
TRICODES: A BARCODE-LIKE FIDUCIAL DESIGN FOR AUGMENTED REALITY MEDIA

Jonathan Mooser, Suya You, and Ulrich Neumann

CGIT Lab, University of Southern California
mooser@usc.edu, {suya,neumann}@graphics.usc.edu

ABSTRACT

Visual markers, or fiducials, have become one of the most common

methods of camera pose estimation in Augmented Reality (AR) me-

dia. Many present day fiducial-based AR systems use arbitrary pat-

terns, such as simple line drawings or alpha-numeric characters, and

require that an application be “trained” to recognize its pattern set.

These techniques work well on a small scale, but as the number of

fiducials grows, accuracy and performance degrade. We describe a

new fiducial design called TriCodes that, like a barcode, provides a

systematic way of printing and identifying a vast library of patterns.

We compare TriCodes to the popular ARToolkit package, demon-

strating its advantages in the presence of large numbers of fiducials.

1. INTRODUCTION AND RELATED WORK

The principle behind fiducial-based AR is straightforward. A cam-

era attached to the user captures the surrounding environment in real

time. The system then uses the locations of fiducials within the cap-

tured image to estimate the position and orientation of the camera

and, in turn, render virtual media on top of the real world. An

early description of camera pose estimation based on identified im-

age points is given by Fischler and Bolles [1]. A similar method is

incorporated into the Zhang’s camera calibration algorithm [2].

A number of specific fiducial designs and corresponding iden-

tification algorithms have been proposed [3, 4, 5]. In some cases,

natural features of the environment can be incorporated into the pose

estimation process [6] or visual markers may be combined with other

tracking technologies [7]. While these methods go beyond the scope

of purely fiducial-based AR, they depend on artificial landmarks to

begin the process, and thus stand to benefit from improved fiducial

identification.

Like the fiducial design described in this paper, a tagging system

called Cybercode uses a barcode-like pattern library [8]. Its intended

application, however, is somewhat different. Cybercodes are small

thumbnail tags that need to be viewed from a close distance and

occupy a relatively large portion of the image.

One of the most common frameworks for AR implementation

is ARToolkit, an open source, freely downloadable API [9]. It is

directly supported by the DART authoring environment [10] and it

has been ported to PocketPC OS for handheld development [11].

ARToolkit uses rectangular markers consisting of arbitrary black-

and-white or color patterns, with a training step required to teach

the system to recognize a particular pattern set. The identification

itself uses one of two algorithms. By default, ARToolkit uses a tra-

ditional template matching algorithm, which involves finding a cor-

relation coefficient between a detected marker and each member of

the training set. The detected marker is identified by the trained pat-

tern with maximal correlation. This method is described by Ababsa

and Mallem [4].

Alternately, ARToolkit can be set to use principal component

analysis (PCA). This reduces the dimensionality of the training set to

improve performance at the cost of accuracy. A description of PCA

as applied to pattern recognition can be found in Turk and Pentland’s

work identifying images of faces and cars [12].

Fig. 1. Examples of markers we used with ARToolkit. These four

patterns are the ones used in our experimental results (see Sec. 4),

where we refer to them as “face,” “squares,” “10,” and “Jonathan.”

In recent years, there has been increasing demand for large scale,

multi-user AR multimedia applications. Schmalsteig and Wagner

describe an interactive museum guide [13, 14] in which virtual me-

dia is superimposed over real exhibits. It is not difficult, in an actual

implementation, to imagine the need for thousands or tens of thou-

sands of individually placed markers. Moreover, the fiducials set is

necessarily dynamic. As exhibits are added and removed, one needs

to create new patterns that are guaranteed not to interfere with the

existing ones. Similarly, a multimedia training application for oil re-

finery employees was developed by Träskbäack and Haller [15]. As

with the museum application, growing and changing training content

will often mean adding and removing fiducials. Any AR application

that annotates a large real-world environment needs the flexibility to

continually grow and change.

2. THE TRICODE DESIGN

The motivation behind TriCodes is to facilitate the creation, organi-

zation, and identification of large, dynamic fiducial sets. Each new

pattern represents a unique code built from a small alphabet of eas-

ily readable elements. Like ARToolkit markers, each TriCode is sur-

rounded by a black frame for initial detection. The region inside that

frame is then divided into a 3 by 3 grid. The upper-left cell always

contains a solid black square, used for establishing the overall orien-

tation of the marker. The remaining eight cells each contain a single

code element: a solid black isosceles right triangle pointing in one

of eight directions. We arbitrarily assign an element pointing up and

to the right a value of 0, an element pointing straight up a value of

1 and so on counterclockwise until an element pointing due right is

assigned a value of 7.

Because each element can take on any of eight values, it effec-

tively encodes three bits. Two elements are set aside as a redundancy

checksum, leaving six independent elements for a total of 6×3 = 18

13011424403677/06/$20.00 ©2006 IEEE ICME 2006

Fig. 2. Examples of TriCodes. The first, reading from the top line

down after the square, has a value of 3-2-3-2-1-0 with a checksum

of 1-0. The second has a value of 3-5-7-0-2-4 with a checksum of

6-2, etc.

bits for a complete “codespace” of 218 ≈ 260, 000 unique patterns.

The checksum is included to make the identification process ro-

bust to misidentification of individual elements. When a new Tri-

Codes is created, the values of the last two elements are automati-

cally generated from the first six in such a way that any two patterns

differ by at least three elements. That means that a misidentification

in one element will result in a code that still differs by two elements

from any other possible code. Thus, when the system identifies a

marker and compares its value to that of some known marker, we de-

clare a positive identification as long as seven of the eight elements

match.

3. DETECTION AND IDENTIFICATION PROCESS

Each captured image is initially scanned for any polygonal shape that

may represent a valid TriCode (detection). Each candidate marker is

then separately analyzed to attempt to read its code (identification).

The detection process is relatively similar to that used by AR-

Toolkit [9]. The entire image is initially converted to grayscale and

its average pixel intensity value is computed. We then create a bilevel

version of the image by setting each pixel to 1 or 0 based whether or

not its intensity is above or below that average (Fig. 3b). Because

TriCodes consists of solid black regions against a white background,

this kind of crude segmentation is sufficient. Next the perimeter of

each contiguous region of black pixels is traced to produce a chain

representing an object border (Fig. 3c). A set of line segments are

then fit to these points, so that all border pixels are within some min-

imum distance of a line segment. If the resulting polygon is suffi-

ciently large and has exactly four sides, it is considered a candidate

marker and passed on to the identification process.

Identification begins by building a 48x48 pixel rectified mini-

image of the interior of the detected polygon (Fig. 4a,b). The idea is

to transform the polygon so that it looks as it would if it were being

viewed from straight ahead. Assuming that the four corners of any

marker in its own reference frame are at (0, 0), (0, 1), (1, 1), and

(0, 0), object space and image space can be related by a homogra-

phy: �
� αu

αv
α

�
� = H

�
� x

y
1

�
�

where (x, y) is a point on the marker plane and (u, v) is its projection

onto the image plane. A simple algorithm for deriving H is given by

Fischler and Bolles [1]. We can now build the mini-image by iterat-

ing through its pixels, setting each to the value of the corresponding

pixel in the original grayscale image. The pixel intensity values are

then normalized to account for varying illumination conditions:

zi =
pi − µp

σp

where zi is the normalized intensity value of the ith pixel, pi its

original value, µp the average intensity of the entire mini-image, and

σp the standard deviation.

If a candidate marker is, in fact, a TriCode, we know the approx-

imate location of each element within the rectified mini-image. Like

the original pattern itself, we can think of the mini-image as a grid

of nine cells, each containing exactly one code element. The first

step is to rotate the mini-image until the solid black square appears

in the upper left corner (Fig. 4a,b). Its presence is verified by sum-

ming the intensity values of pixels in the upper left cell weighted

by 3-pixel Gaussian around its center. After normalization, the av-

erage intensity value is 0, so if the upper left cell contains the black

square, most of the pixels will be negative, as will be their weighted

sum. Through experimentation, we have found that a safe thresh-

old is −0.5. Any sum greater than that indicates the upper left cell

of the mini-image does not contain a solid black square, in which

case, the mini-image is rotated 90◦ and re-tested. If, after three ro-

tations, the square cannot be found, the polygon under consideration

is considered unidentifiable as a TriCode and is discarded.

The remaining eight regions of the mini-image are now ana-

lyzed. The hypotenuse of each triangular element always passes

through the center of its cell, so we apply an orientation filter based

on a Canny edge detector [16] at that point. This is a somewhat

unique application of an edge detector; rather than processing an en-

tire image searching for edges, there are just a few precise locations

where the intensity gradient is measured. Specifically, we measure

the gradient at a point, (x, y), on the image, I .

∇Ix =
�

[Gx(i, j)I(x + i, y + j)]

∇Iy =
�

[Gy(i, j)I(x + i, y + j)]

Where the sums are taken over the range −3 ≤ i, j ≤ 3. Gx and

Gy are gradient-of-Gaussian filters in the x and y directions.

Gx(i, j) = G(i + 0.5, j) − G(i − 0.5, j)

Gy(i, j) = G(i, j + 0.5) − G(i, j − 0.5)

G(i, j) =
1

2πσ2
e−(i2+j2)/2σ2

We convert ∇Ix and ∇Iy to an orientation and magnitude

|∇I| =
�

∇I2
x + ∇I2

y

∇Iθ = arctan

�∇Iy

∇Ix

�

The value of the gradient magnitude is taken to be the maximum

over a small window around the center of a given cell, (x0, y0).

|∇I| = max
−1≤i,j≤1

(|∇I(x0 + i, y0 + j)|)

So for each element, the gradient filter is applied nine times. If |∇I|
is below some minimum threshold, no edge has been detected in the

current cell and its element cannot be identified. Identification is

robust to at least one unreadable element, as explained in Section

(2), so this may not render the overall code unreadable. If |∇I| is

sufficiently large, the element is assigned a value based on the value

of ∇Iθ . Whichever of the eight possible orientations is closest to

∇Iθ is taken to be the orientation of the element under investigation.

After all eight elements have been read, their values are concatenated

to produce the complete code.

Knowing the internal parameters of the camera, we can derive

the camera pose and projection matrix from the same homography

1302

Fig. 3. (a) An input image of an exterior industrial setting, with a TriCode placed amongst other objects. The purpose here is to provide

real-time data for AC ducts. (b) After conversion to bilevel. (c) Edges are marked as the boundaries of contiguous black areas. One chain of

edges has its corners marked, indicating that it is the right shape and size to be passed to the identification process.

Fig. 4. (a) The rectified mini-image before the black box has been rotated into the upper left corner. (b) After rotation. Markers indicate

the centers of the orientation filters and measured orientations. (c) Using the identification and the marker’s corner positions, the system can

render the correct virtual media content in the desired location.

H used to create the rectified mini-image [2]. The system can now

accurately render virtual media content on top of its image of the real

world (Fig. 4c).

4. COMPARISON TO TEMPLATE MATCHING AND PCA

TriCodes offer several key advantages over template matching and

PCA based pattern recognition. The first is one of performance. Tri-

Code identification as described in Sec. 3 can be performed in con-

stant time. Eight elements need to be read every time, each requiring

exactly nine applications of a fixed size gradient filter. The database

of known codes can be effciently indexed by their 18-bit values, and

a newly identified code can thus be retrieved quickly.

This is not the case with template matching, where each identi-

fication effectively requires the computation of a large dot product

for each pattern in the training set. Thus if there are N trained fidu-

cials, identification takes O(N) time. For small fiducial sets, iden-

tification will still generally run at interactive speeds, but as the set

grows, there will necessarily be some point at which identification

time grows longer than desired. In the case of PCA recognition, the

situation is more complicated. Time complexity is not a function of

the number fiducials, but of the number of eigenvectors, which may

be fixed or variable depending on implementation. If it is fixed, then

identification can be completed in constant time like TriCodes. This,

however, comes at a considerable cost in reliability, as our experi-

mental results show.

We compared the accuracy of TriCode identification to template

matching and PCA as implemented by ARToolkit (ver. 2.71.2). Ac-

curacy here is defined as the fraction of times that a system returns

the correct identification of a marker that it detects in an image. For

TriCodes, a positive identification means that at most one of the eight

elements is misread. For template matching or PCA, it means that

the system found the correct identification to be more likely than any

other possible identification. We tested these algorithms by running

ARToolkit on the four fiducials in Fig. 1 amidst an increasingly large

training set (up to 60 total patterns). For PCA tests we set a maxi-

mum of 20 eigenvectors. In all tests, the camera was positioned so

that the fidcucial had a diagonal length between 80 and 100 pixels.

Given the size of the markers and the focal length of the camera, this

corresponds to a distance of approximately one meter. The angle be-

tween the marker plane and the image plane was confined to a range

of 45◦ to 60◦.

Under these test conditions, our algorithm correctly identified

TriCodes with over 99.5% accuracy. The identifability a given Tri-

Code fiducial is unaffected by the existence of other fiducials, so this

values remains constant as the database grows. Template matching

and PCA exhibited strong accuracy as well when using a relatively

small training set of 10 patterns, (Figs. 5 and 6). However, intro-

ducing more fiducials into the training set increased the likelihood

of interference between similar patterns, and accuracy dropped sig-

nificantly. Using PCA identification, some patterns became almost

completely unidentifiable. The exact accuracy values that we saw in

our results are dependent on a number of factors, including camera

resolution, illumination conditions, and the precise design of the pat-

terns in the training set. It may be possible, with the right choice of

fiducials, to see good accuracy with 60 patterns or even more. But

1303

this is ultimately unpredictable. Our results indicate that two fidu-

cials may give vastly different results under identical test conditions.

Thus, without extensive testing we do not know which patterns will

interfere with each other and compromise accuracy. One of the key

motivations behind TriCodes is to provide a consistent way of adding

new fiducials to an existing application without this risk.

Fig. 5. TriCodes vs. ARToolkit using template matching. The

results show the identification accuracy of four patterns (Fig. 1) as

the total number of trained markers increases.

Fig. 6. TriCodes vs. ARToolkit using PCA recognition.

5. CONCLUSION

In this paper, we present a novel fiducial design that can easily be

generated on a black-and-white printer. As AR applications grow,

so will the need for large, dynamic sets of fiducials. Authors and

developers working on different parts of a large-scale application

will want to independently create new fiducials that are guaranteed

not to interfere. TriCodes are specifically designed to address that

need, eliminating the process of drawing patterns and testing them

for possible interference. The identification process is fast, and is

shown to be more accurate than many prevalent fiducial recognition

algorithms.

6. ACKNOWLEGEMENTS

This study was funded by the Center of Excellence for Research

and Academic Training on Interactive Smart Oilfield Technologies

(CiSoft); CiSoft is a joint University of Southern California-Chevron

initiative.

7. REFERENCES

[1] Martin A. Fischler and Robert C. Bolles, “Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography,” Commun. ACM,

vol. 24, no. 6, pp. 381 – 395, 1981.

[2] Zhengyou Zhang, “A flexible new technique for camera cali-

bration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no.

11, pp. 1330 – 1334, 2000.

[3] Ulrich Neumann, Suya You, Youngkwan Cho, Jongweon Lee,

and Jun Park, “Augmented reality tracking in natural environ-

ments,” in International Symposium on Mixed Realities, 1999.

[4] Fakhr-eddine Ababsa and Malik Mallem, “Robust camera pose

estimation using 2d fiducials tracking for real-time augmented

reality systems,” in VRCAI ’04: Proceedings of the 2004 ACM
SIGGRAPH international conference on Virtual Reality con-
tinuum and its applications in industry, 2004, pp. 431–435.

[5] David Claus and Andrew W. Fitzgibbon, “Reliable fiducial

detection in natural scenes,” in ECCV 2004, 2004, pp. 469 –

480.

[6] Bolan Jiang, Suya You, , and Ulrich Neumann, “Camera track-

ing for aumented reality media,” in IEEE International Con-
ference on Multimedia and Expo 2000, Jul 2000, pp. 1637 –

1640.

[7] Andrei State, Gentaro Hirota, David T. Chen, William F. Gar-

rett, and Mark A. Livingston, “Superior augmented reality reg-

istration by integrating landmark tracking and magnetic track-

ing,” in SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques,

1996, pp. 429 – 438.

[8] Jun Rekimoto and Yuji Ayatsuka, “CyberCode: designing aug-

mented reality environments with visual tags,” in DARE ’00:
Proceedings of DARE 2000 on Designing augmented reality
environments. 2000, pp. 1–10, ACM Press.

[9] Hirokazu Kato, “www.hitl.washington.edu/artoolkit,” 2005.

[10] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David

Bolter, “DART: a toolkit for rapid design exploration of aug-

mented reality experiences,” in UIST ’04: Proceedings of the
17th annual ACM symposium on User interface software and
technology, 2004, pp. 197 – 206.

[11] Daniel Wagner and Dieter Schmalstieg, “ARToolkit on the

PocketPC platform,” Tech. Rep., Vienna University of Tech-

nology, 2003.

[12] Matthew Turk and Alex Pentland, “Eigenfaces for recogni-

tion,” Journal of Conitive Neuroscience, vol. 3, no. 1, pp. 71 –

86, 1991.

[13] Dieter Schmalstieg and Daniel Wagner, “A handheld aug-

mented reality museum guide,” in Proceedings of IADIS In-
ternational Conference on Mobile Learning 2005 (ML2005),
June 2005.

[14] Daniel Wagner, Thomas Pintaric, Florian Ledermann, and Di-

eter Schmalstieg, “Towards massively multi-user augmented

reality on handheld devices,” in Proceedings of Third Inter-
national Conference on Pervasive Computing, Pervasive 2005,

May 2005.

[15] Marjaana Träskbäack and Michael Haller, “Mixed reality train-

ing application for an oil refinery: user requirements,” in VR-
CAI ’04: Proceedings of the 2004 ACM SIGGRAPH interna-
tional conference on Virtual Reality continuum and its appli-
cations in industry, 2004, pp. 324 – 327.

[16] J Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679 – 698,

1986.

1304

