
ABSTRACT 

As digital imaging becomes more prevalent in consumer 

products, the industry strives to reduce the cost and the 

complexity of imaging solutions and, at the same time, to 

improve the color quality and resolution of the images. The 

proliferation of imaging in mobile phones, digital cameras, 

webcams, toys, etc. creates the need for a low cost, small 

footprint image sensor. Nowadays, sensor optics account for 

approximately half the cost of an image sensor system for a 

camera phone, and their cost does not scale down as fast as 

the cost of semiconductors.  
In this paper, we describe the algorithms and the hardware 

implementation of a novel color processing chain that uses 

image processing techniques to compensate for the spatial 

variations in image attributes and quality due to low cost 

optics. If left uncorrected, these variations produce 

undesirable visual effects and lead to unacceptable image 

quality. Besides the correction of artifacts due to lenses, the 

image processing chain performs a sequence of corrections 

for real time dead pixel replacement, color correction, 

filtering, color space transformations for subsequent 

compression, etc. 

1. INTRODUCTION 

Image sensors are widely used in high volume, space 

constrained applications such as mobile imaging, toys, 

barcode scanners, automotive applications, etc. There is a 

growing interest for CMOS based image sensors because of 

customer demand for miniaturized, low power, and high 

integration imaging systems. Moore’s law on scaling of 

CMOS semiconductor technology ensures that the cost of 

the pixel array and accompanying image processors and 

DSPs will continue to drop. This leaves the optical lenses 
and packages the dominant cost contributor of an image 

sensor system.  

The advances in semiconductor integration has prompted 

image sensor designers to transfer additional functionalities 

to the image processors in order to improve the quality and 

to amend inefficiencies at the front end of the system. As an 

example, the packaging of sensors in mobile devices 

requires a small z-height optical system in which the 

distance between the main lens and the active pixel array 

creates blurring effects and chromatic aberrations near the  

edges of the sensor (Figure 1). We will focus on this 

imaging error later in the paper. 

Another example is the incomplete manufacturing testing of 

the pixel array that may leave behind pixels that are stuck at  

a particular value independent of the light intensity of the 

scene (called dark and hot pixels). Again, image processing 

can be used to detect and correct dead pixels in the active 

pixel array in real time. By making it unnecessary to discard 

sensor chips that contain limited numbers of scattered 

defects, the method would increase effective production 

yields and thereby lower the costs of individual image 
sensors. 

In this paper, a complete image processing algorithm and its 

hardware implementation is described. Moreover, the paper 

explains how the correction stages are combined with a 

traditional pipelined image processing chain used to 

enhance the quality of the picture. This chain can be used in 

a mobile telephony device, for example. We present an 

important and realistic paradigm on how back-end image 

processing can substitute manufacturing inefficiencies, thus 

driving the effects of Moore’s law into the whole system 

.
The paper makes the following contributions: 

• It presents novel algorithms to solve the problems 

of roll off corrections due to low cost optics and of 

real time dead pixel detection and replacement, and 

• it describes how these algorithms can be mapped 

into a modular ASIC design for a high-speed, low 

power hardware implementation.  

The rest of the paper is organized as follows: section 2 

Main Lens

Microlenses

Figure 1 Each pixel is enclosed in microlenses to focus 

the incident light on photo sensitive portions of the 

pixel and improve the effective fill factor of the image 

sensor. If the z-height is small, the image appears 

blurred at the edges.
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details the complete image processing chain. Section 3 
presents the pipelined image processor that interfaces to a 

VGA sensor and implements the algorithms, and section 4 

outlines previous work in the area and concludes the paper. 

2. IMAGE PROCESSING ALGORITHMS 

The color processing pipeline of Figure 2 receives a stream 

of sensor pixels in Bayer format, and produces a stream of 

pixels in the YCbCr color space. In some cases, certain 

values of the sensor integration time cause the appearance of 

rolling horizontal flickering bars in the image. The 
processing chain has a flickering detection and correction 

mechanism which is based on the Fourier transformation of 

image rows of successive frames. A flickering detection 

triggers a gradual modification of the sensor integration time 

to eliminate the flickering effect.  

The algorithm computes statistical information on the pixel 

values including the average R, G, and B values in each 

frame and the distribution of these values using histogram 

analysis. The statistical information is used for dynamic 

updates of the integration time and white balance values in 

the sensor.  
Before most of the image processing can be conducted, dead 

pixel values must be removed. Traditionally, dead pixel 

detection and correction is achieved by storing the locations 

of the dead pixels during sensor manufacturing test. During 

sensor initialization, these locations are stored in the image 

processor and the dead pixels are replaced by neighboring, 

non-dead pixels while the frame is read out. One of the 

novel algorithmic aspects of our imaging chain is the 
detection of pixels that are substantially different from 

surrounding pixels without losing sharpness and spatial 

details. The algorithm eliminates the need to store the 

location of the dead pixels a-priori since it does not aim to 

detect every dead pixel in the image, but to detect the dead 

pixels that cause obvious visual errors for a particular scene.  

 While it is easy to devise heuristics to detect suspicious 

pixels with a high contrast to their surrounding pixels, 

problems may arise when a mathematical formula is applied 
to replace them, especially in sites with high spatial 

frequency. For brevity, we will only detail the detection and 

replacement of pixels in a red location in Figure 3.  

The large separation of red pixels (compared to green 

pixels) forces us to use surrounding green pixels as well to 

detect the brightness of the site. If the red pixel is much 

brighter than its neighbours, it is being substituted by the  

maximum value of nearby red and green pixels, and not by 

their average or median value. This is necessary in order to 

retain highlights in locales with rich spatial detail. 

Moderately bright red pixels use a smaller threshold to 

compare against neighboring pixels, but they are only 
substituted in case of a flat or dark field. It is permissible to 

detect dark pixels by testing against only surrounding red 

pixels, since fine details are not adversely affected by 

brightening dark red pixels. Note that unlike the bright red 

pixels, the substitution is the mean of the surrounding red 

and green ones. 

The dead pixel detection and replacement for green pixels is 

simpler, and utilizes only green surrounding pixels. The 

process for the blue pixels is similar to the process for the 
red pixels, with extra precautions for areas in which dark 

objects are immersed in very bright backgrounds. 

Dead pixels have to be replaced before the subsequent 

filtering and roll off correction stages to avoid errors to be 

magnified.  

Pixels near the corners and the edges receive light at a larger 

incident angle, which is also more diffused and causes loss 

of acuity (Figure 4). Moreover, the large incidence angle 

causes color variations near the edge of the sensor.

The algorithm corrects for roll off in image data by 

determining for each pixel a roll off contour in which the 

pixel resides which in turn, depends upon the pixel 
coordinates on the image plane. The (x,y) coordinates of the 

location of each pixel are converted to a radial distance from 

the center of the image, which is used to map the location to 

the roll-off contour (Figure 5) and to access look-up tables 

that contain gain parameters.  

The non-linear roll off correction is used in three different 

circumstances: to correct unwanted variability in luminance 

(Figure 4), loss of image sharpness, and color distortion 

because the color components RGB do not focus at exactly 

the same point at the edges of the image. 
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Figure 2 The image processing chain, including flicker 

control, dead pixel detection and replacement and roll-

off corrections
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The non-linear luminance shading correction is applied in 

the same Y input stream as the edge enhancement/MTF 

correction. The shading correction is multiplicative and can 

increase the luminance value by a factor of 3-4x near the 

image edge: 
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The luminance stream Y passes through a baseline 3x3 high 

pass filter to perform edge enhancement, and, 

simultaneously to restore loss of sharpness through the 

location dependent MTF correction filter. The equations are 

the following: 
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and Base and RollOff are user defined normalization factors.  

The f1 and f2 are non-linear, monotonically non-decreasing 

functions of the radial distance R of the pixel from the 

optical center and are implemented in hardware using 

lookup tables (LUTs). The chroma pixels do not pass 

through edge enhancement, but only through roll off 

correction. The chroma correction is additive to the baseline 

chroma magnitude, so that total corrective effect is much 
smaller than in the luminance roll off case, although the 

image errors can be more objectionable than in the Y pixels. 

A final color correction and optional filtering effects stage 

conclude the image processing pipeline.

3. HARDWARE IMPLEMENTATION 

The imaging pipeline is implemented as a synthesizable 

image sensor companion chip. Therefore, it has to meet 

stringent real-time performance requirements and operate 

within a low power budget. The design can process Bayer 

data from a VGA (640x480) image sensor at 30 frames/sec 
using a max clock frequency of 33 MHz for low power 

operation. In Figure 6, each of the three multi-cycle pipe 

stages execute parts of the processing chain. The low clock 
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Figure 3 The algorithm for dead pixel detection and replacement of red pixels 

Figure 4 Roll-off luminance correction is needed to 
compensate the shaded areas at the edges due to small z-

height 

Figure 5 An oval contour made of linear segments 

simplify the real time conversion of Cartesian 

coordinates to radial distance and covers a large set of 

commercially available lenses. The luminance gain 
increases as the radial distance from the center 

increases.  
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frequency restriction requires a large number of functional 

units operating in parallel in each stage to achieve the real 

time performance by exploiting the high instruction and data 

level parallelism of the algorithms. The design is modular 

and can be easily extended to different algorithms, different 

performance requirements and sensor sizes.  

The control signals are used to trigger a data transmit 

transaction from the sensor to the processor or, more 

generally from pipeline stage I to pipeline stage I+1. An 
ACK signal from stage I+1 back to stage I notifies the data 

sender that stage I+1 has read the data sent by stage I. A 

double buffer between the stages ensures that successive 

stages can write and read data simultaneously (although to 

different buffers). 

 The data path consists of ALUs, Multiply Accumulate 

(MAC) units, and dedicated hardware to speed up certain 

filtering operations. Separate control units are used to 

control the operations and communicate with neighboring 

stages. Four line buffers are needed to store Bayer pixels for 

the 2D filters. The buffers are dual ported to facilitate 

simultaneous access from different pipeline stages.  
The latency in each stage is determined by the ratio of the 

core clock frequency to the sensor clock frequency. In this 

design, this ratio is set to three, and this makes the stage 

latency equal to six cycles in the worst case. The worst case 

happens when there is an 1:1 or 2:1 interpolation, such as 

transforming a VGA Bayer frame to a VGA or QVGA 

YCbCr output. The flicker correction and statistics gathering 

phases are executed by a small microcontroller before the 

pixels make it into the pipeline. The microcontroller and 

accompanying hardware to speed up the flicker correction 

and histogram analysis are in the same die with the 
pipelined architecture of Figure 6. 

The chip has about 250K gates, and consumes 35 mW 

power when processing a VGA input frame. Multiple clock 

domains are used to provide clock gating in fine granularity. 

For example, when the imaging system operates in single 

capture mode, the chip and the sensor can be placed into a 

low power state by clock gating the flip flops.  

4. CONCLUSIONS & RELATED WORK 

Programmable or ASIC-based image processors have been 

used successfully to trade-off cost and image quality with 

processing complexity. In this paper, we described an image 

acquisition system which captures Bayer RGB data and 

produces formatted YCbCr data for compression. The 

proposed algorithm and image processor utilizes correction 

techniques to minimize adverse visual side-effects such as 

flickering, dead pixels, and roll-off, owing to the low cost 
acquisition system. 

Previous such systems focused mostly on the color 

processing and color space conversion without consideration 

of the optics [1] [2]. Both software and hardware techniques 

for dead pixel correction have been proposed in [3]. 

Commercial products that use some form of dead pixel 

correction and lens shading correction as part of their color 

processing pipeline have been announced by Freescale and 

Micron [4].
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