 5 83 72 77 102 88

slice-13 -39 -23 -10 -25 3 1 -27 -11 -21

slice-14 58 10 23 38 27 50 76 72 48

slice-15 232 187 158 88 159 180 110 137 197

total -1 -2 2 -1 0 2 1 1 0

Next, we show PSNR of scrambled images for original ones

as we change coding rate CR in Fig.7, where two kinds of

PSNR are measured outside/inside scrambled region R. For

the region outside R, PSNR measured is exactly the same to

the original one in case of I-Picture, while we can see slight

deterioration in case of B-picture. However, for the region in-

side R, very low PSNR is maintained for all the coding rate.

Next, we examine the statistics on the effect to MPEG code

by the proposed scheme. There is a possibility to change the

amount of coding bit only in the process of inter-block shuf-

fling of AC components because of byte-alignment in each

slice. To obtain statistics, we conducted 5 × 103 times of

simulation by changing secret keys. Fig.8 shows the total

increase/decrease[bytes] from the original code. From this

result, we can see that the effect is quite small and negligi-

ble in our scheme. We further observe the change in Table
1, which shows the increase/decrease of code in slice level.

We can see various changes in slices included in R. However,

they are canceled each other in a frame, and totally keep same

MPEG file size. Finally, we show the increase of processing

time (actual CPU time, no programming optimization) of our

scheme as we increase the region to be scrambled in a frame

in Fig.9. From this figure, our scheme linearly increases CPU

time as we increase the region with the maximum of 55% for

the entire frame.

5. CONCLUSIONS
We have presented a video scrambling scheme on MPEG com-

pressed domain, which is applicable to local region in a frame.

Our scheme consists of (i) intra-slice shuffling of DC compo-

nents, (ii) inter-block shuffling of AC components, and (iii)

intra-block shuffling of AC components. Through computer

simulation, we have verified that we can efficiently shuffle a

part of frame without data expansion.

As future works, we should compare our scheme with other

existing schemes, and further enhance the effect of scram-

bling. Also, we should suppress the effect of scrambling out-

side the scrambled region especially in P and B-pictures.

6. REFERENCES
[1] G. Spanos, T. Maples, “Performance study of a selective en-

cryption scheme for the security of network real-time video”.

bitrate [Mbps]

P
S
N
R
 [
d
B
]

original
scrambled

1.0 1.5 2.0
20

25

30

35

40

(a) outside R (I-picture)

bitrate [Mbps]

P
S
N
R
 [
d
B
]

original
scrambled

1.0 1.5 2.0
20

25

30

35

40

(b) outside R (B-picture)

bitrate [Mbps]

P
S
N
R
 [
d
B
]

original
scrambled

1.0 1.5 2.0
5

10

15

20

25

30

35

(c) inside R (I-picture)

bitrate [Mbps]

P
S
N
R
 [
d
B
]

original
scrambled

1.0 1.5 2.0
5

10

15

20

25

30

35

(d) inside R (B-picture)

Fig. 7. PSNR of scrambled frame

1.0Mbps
1.5Mbps
2.0Mbps

increased codes [Bytes]

f
r
e
q
u
e
n
c
y

-30 -20 -10 0 10 20 30
0

100

200

300

400

500

600

700

800

Fig.8. Total increase /

decrease of MPEG code

(local shuffling)

rate of region to be shuffled [%]

ti
m
e
 [
se
c
]

0 25 50 75 100
0

0.5

1

1.5

2

2.5

3

Fig.9. Actual processing

time

(Pentium IV, 3.0[GHz])

Proc. 4th Int’l Conf. on Computer Communication and Net-
works, 1995.

[2] L. Qiao, K. Nahrstedt, “Comparison of MPEG encryption algo-

rithms”, Int’l Jour. on Computers and Graphics, vol.22, pp.437-

444, 1998.

[3] W. Zeng, S. Lei, “Efficient frequency domain video scrambling

for contest access control”, Proc. 7th ACM Int’l Multimedia
Conference, pp.285-293, 1999.

[4] C. Shi and B. Bhargava, “A fast MPEG video encryption algo-

rithm”, Proc. 6th ACM Int’l Multimedia Conference, pp.81-88,

1998.

[5] J. Wen, M. Severa, W. Zeng, M. Luttrell, W. Jin, “A format com-

pliant configurable encryption framework for access control of

video”, IEEE Trans. on Circuits and Systems for Video Technol-
ogy, Vol.12, pp.545-557, 2002

[6] C. Wong, H. Yu, M. Zheng, “A DCT-based MPEG-2 Transpar-

ent Scrambling Algorithm”, IEEE Trans. Consumer Electronics,

vol.49, no.4, pp.1208-1213, 2003.

[7] ISO/IEC MPEG-1 Video encoder version 1.5g.

1352

