
Efficient Wireless Multicast Protocol with
Orthogonal CTS Modulation Supporting Video

Conferencing
Ju Wang, Hongsik Choi, Esther A. Hughes

Virginia Commonwealth University

Email: jwang3,eahughes, hchoi@vcu.edu

Yong Tang
University of Florida

Email: yt1@cise.ufl.edu

Abstract—Multicast based video conferencing in wireless net-
works is recently receiving more and more attention. In this
paper, we propose a novel linker-level protocol, Multicast with
Orthorgonal CTS (MOCTS) protocol, to provide efficient wireless
multicast. Our approach uses orthogonal Walsh code to modulate
CTS packets at different receiving nodes. The modulated CTSs
are simultaneously transmitted and decoded at the source node,
thus considerably reducing multicast CTS collisions. Simulation
results show that the MOCTS protocol can reduce more than
20% in total transmission efforts.

I. INTRODUCTION

Multicast is a promising technique to support video confer-

encing in wireless networks. However, compared to multicast

in wireline networks [6]–[8], multicast in wireless networks

must address new challenges due to the wireless advantage,

the movement of wireless terminals (nodes) [9] and the power

saving requirement [5]. Due to the shared media nature,

wireless transmissions in open air will inevitably interfere to

each other.Efficient Resolving of multicast-CTS collisions is

critical [3] [1] [10].

In this paper, we propose a novel wireless multicast scheme

based on an efficient, but completely different, method that

can quickly resolve multicast CTS collisions. Our proposed

protocol is motivated by the success of Code Division Multiple

Access (CDMA) technology in the cellular network where

nodes transmit in parallel. The basic idea is to allow the

multicast source to process multiple CTS packets concurrently

to reduce the signalling time. To achieve this, destination nodes

will modulate their CTS packets with different Walsh codes

and transmit these CTSs simultaneously at a synchronized slot.

Since Walsh codes are (ideally) orthogonal to each other, the

superimposed signal picked up by the source node can be

successfully demodulated for each individual nodes. We show

that a distributed implementation of such an idea requires

some signalling procedure to resolve the Walsh code collisions

among nodes. The expected average collision resolution time

is analyzed and augmented by simulation results.

We then propose a distributed-local-gain-maximizing

(DLGM) algorithm to control the propagation of multicast

packets and to take advantage of the network level wireless

advantage. The algorithm will determine the next node to

transmit based on local topology. Each node keeps track the

receiving status for all nodes within its 2-hop neighborhood.

Each node will then calculate a multicast-gain for all direct

neighbors that are eligible for relay. If a node finds its own

multicast-gain to be not the largest among its neighbors, it

will yield and postpone local relay. Our simulation shows that

such a greedy one-hop hueristic can reduce the total multicast

energy expenditure up to 20%.

The rest of this paper is organized as follows: Section 2

shows preliminary analysis about the importance of reducing

the multicast signalling process. In Section 3, we present

the MOCTS scheme based on a one-cell scenario and effect

of collision salvage; Section 4 discusses the extension to

multi-hop network and the DLGM algorithm, with simulation

results. Section 5 concludes this work.

II. ONE-HOP MOCTS MULTICAST PROTOCOL

We first present the signalling protocol assuming all nodes

can send/receive from each other. A multicast session starts

with the S-node (source node) sending out an MRTS (multicast

request-to-send) packet. The S-node then wait to collect the

MCTS (multicast confirm to send) packets from all destination

nodes. When receive an MRTS and ready for receiving data, a

D-node (destination node) will randomly select a Walsh code

to modulate its MCTS packet and send it to the S-node.

A key part of our protocol is that all ready D-nodes will

transmit synchronized MCTS packets simultaneously. Due to

the orthogonality of Walsh codes, the MCTS packets from

different D-nodes can be decoded if their modulating Walsh

codes are different. Thus, ideally, if all D-nodes choose their

Walsh code differently, there will be no collision and the S-

node will receive all required MCTS within one slot time.

However, there is always a possibility that some D-nodes

will use the same Walsh code, which will cause a code

collision and packet detect errors at the S-node (e.g., CRC

errors) corresponding to the colliding code. To resolve code

collision, the S-node might have to retransmit MRTS several

times to collect replies from all D-nodes. The protocol for

the S-node is shown below. Due to the space limitation, the

D-node protocol is not presented in detail.

Notice that only the colliding D-nodes will be required to

re-select a new Walsh code. When re-selecting Walsh code, a

D-node (say n1) might select a code w which is also picked
by another D-node (say n2)in previous round. This will not

12171424403677/06/$20.00 ©2006 IEEE ICME 2006

be treated as a collision since n2 will not reply to the re-

transmitted MRTS. An important parameter is WSIZE— the

number of Walsh codes to be selected at the D-nodes. When

WSIZE is greater than the number of D-nodes, the system will

converge to a non-collision status after some MRTS/MCTS

exchange. When in non-collision status, all D-nodes have a

unique Walsh code.
S-Node Protocol

st ∈ {READY , MRTS, rMRT S, DAT A,

T0 : timer; recvcount : integer; W SIZE : integer

(st==READY) and (have M-packet in queue)
send MRTS
set T0 = 1 MCTS slot and start T0
sense media for activity
��� st := MRT S

(st == MRTS) and (T0 not expired) and (received MCTS packets)
decode all MCTS packets
if (all expected MCTS arrived with positive reply)

done: ��� st = DAT A

send data packet
if (there is code collision in some MCTS packets)

��� st = rMRT S

recv count = number of MCTS that is
successfully decoded.

retry: determine the new WSIZE
append the code id of the colliding Walsh code in
the MRTS packet.
reset T0 and re-send MRTS packet

(st == rMRTS) and (T0 not expired) and (received MCTS packets)
num= successfully decode MCTS packets
recv count = recv count + num
if (recv count == number of receiving nodes)

goto done
else goto retry

A. Synchronization of D-nodes
Synchronization among a group of mobile terminal in gen-

eral is a difficult task(this is one of the reason to use PN code

in the reverse link at CDMA cellular system). Fortunately, it

is relatively easy to achieve when mobile nodes are displaced

in relatively small areas. We need to synchronize N senders
(D-nodes) and one receiver (S-node). Obviously, only one

synchronization signal is allowed among those N +1 nodes to
avoid ambiguity. Two choices are possible: (1) let the multicast

sender send out the synchronization signal (pilot signal), or

(2) one of the receiving nodes provide a synchronization

signal. In both methods, by the end of synchronization, all

receiving nodes will directly transmit their modulated MCTS.

The former method is simple since the synchronization signal

can readily be provided by the S-node. For the second method,

the S-node must pick one D-node which will provide the syn-

chronization tone. The S-node can send the node identification

in its MRTS packet.

B. Collision Salvaging
In the protocol discussed above, when two or more nodes

choose the same Walsh code w, the source node will simply
decide there is a collision on w and ask the involved nodes
to select a new Walsh code. This strategy might lead to many

retransmissions of MRTS/MCTS when the number of node

is large and the number of Walsh codes is relative small. To

improve system performance under such circumstances, useful

information can be extracted from collision cases to reduce the

number of MCTS retransmission, which we call this collision
salvaging.
The basic idea of collision salvaging is to distinguish dif-
ferent degrees of Walsh-code-collisions. For example, assume

two nodes i and j choose Walsh code w, and both nodes send
back positive MCTS. After spread spectrum demodulation, the

signal strength of the collided MCTS will be twice as high as

that of the normal non-collision case. The S-node thus can

conclude that two nodes sent back a positive reply. If all

other nodes choose a different Walsh code for their MCTS,

the S-node can further conclude that all required MCTSs have

arrived and proceed to data transmission. In this example, the

signalling part only take one MRTS/MCTS handshake despite

that fact that node i and j have a code collision.
Collision salvaging can effectively reduce the number of

MCTS retransmissions. In fact, it is not difficult to see that

most collisions involve only a few nodes. The probability of

having l nodes colliding on one particular Walsh code, given
a total of LWalsh codes, is pL,l = (1

L
)l. The probability of 4-

node collision is, thus, only (1
L

)2 of the 2-node collision. We
thus expect that this improvement can eliminate most of MCTS

retransmissions. This claim is confirmed by our simulation

results in later sections.

III. PERFORMANCE ANALYSIS AND SIMULATION RESULTS
Let m be the number of receiving nodes and k be the
number of Walsh codes used. We are interested in evaluating

T (k, m) – the average number of CTS collisions per multicast
packet. T (k, m) is equivalent to the code dissemination time to
assign a unique code to each member of the multicast group.

T (k, m) can be represented as the following recursive form

T (k, m) =
m∑

i=0

P k
m(i)(1 + T (k − i, m − i)) (1)

where T (j, 0) = 0 for all integer j, and P k
m(i) is the

probability of the event where i(out of m) nodes successfully
select distinguishing codes, where the size of code pool is k.
The term P k

m(i)(1+T (k, m− i)) on the right hand represents
the events that i nodes pick different Walsh codes and (m− i)
nodes have code collisions. The (m− i) colliding nodes must
re-select Walsh codes from a pool of k codes. The slot number
for the (m − i) nodes is T (k, m− i).
We can rewrite T (k, m) as

T (k, m) =

Pm−1

i=0
P k

m(i)(1 + T (k,m − i) + P k
m(0)

1 − P k
m(0)

(2)

P k
n (i) is calculated in [2] using random assignment model.

P
k
n (i) =

(−1)ik!m!

kmi!
·

Pm

j=i
(−1)j(k − j)m−j

(j − i)!(k − j)!(m − j)!
(3)

The performance of the protocol is largely decided by the

number of Walsh codes and the nodes population. In general,

the average collision resolution time increases rapidly for small

WSIZE. For WSIZE = 2, the average MCTS packet to
resolve collision already exceeds 119 when m increase to 10.
Given 10 D-nodes, it requires 8.29 MCTS packets for k = 4,
and 3.6 for k = 8. The k = 4 case reaches the saturation point
at 43 nodes, and the k = 8 case saturates at 89 D-nodes.
Figure 1(a) shows the results for cases with WSIZE= 16,

32 and 64. Figure 1.(b) shows the average collision times

when collision salvaging is deployed in the protocol. In this

simulation, all 2-nodes collisions are treated as a non-collision.

The reduction in the average collision times is significant. For

1218

20 40 60 80
0

5

10

15

20

25

30

neighbor size

av
er

ag
e

M
C

TS
 s

lo
ts

16 codes
32 codes
64 codes

20 40 60 80
0

2

4

6

8

10

neighbor size

av
er

ag
e

M
C

TS
 s

lo
ts

Salvaging all 2−node collision

16 codes
32 codes
64 codes

Fig. 1: Average collision slots(a) Simulation results with 16, 32

and 64 codes, (b)with collision salvaging: all 2-nodes collision

are salvaged

k = 16, the average collision time is 2.4 at 5 nodes, and 7.2
with 99 nodes. For k = 64, the number of average collision
time is even smaller and increases very slowly as the node

size increases. Evidently, the collision salvaging technique is

quite effective even when only 2-node collision is considered.

IV. EXTENDING THE PROTOCOL TO MULTI-HOP NETWORK

A. Multicast Deadlock (M-deadlock)
Intuitively, the MOCTS protocol can be readily extended

to multi-hop networks with the following modifications: (1)

Execute the MOCTS protocol at all nodes independently, with

only the multicast source node take the S-node role initially,

and (2) When a D-node successfully received a multicast

packet, it will switch to the S-node mode and relay the

multicast packet. However, one must be careful to avoid over-

flooding, and prevent deadlock as well. As shown by the

example below, deadlock might happen among relaying nodes.

The following deadlock example assumes that each D-node

only reply to the first MRTS, a rather conservative one. The

network topology and MRTS/MCTS exchanging are shown

in Figure 2(a). The multicast is initiated at the source node

a, and successfully received by nodes b1, b2, and b3. Notice

that nodes b1, b2, and b3 are not connected, thus they all

will independently decide to further broadcast the packet out.

Without loss of generality, let b1, b2 and b3 send out their first

MRTS at time 0, 0.5 and 1 slot time respectively. As a result,

b1’s MRTS collide with b3’s MRTS at c3, and b2’s MRTS

collide to b3’s MRTS at c2. Only c1 successfully receive

b1’s MRTS and send back a MCTS. After a random wait,

b2 will re-transmit MRTS and receive a MCTS from c2, and

finally b3 will re-transmit MRTS and receive a MCTS from

c3. Thus, b1, b2 and b3 each has one MCTS from c1, c2 and

c3 respectively. Yet each of the three b nodes needs one more
MCTS to transmit the data, constituting a deadlock situation.

c1

c2
c3

b1

b3
aMCTS

MCTS

MCTS

wait mcts

wait mcts
wait mcts
b2

x
y

u
v

zi

Fig. 2: (a)Multicast deadlock in a multi-hop wireless net-

work,(b)maximizing local multicast gain example

Our revised relaying procedure consists of two algorithms

to achieve deadlock avoidance:

On Receiving an MRTS
1) If this is the first MRTS that v received, mark the sender

u as Associated-S-Node and send a MCTS to u.
2) If the MRTS received is a re-transmission MRTS from

A-S-Node, and v has a code collision in the previous
MCTS it sent, resend MCTS with a different Walsh

code.

3) If the MRTS received is not from A-S-Node u, no action
is taken.

4) If the MRTS received is a re-transmission MRTS, but

not from A-S-Node u, resend the MCTS.

The second algorithm deals with an incoming MCTS. The

following will be executed on a node v when it hear an MCTS
packet from node x.
Receiving an MCTS
1) Extract the destination node y of the received MCTS,
2) if v == y, follow the protocol in the original MOCTS,
3) If v! = y, remove x from its waiting list,
4) If the waiting list is empty, and the MCTS list is not

empty, proceed to transmit the data packet.

5) if both the waiting list and MCTS list are empty, aboard

transmission. This corresponds to the case where all it

neighbor have received the multicast packet from other

nodes.

It is not difficult to verify that deadlock will be always

resolved with above protocol. In fact, the 4th rule in the MRTS

protocol and the 3rd rule in the MCTS together will break the

waiting condition if deadlock happens.

B. Maximizing the Multicast Gain
Another issue in extending MOCTS to multi-hop networks

is the distributed control of packet propagation for better

efficiency. We introduce new data structures so each node

can dynamically track their local multicast status. Let graph

G(V, E) be the multi-hop wireless network in consideration.
For each node v ∈ V , we denote its direct neighbor set by
N(v). At each node v, we maintain (1) N(v), and (2) N(u)
for each u ∈ N(v). This is, each node knows the network
topology of its 2-hop neighborhood. The 2-hop neighbor set

surrounding v is denoted by N 2(v) = N(v)
⋃

i∈N(v) N(i).
With these new data structures available at each node, the

following locally executed algorithm is used to decide whether

the received packet will be relayed, delayed or discarded (the

protocol behavior is based on an arbitrary node v)
Distributed Local Gain Maximizing (DLGM)
• For each node i ∈ N(v), define a multicast gain function

g(i) as the number of nodes in N(i) that is not marked.
Initially all nodes are not marked, thus g(i) = |N(i)|.

• When receiving an MRTS packet from a node u, mark
all nodes in N(u) as received.

• For each node i ∈ (N(v)
⋂

N(u))/v, update their g(.)
function accordingly. Particularly, g(u) will become zero.

• If there exists a node i ∈ (N(v)
⋂

N(u))/v such that
g(i) >= g(v), node v will mark a delay flag to itself.

1219

• wait for the data transmission from node u to complete,
• When media become clear, if the delay flag is set, wait

a random number of time slots, else send an MRTS to

relay the multicast packet.

The above protocol will make sure that a consensus, about

the node with the highest multicast gain, is formed in the

N(u) neighborhood of any S-node u. That node will transmit
in the next round of multicast before any of its neighbors.

Figure 2(b) shows the protocol execution for a small network.

Multicast starts from node u, which has two direct neighbor v
and i. Before node u send out MRTS, we have the following
g(.) value at v:gv(v) = 4, gv(u) = 2, gv(i) = 3, gv(x) =
1, gv(y) = 1. When receiving MRTS from u, the g(.) function
at v is updated: gv(v) = 2, gv(u) = 0, gv(i) = 1, gv(x) =
0, gv(y) = 0. Therefore node v will decide to relay the packet
immediately. Similarly, at node i, we have gi(v) = 2, gi(u) =
0, gi(i) = 1, gv(z) = 0. Thus node i will decide to delay its
relay request.

C. Simulation Results

The performance of the revised MOCTS protocol is eval-

uated by simulation. Our simulator randomly places mobile

stations in a 1000*1000 square meters rectangle area. The

number of nodes in the simulation increases from 2 to 100.

For a given node number, we generate 50 different topologies

to calculate the average measurement value. All topologies

generated here are connected graph. Our main interest is to

see how our protocol might affect the total number of packets

relayed during multicast.

Figure 3.(a) shows the average number of packet transmis-

sions during a multicast session, including all relayed packets.

The result is classified for two comparing protocols: one with

the proposed DLGM algorithm, and another assuming random

selection for the relaying multicast nodes. We use two set of

network topologies in simulation. The first set has an average

node-degree of 4, and the second set has an average node-

degree of 8.

We observed that the average packet number increases

almost linearly as the number of nodes increases. The number

of relays is significantly reduced when DLGM is employed.

For the 100-node configuration, only 24 packets are required

in average, indicating an 37% reduction compared to that

of random selection. With d = 8, we observed similar
performance trend. Also notice that, due to the higher node-

degree, the number of packets required is significantly reduced.

A close-to-20% reduction is observed for d = 8 case.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

number of total nodes

th
e

av
er

ag
e

pa
ck

et
 tr

an
sm

is
si

on
s

Random Relay d=4
OMCTS/DLGM d=4
Random Relay d=8
OMCTS/DLGM d=8

50 100 150 200 250
2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

node number

m
ul

tic
as

t g
ai

n

average gain

MPR
MCDS
Wu rules
DLMG

Fig. 3: (a) Number of relay vs network size, (b) multicast gain

Figure 4 shows the spread of multicast packet at different

time instances for networks with 50 nodes and 100 nodes

respectively. For networks with 50 nodes, multicast is com-

pleted within 8 packet slots in average. We compiled the

packet propagation statistics for such cases, and obtain an

time-coverage map for both cases. At any given point, the

coverage of the random selection algorithm is larger than that

of the DLGM. For random selection, 50% coverage is reached

at 3.6 time slot. With DLGM, 50% coverage occurs at 4.0 time

slot. The relative faster packet propagation is also observed for

the 100-node configurations. Nevertheless, in term of overall

multicast time, the difference of the two compared algorithm

is not significant.

0 2 4 6 8
0

20

40

60

80

100

time slot

co
ve

ra
ge

 in
 %

Random Relay
OMCTS/DLGM

0 2 4 6 8 10 12
0

20

40

60

80

100

time slot

co
ve

ra
ge

 in
 %

Random Relay
OMCTS/DLGM

Fig. 4: Coverage vs Time (a) N=50, (b) N=100

V. CONCLUSION

We proposed a reliable MAC-layer multicast protocol,

MOCTS, for wireless networks. Our approach is distinguished

from other methods by the use of spread spectrum modulation

in the CTS packets and allowing parallel transmission of CTS

from all nodes. We discussed a distributed code selection

mechanism to reduce code collision and demonstrate the

protocol designs to deal with deadlock issue. Our simulation

shows that MOCTS scheme significantly improve multicast

efficiency in wireless network.

REFERENCES

[1] ANSI/IEEE Standard 802.11, In 1999 Edition.
[2] W. Szapnkowski ”Analysis and Stability Consideration in a Reservation
Multiaccess System”, IEEE Trans. on Comm, Vol. 31, No. 5, 1983 .

[3] V. Bharghavan, A. Demers, S. Shenker and L. Zhang, ”MACAW: A
media access protocol for wireless LANs”, In Proc. of ACM SIGCOMM
(August 1994).

[4] H. Chhaya and S. Gupta, ”Performance modeling of asynchronous data
transfer methods of IEEE 802.11 MAC protocol”, Wireless Networks,
vol.3, no.3, Aug 1997.

[5] B. Wang and S. K. S. Gupta, “S-REMiT: A Distributed Algorithm
for Source-based Energy Efficient Multicasting in Wireless Ad Hoc
Networks,” In IEEE GLOBECOM’03, pp.3519-3524.

[6] V. Rayward-Smith, The computation of nearly minimal Steiner trees in
graphs, Int. J. Math., vol. 14, no. 1, pp. 1523, 1983.

[7] K. Chandy and J. Misra, “Distributed computation on graphs: Shortest
path algorithms,” Communications of the ACM, vol. 25, no. 11, pp. 833
837, Nov. 1982.

[8] M. Doar and I. Leslie, How bad is naive multicast routing?, in Proc.
IEEE INFOCOM, 1993, pp. 8289.

[9] K. Chen, N. Huang, and B. Li, ”CTMS: A Novel Constrained Tree
Migration Scheme for Multicast Services in Generic Wireless Systems”,
IEEE J. ON Selected Areas in Comm, vol.19, no.10, OCTOBER 2001,
pp1998-2005.

[10] J. Kuri and S.K. Kasera, “Reliable Multicast in Multi access, Wireless
LANs,” In IEEE INFOCOM 99, 1999.

1220

