
ABSTRACT

As digital imaging becomes more prevalent in consumer

products, the industry strives to reduce the cost and the

complexity of imaging solutions and, at the same time, to

improve the color quality and resolution of the images. The

proliferation of imaging in mobile phones, digital cameras,

webcams, toys, etc. creates the need for a low cost, small

footprint image sensor. Nowadays, sensor optics account for

approximately half the cost of an image sensor system for a

camera phone, and their cost does not scale down as fast as

the cost of semiconductors.
In this paper, we describe the algorithms and the hardware

implementation of a novel color processing chain that uses

image processing techniques to compensate for the spatial

variations in image attributes and quality due to low cost

optics. If left uncorrected, these variations produce

undesirable visual effects and lead to unacceptable image

quality. Besides the correction of artifacts due to lenses, the

image processing chain performs a sequence of corrections

for real time dead pixel replacement, color correction,

filtering, color space transformations for subsequent

compression, etc.

1. INTRODUCTION

Image sensors are widely used in high volume, space

constrained applications such as mobile imaging, toys,

barcode scanners, automotive applications, etc. There is a

growing interest for CMOS based image sensors because of

customer demand for miniaturized, low power, and high

integration imaging systems. Moore’s law on scaling of

CMOS semiconductor technology ensures that the cost of

the pixel array and accompanying image processors and

DSPs will continue to drop. This leaves the optical lenses
and packages the dominant cost contributor of an image

sensor system.

The advances in semiconductor integration has prompted

image sensor designers to transfer additional functionalities

to the image processors in order to improve the quality and

to amend inefficiencies at the front end of the system. As an

example, the packaging of sensors in mobile devices

requires a small z-height optical system in which the

distance between the main lens and the active pixel array

creates blurring effects and chromatic aberrations near the

edges of the sensor (Figure 1). We will focus on this

imaging error later in the paper.

Another example is the incomplete manufacturing testing of

the pixel array that may leave behind pixels that are stuck at

a particular value independent of the light intensity of the

scene (called dark and hot pixels). Again, image processing

can be used to detect and correct dead pixels in the active

pixel array in real time. By making it unnecessary to discard

sensor chips that contain limited numbers of scattered

defects, the method would increase effective production

yields and thereby lower the costs of individual image
sensors.

In this paper, a complete image processing algorithm and its

hardware implementation is described. Moreover, the paper

explains how the correction stages are combined with a

traditional pipelined image processing chain used to

enhance the quality of the picture. This chain can be used in

a mobile telephony device, for example. We present an

important and realistic paradigm on how back-end image

processing can substitute manufacturing inefficiencies, thus

driving the effects of Moore’s law into the whole system

.
The paper makes the following contributions:

• It presents novel algorithms to solve the problems

of roll off corrections due to low cost optics and of

real time dead pixel detection and replacement, and

• it describes how these algorithms can be mapped

into a modular ASIC design for a high-speed, low

power hardware implementation.

The rest of the paper is organized as follows: section 2

Main Lens

Microlenses

Figure 1 Each pixel is enclosed in microlenses to focus

the incident light on photo sensitive portions of the

pixel and improve the effective fill factor of the image

sensor. If the z-height is small, the image appears

blurred at the edges.

AN IMAGE PROCESSING PIPELINE WITH DIGITAL COMPENSATION OF LOW

COST OPTICS FOR MOBILE TELEPHONY

Nikolaos Bellas Arnold Yanof

Embedded System Research Freescale, Inc.

Motorola, Inc. Phoenix, AZ

Schaumburg, IL

12491424403677/06/$20.00 ©2006 IEEE ICME 2006

details the complete image processing chain. Section 3
presents the pipelined image processor that interfaces to a

VGA sensor and implements the algorithms, and section 4

outlines previous work in the area and concludes the paper.

2. IMAGE PROCESSING ALGORITHMS

The color processing pipeline of Figure 2 receives a stream

of sensor pixels in Bayer format, and produces a stream of

pixels in the YCbCr color space. In some cases, certain

values of the sensor integration time cause the appearance of

rolling horizontal flickering bars in the image. The
processing chain has a flickering detection and correction

mechanism which is based on the Fourier transformation of

image rows of successive frames. A flickering detection

triggers a gradual modification of the sensor integration time

to eliminate the flickering effect.

The algorithm computes statistical information on the pixel

values including the average R, G, and B values in each

frame and the distribution of these values using histogram

analysis. The statistical information is used for dynamic

updates of the integration time and white balance values in

the sensor.
Before most of the image processing can be conducted, dead

pixel values must be removed. Traditionally, dead pixel

detection and correction is achieved by storing the locations

of the dead pixels during sensor manufacturing test. During

sensor initialization, these locations are stored in the image

processor and the dead pixels are replaced by neighboring,

non-dead pixels while the frame is read out. One of the

novel algorithmic aspects of our imaging chain is the
detection of pixels that are substantially different from

surrounding pixels without losing sharpness and spatial

details. The algorithm eliminates the need to store the

location of the dead pixels a-priori since it does not aim to

detect every dead pixel in the image, but to detect the dead

pixels that cause obvious visual errors for a particular scene.

 While it is easy to devise heuristics to detect suspicious

pixels with a high contrast to their surrounding pixels,

problems may arise when a mathematical formula is applied
to replace them, especially in sites with high spatial

frequency. For brevity, we will only detail the detection and

replacement of pixels in a red location in Figure 3.

The large separation of red pixels (compared to green

pixels) forces us to use surrounding green pixels as well to

detect the brightness of the site. If the red pixel is much

brighter than its neighbours, it is being substituted by the

maximum value of nearby red and green pixels, and not by

their average or median value. This is necessary in order to

retain highlights in locales with rich spatial detail.

Moderately bright red pixels use a smaller threshold to

compare against neighboring pixels, but they are only
substituted in case of a flat or dark field. It is permissible to

detect dark pixels by testing against only surrounding red

pixels, since fine details are not adversely affected by

brightening dark red pixels. Note that unlike the bright red

pixels, the substitution is the mean of the surrounding red

and green ones.

The dead pixel detection and replacement for green pixels is

simpler, and utilizes only green surrounding pixels. The

process for the blue pixels is similar to the process for the
red pixels, with extra precautions for areas in which dark

objects are immersed in very bright backgrounds.

Dead pixels have to be replaced before the subsequent

filtering and roll off correction stages to avoid errors to be

magnified.

Pixels near the corners and the edges receive light at a larger

incident angle, which is also more diffused and causes loss

of acuity (Figure 4). Moreover, the large incidence angle

causes color variations near the edge of the sensor.

The algorithm corrects for roll off in image data by

determining for each pixel a roll off contour in which the

pixel resides which in turn, depends upon the pixel
coordinates on the image plane. The (x,y) coordinates of the

location of each pixel are converted to a radial distance from

the center of the image, which is used to map the location to

the roll-off contour (Figure 5) and to access look-up tables

that contain gain parameters.

The non-linear roll off correction is used in three different

circumstances: to correct unwanted variability in luminance

(Figure 4), loss of image sharpness, and color distortion

because the color components RGB do not focus at exactly

the same point at the edges of the image.

Bad Pixel
Correction

Gamma
Correction

RGB YCC
Conversion

Vertex
Interpolation

Stats / WB
Flicker
Control

Bayer Input

Color
Correction

Filtering
Effects

Color Roll-
off Correct

Luminance
Shading Corr

Row/Col Coordinates

Luminance
Oval Contour

MTF Oval
Contours

Color Oval
Contours

Chrominance
Channel Cr, Cb

Luminance

Channel, Y

MTF Roll off
Correct

Y sharpness
Convolution

Row/Col Coordinates

Row/Col Coordinates

+

+

Figure 2 The image processing chain, including flicker

control, dead pixel detection and replacement and roll-

off corrections

1250

The non-linear luminance shading correction is applied in

the same Y input stream as the edge enhancement/MTF

correction. The shading correction is multiplicative and can

increase the luminance value by a factor of 3-4x near the

image edge:

/*gainluminance thestore tousedis* /*_

/*f1(R)functionlinear-nona* /);(1_

1 incYLUTRollY

RfLUTRoll

=
=

The luminance stream Y passes through a baseline 3x3 high

pass filter to perform edge enhancement, and,

simultaneously to restore loss of sharpness through the

location dependent MTF correction filter. The equations are

the following:

21

128

2/)*_(*

8

*

2

)(2_

),(

YYYout

RollOffLUTMTFEBaseE

eTermRollOffEdggeTermBaseLineEdY

RfLUTMTF

mYconvE in

+=

+

=+=
=

=

 where m is the convolution matrix:

16

121

2122

121

−−−
−+−
−−−

=m

and Base and RollOff are user defined normalization factors.

The f1 and f2 are non-linear, monotonically non-decreasing

functions of the radial distance R of the pixel from the

optical center and are implemented in hardware using

lookup tables (LUTs). The chroma pixels do not pass

through edge enhancement, but only through roll off

correction. The chroma correction is additive to the baseline

chroma magnitude, so that total corrective effect is much
smaller than in the luminance roll off case, although the

image errors can be more objectionable than in the Y pixels.

A final color correction and optional filtering effects stage

conclude the image processing pipeline.

3. HARDWARE IMPLEMENTATION

The imaging pipeline is implemented as a synthesizable

image sensor companion chip. Therefore, it has to meet

stringent real-time performance requirements and operate

within a low power budget. The design can process Bayer

data from a VGA (640x480) image sensor at 30 frames/sec
using a max clock frequency of 33 MHz for low power

operation. In Figure 6, each of the three multi-cycle pipe

stages execute parts of the processing chain. The low clock

Is Green
plane locally
flat or dark?

Is Green
plane locally
flat or dark?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Replace R9 with
Max of nearby Red and Green

yes

no

R9 unchanged

Is R9 a bit
darker than nearby

Red pixels?

Is R9 a bit
darker than nearby

Red pixels?

Is Green
plane locally

flat?

Is Green
plane locally

flat?

Is R9 a lot
darker than nearby

Red and Green?

Is R9 a lot
darker than nearby

Red and Green?

Replace R9 with
Average of nearby Red and Green

G1 B2 G3 B4 G5 B6

R7 G8 R9 G0 Ra Gb

Gc Bd Ge Bf Gg Bh

Ri Gj Rk Gm Rn Gp

no

yes

yes

no

no no

yes

yes

yes

For Hot red
pixels, use both
red and green

info to preserve
fine yellow

lines

Algorithm

looks ‘forward’
to help prevent
false positives

while detecting

98% of DPs

For ‘warm’ red
pixels, check

range of green
plane

neighborhood

Figure 3 The algorithm for dead pixel detection and replacement of red pixels

Figure 4 Roll-off luminance correction is needed to
compensate the shaded areas at the edges due to small z-

height

Figure 5 An oval contour made of linear segments

simplify the real time conversion of Cartesian

coordinates to radial distance and covers a large set of

commercially available lenses. The luminance gain
increases as the radial distance from the center

increases.

1251

frequency restriction requires a large number of functional

units operating in parallel in each stage to achieve the real

time performance by exploiting the high instruction and data

level parallelism of the algorithms. The design is modular

and can be easily extended to different algorithms, different

performance requirements and sensor sizes.

The control signals are used to trigger a data transmit

transaction from the sensor to the processor or, more

generally from pipeline stage I to pipeline stage I+1. An
ACK signal from stage I+1 back to stage I notifies the data

sender that stage I+1 has read the data sent by stage I. A

double buffer between the stages ensures that successive

stages can write and read data simultaneously (although to

different buffers).

 The data path consists of ALUs, Multiply Accumulate

(MAC) units, and dedicated hardware to speed up certain

filtering operations. Separate control units are used to

control the operations and communicate with neighboring

stages. Four line buffers are needed to store Bayer pixels for

the 2D filters. The buffers are dual ported to facilitate

simultaneous access from different pipeline stages.
The latency in each stage is determined by the ratio of the

core clock frequency to the sensor clock frequency. In this

design, this ratio is set to three, and this makes the stage

latency equal to six cycles in the worst case. The worst case

happens when there is an 1:1 or 2:1 interpolation, such as

transforming a VGA Bayer frame to a VGA or QVGA

YCbCr output. The flicker correction and statistics gathering

phases are executed by a small microcontroller before the

pixels make it into the pipeline. The microcontroller and

accompanying hardware to speed up the flicker correction

and histogram analysis are in the same die with the
pipelined architecture of Figure 6.

The chip has about 250K gates, and consumes 35 mW

power when processing a VGA input frame. Multiple clock

domains are used to provide clock gating in fine granularity.

For example, when the imaging system operates in single

capture mode, the chip and the sensor can be placed into a

low power state by clock gating the flip flops.

4. CONCLUSIONS & RELATED WORK

Programmable or ASIC-based image processors have been

used successfully to trade-off cost and image quality with

processing complexity. In this paper, we described an image

acquisition system which captures Bayer RGB data and

produces formatted YCbCr data for compression. The

proposed algorithm and image processor utilizes correction

techniques to minimize adverse visual side-effects such as

flickering, dead pixels, and roll-off, owing to the low cost
acquisition system.

Previous such systems focused mostly on the color

processing and color space conversion without consideration

of the optics [1] [2]. Both software and hardware techniques

for dead pixel correction have been proposed in [3].

Commercial products that use some form of dead pixel

correction and lens shading correction as part of their color

processing pipeline have been announced by Freescale and

Micron [4].

5. REFERENCES

[1] B.Tang, K.Lee, “An Efficient Color Image Acquisition System
for Wireless Handheld Devices,” Proceedings of Acoustics,
Speech, and Signal Processing, 2004 (ICASSP '04). Vol.3, page
105-108, May, 2004.

[2] T. Sakamoto et. al. “Software píxel interpolation for digital
cameras suitable for a 32-bit MCU,” IEEE Transactions on
Consumer Electronics, vol. 44, no. 4, pp.1342-1352, 1998

[3] Chapman, G.H., Djaja, S., Cheung, D.Y.H., Audet, Y., Koren,
I., Koren, Z. “A self-correcting active pixel sensor using hardware
and software correction,” IEEE Design & Test of Computers, Vol.
21, Issue 6, Nov-Dec 2004, pp: 544 – 551

[4] “MT9D111: 2-Megapixel CMOS Camera System-on-a-Chip,”
www.micron.com

GC and DP

FSM

G1 line

buffer

G2 line

buffer

R line

buffer

B line

buffer

R
eg

is
te
r

F
il
e

ALU1

ALU2

ALU3

ALU4

ALU5

MUL1

MUL2

MUL3

Second

Pipe Stage

FSM

R
eg

is
te
r

F
il
e

ALU1

ALU2

ALU3

Rad

MAC1

MAC2

Edge

Enhanc

Filtering

Effects
ALU

Y pixel

Line SRAMs

For Edge

Enhanc

Cb/Cr

Pixel

Line SRAMs

-

-

Y LR

LUT

Cb LR

LUT

Cr LR

LUT

Bayer

pixels Y pixels

Cb pixels

Cr pixels

• Dead Pixel Correction

• Gamma correction

• Vertex-based interpolation

• RGB to YCC conversion

• Edge enhancement

• Roll Off corrections

• Color correction

• Filtering effects

Gamma

Corr

LUT

Dead

Pixel

Corr

Figure 6 The pipelined architecture of the image processing chain

1252

