
INTERNET TRAFFIC CLASSIFICATION FOR SCALABLE QOS PROVISION

Junghun Parka, Hsiao-Rong Tyanb, and C.-C. Jay Kuoa

aIntegrated Media Systems Center and Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089-2564
bDepartment of Information and Computer Engineering

Chung-Yung Christian University, Chung-Li 32023, Taiwan

E-mails: junghunp@usc.edu, tyan@ice.cycu.edu.tw, cckuo@sipi.usc.edu

ABSTRACT

A new scheme that classifies the Internet traffic according to their ap-
plication types for scalable QoS provision is proposed in this work.
The traditional port-based classification method does not yield satis-
factory performance, since the same port can be shared by multiple
applications. Furthermore, asymmetric routing and errors of modern
measurement tools such as PCF and NetFlow degrades the classi-
fication performance. To address these issues, the proposed classi-
fication process consists of two steps: feature selection and classi-
fication. Candidate features that can be obtained easily by ISP are
examined. Then, we perform feature reduction so as to balance the
performance and complexity. As to classification, the REPTree and
the bagging schemes are adopted and compared. It is demonstrated
by simulations with real data that the proposed classification scheme
outperforms existing techniques.

1. INTRODUCTION

Scalable QoS provision over the Internet can be addressed by consid-
ering the packet forwarding mechanism and network resource man-
agement. They should be designed to support different rate/delay
requirements of various flows. The flow-based service depends on
the application types. Even though being extensively studied in the
literature, QoS-based services are still not yet deployed by Internet
service providers (ISPs). One of the main obstacles is that there lacks
a simple yet accurate mechanism to classify the application type of
a flow.

The classification of flow applications has several major chal-
lenges. First, the features to be used in classification have to be
simple since a large number of packets have to be processed by the
router per time unit. The port-based classification is used tradition-
ally. Its classification performance is however poor since ports are
often shared by multiple applications [1, 2]. Furthermore, the ob-
served or extracted features can be corrupted by errors of measuring
tools such as PCF [3] and NetFlow [4], which suffer the collision er-
ror and the sampling error, respectively. The classification task has
to take asymmetric routing into account, which is caused by mul-
tiple routers in an ISP. Multiple routers are used for load sharing.
However, there is no guarantee that in-coming and out-going pack-
ets of the same two-way session go through the same router. Thus,
asymmetric routing forces the classification to be performed based
on only the information obtained from the one-way direction.

Similar classification work was done previously in [1, 2]. How-
ever, they did not consider the scalability problem. To support scal-
ability, we demand that all candidate features used in classification
have to be obtained from PCF or NetFlow, and good features are

selected by considering the nature of asymmetric routing. Based
on selected features, we develop a good Internet traffic classifica-
tion scheme. Our major contribution is to propose a more practical
framework for Internet traffic classification which can be applied to
real world data.

The rest of the paper is organized as follows. The feature selec-
tion process is presented in Sec. 2. Several classification algorithms
used in previous work and our work are described in Sec. 3. Simu-
lation results are given and discussed in Sec. 4. Finally, concluding
remarks are provided in Sec. 5.

2. FEATURE SELECTION

The classified object is an IP flow, which consists of 4 tuples, i.e.
addresses and ports of the source and the destination. The classifica-
tion is performed based on a feature vector. The components of the
feature vector can be decided according to the characteristics of de-
sired class types. The classes and their corresponding characteristics
considered in this work are shown in Table 1.

Table 1. Characteristics of classes under classification.
Characteristics Classes (Applications)

Interactive www, Telnet, Chat(Messenger)
Bulk data www, FTP, P2P(Kazza, Grunella)
Real Time Multimedia

Email Outlook(smtp,POP, IMAP)
Transactions DNS, Services(Oracle, X11)

We demand that the extracted features have to be easily obtained
or derived from measurement tools of ISP such as PCF or NetFlow.
They are primarily the packet-level information, including fields of
IP/TCP/UDP packet headers and the arrival time. Their statistics
such as average and variance can be updated per observation sample
by using the recursive formula that were introduced in [1]. The for-
mula can be computed easily without logging much information in
the past so as to reduce the memory requirement, too.

Our selected features include the size and the number of “burst”
packets. The burst characteristics can be determined using the ar-
rival time information of packets. That is, consecutive packets are
said to be burst, if their inter-arrival time is less than a predefined
threshold. Some applications, such as WWW and P2P, have a heavy
burst behavior, while streaming and inter-active multimedia applica-
tions do not have such a behavior on the average. Thus, this burst
feature is expected to provide good discriminant power among these
distinctive classes.

12211424403677/06/$20.00 ©2006 IEEE ICME 2006

Candidate features considered in our work are shown in Table 2.
All of them can be obtained with relatively low costs. It is worth-
while to mention that there are features that were discussed in the lit-
erature but not listed in Table 2. For example, the FFT (Fast Fourier
Transform) of the inter-arrival time can be a good feature as men-
tioned in [2]. However, it is expensive to compute this feature at ISP
due to the limited amount of memory.

Table 2. The list of candidate features.
Method Features

Directive duration of the flow, # of
information packets, initial AdvertisedWindow

bytes, # of actual data packets, # of
packets with the option of ”PUSH”

Recursive size of the packets, AdvertisedWindow
statistics bytes,inter-arrival time, # and size

of the total burst packets
Using a variable # and size of the total burst

updated every sample packets, inter-arrival time

The feature selection process should find a good balance be-
tween the complexity (in terms of computation and storage) and per-
formance (in terms of the correct classification rate). More features
included, more computation and more memory needed. The com-
plexity issue becomes even more critical when we desire a solution
that is scalable to the growth of the network. Furthermore, a large
number of features may confuse some classification tools.

There are two commonly used methods in feature reduction;
namely, the filter method and the wrapper method. The wrapper
method uses classification results as a feedback for feature adjust-
ment. Even though it can provide better performance, the filter method
is adopted in our scheme for simplicity. For the filter method, there
are several feature selection and evaluation algorithms proposed. For
example, the rank search scheme is used in [2] for feature selection.
Since low ranked features can be seen as redundancy features, the
rank search algorithm can be used to reduce the dimension of the
feature space conveniently. The symmetrical uncertain attributed
measure is used in [2] for the evaluation. This measure is derived
from information theory, and it can represent the correlation between
features and classes well.

3. CLASSIFICATION METHODS

A good classification algorithm should meet three criteria: low com-
plexity, high accuracy and robustness. For an ISP to classify a great
number of flows, the complexity of the classifier should be low while
meeting the desired classification accuracy. To reduce the complex-
ity, the classifier training process should be done in an off-line mode.
There exists a gap between the training data set and the test data set
since the feasible sample space of Internet flows is too huge and it
continues to change due to the emergence of new applications. Thus,
a good classifier should be robust with respect to the variation of
flows and applications.

The Bayesian analysis technique was used in previous work due
to its simplicity, where the conditional probability given a class was
assumed to be Gaussian distributed. This is however not true in re-
ality. To overcome this problem, a kernel estimation was adopted in
[2] to estimate the distribution. Thus, the density estimation can be

expressed by

f̂(x|cj) =
1

ncj h

ncj∑

xi

K(
x − xi

h
), (1)

where h is the kernel bandwidth, j ∈ J is the class index, ncj is the
number of samples in class j in the training data sets and K(x) is
the normalized Gaussian distribution of the form 1√

2π
exp(−x2/2).

The kernel estimation is however not suitable for this application
due to the heavy computation involved. When computing f̂(x|cj) in
(1) to classify an unknown flow, one has to perform ncj computa-
tions. As the number of ncj increases, the estimation becomes more
reliable but the complexity increases as well.

Here, we propose the use of a decision tree to solving the prob-
lem. The decision tree classifier demands higher complexity in the
training process. However, this is acceptable since the training is
done in an off-line mode. A typical decision tree contains internal
nodes, which represent the tests to be performed, and leaf nodes,
which represent all classification outcomes. The tree construction
process (or the training process) consists of two steps. First, we
should identify features that provide the best discriminant power
among classes and determine a test (i.e. a branch in the decision
tree) by selecting threshold values of those features. Then, we need
to determine a sequence of tests, which corresponds to the decision
tree generation.

In the test mode, the decision process can be done by a series
of tests, which corresponds to branches of the tree. The final deci-
sion goes to a certain leaf node, which gives the application class.
Thus, the complexity of the classification process is the depth of the
tree, which can be represented by O(log n), where n is the num-
ber of training samples. The computational and memory require-
ments for Naive Bayesian (NB), Naive Bayesian using Kernel Esti-
mator(NBKE) and the decision tree are shown in Table 3, where d
is the number of features and m is the number of testing samples.
The space (or memory) complexity in training a tree is the number
of nodes, which is 1+2+4+.....+n/2 ≈ n, that is O(n). By consider-
ing the time and space complexities in the classification process, the
decision tree classification approach is better than NBKE.

Table 3. Time complexity for Naive Bayesian (NB), NB Kernel
Estimator (NBKE) and decision tree.

Operation NB NBKE decision tree

Space for training O(d) O(dn) O(n)
Train on n samples O(dn) O(dn) O(dn2 logn)
Test on m samples O(dm) O(dmn) O(m log n)

The decision tree suffers the overfitting problem caused by noise
in the training data, which degrades the classification performance.
Thus, we need a pruning process to cut down sub-trees resulted from
the noise. However, it is difficult to prune sub-trees optimally since
there is no specific relation between the tree size and the classifica-
tion error. It means that the pruning process is performed repeatedly
until the error is reduced as small as possible. After a normal tree is
generated, the pruning process is applied to the tree to increase the
classification accuracy. Furthermore, the pruning process reduces
the size of the decision tree so that the complexity of the decision
tree in Table 3 is reduced. The reduction is dependent on the train-
ing data sets. Thus, the actual complexity will be predicted after the
pruning process with real Internet traffic data sets.

According to the particular method used in calculating errors
in the pruning process, there are some variants in the decision tree.

1222

Among several decision tree classifiers, the REPTree (Reduced Error
Pruning Tree) classifier is adopted here, since it uses a fast pruning
algorithm to increase the accurate detection rate with respect to noisy
training data. Furthermore, the pruned tree reduces the complexity
in the classification process. Generally speaking, pruning is used to
find the best sub-tree of the initially grown tree with the minimum
error for the test set. However, the number of sub-trees grows expo-
nentially with the size of the initial tree. Thus, it is computationally
impractical to search all sub-trees. REPTree yields a suboptimal tree
under the restriction that a sub-tree can only be pruned if it dose not
contain a sub-tree with a lower classification error than itself.

More accurate performance can be obtained by paying a higher
computation cost. For example, the bagging classfier generates mul-
tiple versions of a predictor (which is REPTree in our work) and the
final classification result is decided by votes from multiple predic-
tors. Each predictor is trained using a randomly divided sub-set of
the entire training set. Due to the complicated nature of the Internet
traffic, the bagging classifier is expected to provide better perfor-
mance than the single REPTree at the cost of higher complexity.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Simulation setup

We used the data sets provided by [5] as training and test data sets in
our simulation. The training data were collected at the Pittsburgh Su-
percomputing Center (PSC) in April, 2005, while the test data were
collected at the same place in June and October, 2005. To check the
robustness of the proposed algorithm against time, we considered
two cases, that had 2- and 6-month gaps between test and training
data, respectively. It is difficult to check the payload content for
such large supervised data sets. Instead, we used some well known
ports to select supervised data sets as performed in [1] first. Then,
from selected data sets, features were extracted by following the pro-
cedure as described in Sec. 2. The threshold to decide burst packets
was chosen empirically as 0.007 second. Then, features were con-
verted to the input format used in WEKA [6], a verified classifica-
tion tool which has been popularly used in the data mining commu-
nity. Furthermore, we applied the method mentioned in 2 to reduce
the dimension of features. Then, with this reduced set of features,
four classifiers were tested and compared. They were: (1) the naive
Bayesian classifier, (2) the naive Bayesian classifier using kernel es-
timation, (3) the REPTree classifier and (4) the bagging classifier
using REPTrees. All parameters in each classifier were chosen to be
default values provided by the tool. The simulation results remain
the same under repeated tests under the above conditions.

4.2. Results and discussion

Table 4 shows seven rank-ordered features in the P2A (passive peer
to active peer) and the A2P (active peer to passive peer) directions,
respectively, where the rank was decided by the correlation between
features and classes mentioned in Sec. 2. The direction is distin-
guished by TCP SYN flag. It is clear that the P2A and the A2P two
directions have different ordered features. The first seven features
in each direction stay the same when the number of training data
samples is more than 500K. Thus, these seven features are chosen.

We know from Table 4 that the AdvertisedWindow in the TCP
header is the key parameter to distinguish applications in the P2A di-
rection. The AdvertisedWindow parameter is the allowed size in the
receive buffer. The peer’s transmission behaviors are controlled by
the parameter. Different applications are distinguished by different

transmission behaviors at the peer’s side. The statistics of the packet
size were shown to be good features in Sec. 2, too.

Furthermore, according to different application types, the client
may have a different number of packets flagged with “PUSH” (called
push packets for simplicity) due to the following reasons. The TCP
sender sets the PUSH flag of a packet to tell its operating system
and the receiving end of its TCP connection that all buffered data are
delivered to the receiving application. In an interactive application,
when a client sends a command to the server, the client would set
the PUSH flag and wait for server’s response. Without the PUSH
flag, this process may hang up because the operating system in the
sender or the receiver may continue to wait for additional data. Thus,
interactive applications tend to have a larger number of push packets.
As another example, when encrypted packets are sent in applications
such as sftp, the push option is used for its correct decryption for
each packet. Thus, the number of push packets can be used as a
good feature as shown in Table 4.

Table 4. The rank-ordered features from symmetrical uncertain at-
tributes. (Avg, Var, and AdvWin mean average, variance and Adver-
tisedWindow in TCP header, respectively.

Order P2A direction A2P direction

1st initial AdvWin PUSH packets
2nd Avg of AdvWin Avg of AdvWin
3rd Var of AdvWin Var of AdvWin
4th Avg packet size Var of packet size
5th size of burst packets minimum segment size
- Var of packet size initial AdvWin

7th PUSH packets size of burst packets

In Fig. 1, (a) and (b) show the the accurate classification rates
versus the number of features used in the A2P direction and the P2A
direction, respectively. We see that the accurate detection rates of
the REPTree and the bagging classifiers start to be saturated if seven
or more features are used in both directions. It proves that the seven
selected features are enough to classify the application. Also, the
two decision tree-based classifiers are better than the two Bayesian
methods. The classification performance of the two naive Bayesian
methods degrades as the number of feature increases. However, the
performance of the bagging classifier is not significantly better than
that of the REPTree classifier. It implies that the statistics of training
data sets and test data sets are similar. The classifiers are robust
under a time gap of 6 months in training and test data sets.

In Sec. 2, the actual complexity of the decision tree can be known
after training process with real data sets. Fig. 3 shows the actual
complexity of each classifier in P2A direction. As our prediction,
Naive Bayesian Kernel estimator(NBKE) suffers the highest com-
putations, while REPTree has the smallest operations. The trend is
kept in A2P direction, either. Considering the stationary feature set
at the number of 500K training samples, REPTree has the lowest
computation complexity satisfying very good accuracy. Thus, REP-
Tree is expected to work as the most powerful classification tool at
ISP.

To investigate the sampling effect when NetFlow is enabled, we
dropped packets in each data set according to the sampling rate p. In
implementation, if the generated random number in [0,1] of a packet
was higher than p, it is dropped. The performance of all classifiers
degrades for a fixed size of training data. However, if the classifier
is trained by training data obtained using the same sampling rate as
applied to test data, the classifier has little performance degradation
as compared to that with p = 1.0 (i.e. no sampling is applied). The

1223

30

40

50

60

70

80

90

100

3 6 9 12 15

NB

NBKE

REPTree

Bagging

Ac
cu

ra
te

ra
te(

%
)

Number of selected features (Active->Passive peer)

(a) A2P direction

20

30

40

50

60

70

80

90

100

3 6 9 12 15

NB

NBKE

REPTree

Bagging

Ac
cu

ra
te

ra
te(

%
)

Number of selected features (Active->Passive peer)

(b) P2A direction

Fig. 1. The accurate detection rates versus the number of features used in (a) the A2P direction and (b) the P2A direction.

30

40

50

60

70

80

90

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NB
NBKE
REPTree
Bagging

Ac
cu

ra
te

ra
te(

%
)

Sampling rate

(a) A2P direction

30

40

50

60

70

80

90

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NB

NBKE

REPTree

Bagging

Ac
cu

ra
te

ra
te(

%
)

Sampling rate

(b) P2A direction

Fig. 2. The accurate detection rates versus the sampling rates in (a)the A2P direction and (b) the P2A direction.

1

10

100

1000

104

105

106

107

1000 104 105 106

NB

NBKE

REPTree

Bagging

C
om

pl
ex

ity
 (A

ve
ra

ge
 o

pe
ra

tio
ns

)

Number of training data samples

Fig. 3. The complexities according to classifiers.

correct detection performance versus the sampling rate for traffics in
the A2P direction and the P2A direction are shown in Fig. 2 (a) and
(b), respectively. Given the sampling rate of 0.3, the correct detec-
tion rates of the REPTree and the Bagging classifiers was lowered
about 10% in the A2P direction and 20% in the P2A direction as
compared to those with p = 1.

5. CONCLUSION

The problem of classifying application types of Internet traffic flow
was examined. This is a challenging problem due to the asym-
metric routing and the large number of flows. Furthermore, the
accounting tools for the scalability in ISP makes the classification

much worse. We proposed effective feature extraction and reduction
schemes, which can be applied to one-way traffic, and studied the
performance degradation due to the sampling error. Furthermore,
the REPTree and the bagging classifiers were presented for the clas-
sification task. Both of them were shown to have good detection
performance with low complexity. We would like to consider the
effect caused by collision errors generated from PCF to design the
better classification tool in the future.

6. REFERENCES

[1] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-
service mapping for qos :a statistical signature–based approach
to ip traffic classification,” in ACM SIGCOMM Internet Mea-
surement Conference, Sicily, Italy, October 2004, pp. 135–148.

[2] A. Moore and D. Zuev, “Internet traffic classification using
bayesian analysis techniques,” in Proc. ACM Sigmetrics, Al-
berta, Canada, June 2005, pp. 50–59.

[3] C. Estan and G. Varghese, “New directions in traffic measure-
ment and accouting,” in Proc. ACM SIGCOMM, Pittsburgh,
Pensylvania, August 2002, pp. 187–200.

[4] Cisco, “Netflow.” [Online]. Available:
http://www.cisco.com/warp/public/732/Tech/netflow

[5] UCSD PMA(Passive Measurement Analysis), “Nlanr pma.”
[Online]. Available: http://pma.nlanr.net

[6] Machine Learning Lab in The university of Waikato, “Weka.”
[Online]. Available: http://www.cs.waikato.ac.nz/ ml

1224

