
SIKAS: A SCALABLE DISTRIBUTED KEY MANAGEMENT SCHEME

 FOR DYNAMIC COLLABORATIVE GROUPS

Jiang Zhang, Jian-Guang Luo, Bin Li, Shi-Qiang Yang

Department of Computer Science and Technology, Tsinghua University, Beijing China

{zhang-jiang03,luojg03,libin98}@mails.tsinghua.edu.cn, yangshq@tsinghua.edu.cn

ABSTRACT

The increasing popularity of distributed and collaborative

applications prompts the need for secure communication in

collaborative groups. Some distributed collaborative key

management protocols have been proposed to provide group

communication privacy and data confidentiality for

collaborative groups. However, most of them rekey on each

member change, and the costs of group rekeying can be
quite substantial for large groups with frequent membership

changes. In this paper, we propose a scalable distributed key

management scheme using a distributed one-way function

tree named SIKAS which can significantly reduce the

computation and communication costs of maintaining the

group key based upon period-based group rekeying. A

comparison with previous work has shown that SIKAS

provides scalability and rekeying efficiency while
preserving both distributed and collaborative properties.

1. INTRODUCTION

The increasing popularity of distributed and collaborative

applications such as tele/video-conferencing and interactive

group games prompts the need for secure communication in

collaborative groups. To provide group communication

privacy and data confidentiality for collaborative groups, it
is essential for all members in the group to establish and

share a common group key for encrypting group

communication data. In order to offer both backward and

forward secrecy [1], the group key has to be reestablished

whenever there is any change in the group membership,

which is referred to as group rekeying. To solve the problem,

we need a distributed collaborative group key management

scheme so that the group members can establish and update
a common group key for secure and private communication.

It is important to note that the type of distributed

collaborative key management protocols is very different

from traditional centralized group key management

protocols [2,3]. Centralized protocols rely on a centralized

key server to generate and distribute the group key to the

group members whenever required. However, in most

distributed and collaborative applications, there is no

centralized key server available. To illustrate the utility of
this type of applications, consider a group of people in a

peer-to-peer network having a confidential and closed

meeting. Hence, a distributed collaborative key management

protocol which must have two following special

characteristics is desired for collaborative groups.

Distributed property: there is no centralized key server
involved.

Collaborative property: each group member contributes
an equal share towards the establishment of the common

group key and gains equal control over the group.

A few distributed key management protocols have been
proposed to support many-to-many secure group

communication. SOT [4] can support large and dynamic

groups by clustering group members to localize rekeying

within a cluster. However, it relies on cluster leaders to

generate cluster keys, which makes SOT not applicable for

collaborative groups. DISEC [5] and TGDH [6] provide a

secure, distributed and collaborative key management

solution which delegates key distribution tasks evenly to all
the group members, but they all rekey on each member

change. Hence, the costs of group rekeying can be quite

substantial for large groups with frequent membership

changes. In other words, for dynamic collaborative groups,

the frequency of rekeying imposes an upper limit on the

scalability of key management protocols that is independent

of the efficiency of an individual rekeying operation.

To handle the above problem, we propose a scalable
distributed key management scheme for dynamic

collaborative groups named SIKAS in this paper, which

presents a period-based group rekeying approach based on

distributed key management protocol using a distributed

one-way function tree. Period-based rekeying decouples the

frequency of rekeying from the size and membership

dynamics of the group. Therefore, our scheme can

significantly reduce the computation and communication
costs of maintaining the group key, and can easily scale to

large and dynamic collaborative groups. Moreover, our

approach provides rekeying efficiency while preserving both

distributed and collaborative properties.

The rest of this paper is organized as follows. Section 2

provides a dissection of SIKAS. Section 3 draws a

comparison analysis with previous work. Finally, in Section

4, we conclude the paper.

12051424403677/06/$20.00 ©2006 IEEE ICME 2006

2. A DISSECTION OF SIKAS

2.1. Distributed One-way Function Tree

One-way function tree has been proved to be efficient and

secure in centralized key management [3]. We use a

distributed one-way function tree (DOFT) to efficiently

maintain the group key in a dynamic collaborative group.

Each member maintains a set of keys, which are arranged in

a hierarchical binary tree (shown in Figure 1). We assign a

node ID v to every tree node. The node ID of the root node
is set to 0. Each non-leaf node v consists of two child nodes

whose node IDs are given by 2v+1 and 2v+2. Each leaf

node in DOFT represents a group member Ui.

For a given node v, we associate a secret key Kv and a

blinded key BKv which is computed by applying a given

one-way function to Kv. Each member generates a unique

secret key for itself through a secure pseudo random number

generator. The secret key of a non-leaf node v can be
generated by the blinded keys of two child nodes of v using

a mixing function. Mathematically, we have

2 1 2 2 2 1 2 2(,) ((), ())v v v v vK f BK BK f g K g K+ + + += = (1)

Here g is a one-way function, f is a mixing function.

BK9 BK10

K9 K10

BK2BK1

BK4BK3

K1

K4K3

U2

0

1 2

3 4 5 6

9 10 13 14

U1

U3

U4

U5 U6

K0

hT=3

K0=f(BK1, BK2)=f(g(k1), g(k2))

Figure 1. Distributed one-way function tree

Each member holds its own secret key and all the
blinded keys of nodes that are sibling of the nodes in its key

path starting from its associated leaf node up to the root

node of DOFT. For a given node v, we associate an

responsible member set RMv. RMv includes all the members

in the subtree rooted at the node that is the sibling of node v.

Each member computes the blinded keys of the nodes in its

key path to the tree root and shares it with its associated

responsible member set. For instance, as shown in Figure 1,
RM1 = {U4, U5, U6}, RM3 = {U2, U3}. U1 generates BK3 and

sends it to U2 and U3, and generates BK1 and sends it to U4,

U5, and U6. The limited distribution of secret and blinded

keys is to ensure the protocol is immune to collusions.

Each member can compute the secret keys of the non-

leaf nodes in its key path to the root node of DOFT.

Therefore, the secret key associated with the root node is

shared by all the members and is regarded as the group key.
Figure 1 illustrates a possible key tree with six members U1

to U6. For example, U2 holds {K9, BK10, BK3, BK2}. Given

K9 and BK10, U2 can generate K4 according Eq.1. Given

BK3 and the newly generated secret key K4, U2 can generate

K1. Given BK2 and the newly generated secret key K1, U2

can generate the secret key K0 at the root. The secret key K0

at root node is the group key shared by all the group
members. The group key is generated in a shared and

contributory fashion, so there is no single-point-of-failure.

2.2. Individual Rekeying Protocol

To provide both backward and forward secrecy, rekeying is
performed whenever there is any group membership change.

Let us first consider individual rekeying, meaning that

rekeying is performed after every single joining or leaving

event. Before the group membership changes, a special

member called the sponsor is elected to be responsible for

initiating the rekeying process. We use the convention that

the leftmost member under the subtree rooted at the sibling

of the joining and leaving nodes will take the sponsor role.
When a member leaves, all the remaining members

update the structure of DOFT, and then the sponsor initiates

the rekeying process. The departing member’s sibling is

promoted to the departing member’s parent node, and the

descendants of the departing member’s sibling need to

change their IDs. Then the sponsor changes its secret key

and initiates the rekeying process. Figure 2 illustrates a

member leaving case. Suppose the member U6 leaves the
group. Member U5 becomes the sponsor. Node 13 is then

promoted to node 6, and nodes 2 and 0 become renewed

nodes, defined as the non-leaf nodes whose associated keys

in the key tree are renewed. U5 generates its new secret key

K6, computes the blinded keys BK6 and BK2. Then U5 sends

BK6 to U4, and sends BK2 to U1, U2, and U3. Finally, all

members can compute the new group key K0.

U2

0

1 2

3 4 5 6

9 10 13 14

U1

U3

U4

U6 leaves

U6
U2

0

1 2

3 4 5 6

9 10

U1

U3

U4 U5 (S)

U5

Figure 2. Single leaving case

When a new member wishes to join the group, all the

existing members need to update the structure of DOFT.

Each member has to first determine the insertion node under

which the new member can be inserted into DOFT. We

select the node of the shallowest rightmost leaf node in

DOFT as the insertion node to keep DOFT as balanced as

possible. To add a node v’ (or tree T’) to the insertion node,

a new node n’, is first created. Then the subtree rooted at the
insertion node becomes the left child of node n’, and the

node v’ (or the root node of T’) becomes the right child of

the node n’. Node n’ will replace the original location of the

insertion node. Then the sponsor changes its secret key and

initiates the rekeying process. Figure 3 depicts a member

1206

joining case. Suppose a new member U7 wishes to join the

group. The insertion node is node 6, and the sponsor is U5.

U7 sends its blinded key BK14 to U5 upon insertion. U5

generates a new secret key K13, and computes BK13, BK6,
and BK2. Then U5 sends BK6 to U4, sends BK2 to U1, U2,

and U3, and sends the structure of DOFT, BK13, BK5, and

BK1 to U7. Finally, all members can compute the new group

key K0.

U2

0

1 2

3 4 5 6

9 10

U1

U3

U4 U5

U7 joins

U2

0

1 2

3 4 5 6

9 10 13 14

U1

U3

U4

U7U5 (S)

Figure 3. Single joining case

2.3. Period-based Rekeying Protocol

Based on the above leaving and joining case, we find that

we can reduce one rekeying operation if we simply change

the association of node 14 from U6 to U7. Period-based
rekeying is thus proposed such that rekeying is performed

on a batch of joining and leaving requests at regular period

so as to reduce the number of rekeying operations. Period-

based rekeying maintains the rekeying frequency regardless

of the size and membership dynamics of the group, with a

tradeoff of weakening both backward and forward secrecy

as a result of delaying the update of the group key.

The period-based rekeying protocol is divided into two
phases, namely the Pre-processing phase and the Tree-

merge phase. During the current rekeying period, the Pre-

processing phase is performed to pre-process all the joining

and leaving requests, and all the newly joining members are

appended into a temporary key tree T’. At the beginning of

the next rekeying period, the Tree-merge phase is performed,

and the temporary tree T’ is merged to the existing key tree

T. Since the period-based rekeying operations involve nodes
lying on more than one key path, more than one sponsor

may be elected. The paper makes the following assumptions:

Rekeying operations of all members are synchronized to
be carried out at the beginning of every rekeying period.

The group communication satisfies view synchrony [6]
that defines reliable and ordered message delivery under

the same membership view.

Each leaving or joining member broadcasts its logout or
login message to all members in the group.

All members know the existing key tree structure.
We adopt the following notations in our description. Let hT

denote the height of T, hT’ denote the height of T’. Assume

that existing L 0 members leave and J 0 new members join
within a rekeying period. The associated leaf nodes of

leaving members in DOFT form the leaving node set Vl =

1{ ,..., }l l

Lv v . The pseudo-codes of the Pre-processing phase

and the Tree-merge phase are illustrated in Figure 4 and

Figure 5.

Pre-processing ()

1. if (a new member joins) {

2. if (T’ = = NULL) /*no new members in T’*/
3. create a new tree T’ with the only one new

member;

4. else { /*there are new members in T’*/

5. find the insertion node;

6. add the new member to T’;

7. elect the leftmost member under the subtree

rooted at the sibling of the joining node to be the

sponsor, and initiate rekeying process;
8. }

9. }else if (a existing member leaves) {

10. L= L+1;

11. add the associated node of leaving member toVl;

12. }

Figure 4. The Pre-processing phase

Tree-merge(T, T’, Vl, L)

1. if (L= =0) { /* there is no leave members*/

2. if (hT-hT’ 2)

3. select the rightmost node whose level is hT-hT’-1 in

T as the insertion node, then add T’ to the

insertion node;

4. else

5. select the root as the insertion node, and add T’ to
the root node of T;

6. }else { /* there are leave members*/

7. processing Vl, if node vx and its sibling vs are all in

Vl, then Vl = Vl \ {vx, vs}�parent (vx, vs), continue

the above processing until all leaving nodes are

processed and Vl is stable;

8. select the node of lowest ID in Vl as the insertion

node;
9. remove the subtree rooted at the remaining nodes

in Vl from T, and promote their siblings;

10. add T’ to the insertion node;

11. }

12. elect members to be sponsors if they are the

leftmost members of the subtree rooted at the

sibling nodes of the depart leaf nodes in T, or they

are the leftmost members of the subtree rooted at
the sibling node of the root node of T’, or they are

the leftmost member of T’, and initiate rekeying

process.

Figure 5. The Tree-merge phase

In Figure 6, we show the case where some members

leave and some members join during a rekeying period.

Suppose new members U8, U9, and U10 wish to join the

group, while U2, U3, U4, and U6 wish to leave. Then the

rekeying process is as follows: (1) In the Pre-processing
phase, U8, U9 and U10 first form a tree T’. Nodes 9, 21, 22,

13 are added to Vl = {9, 21, 22, 13}. (2) In the Tree-merge

phase, process Vl, Vl = {4, 13}. Node 4 is elected to be the

1207

insertion node. Delete the subtree rooted at node 4 and add

T’ to node 4. (3) The sponsors U1, U7 and U8 are elected. U8

sends BK4 to U1 upon insertion. U1 generates new K3 and

computes BK3, BK1. U7 generates new K6 and computes
BK6 and BK2. Then U1 sends BK3 to U8, U9, and U10, and

sends BK1 to U5, and U7. U7 sends BK6 to U5, and sends

BK2 to U1, U8, U9, and U10. Finally, all members can

compute the new group key K0.

U2, U3 ,U4, U6

leave

0

1 2

3 4 5 6

U1
U5

10

U2

9

2221

1413

U3 U4

U6 U7

U8, U9 ,U10 join

0

1 2

3 4 5 6

U1(S) U5

10

U8 (S)

9

2221

U9 U10

U7 (S)

T’

Figure 6. Period-based rekeying case

3. SCHEME ANALYSIS AND COMPARISON

In the SIKAS scheme, there is no centralized control node.

Each group member contributes an equal share to the

common group key, which avoids the problems with the

centralized trust and the single point failure. Key

distribution overhead is distributed evenly among all

members. The limited distribution of secret and blinded
keys can ensure the protocol is immune to collusions.

SIKAS manages keys for secure group communication

using DOFT. Each member holds its own secret key and all

the blinded keys of nodes that are sibling of the nodes in its

key path to the root. Join/leave requires only the keys in the

path from the sponsor to the root in DOFT to be changed.

Thus each membership changes requires only O(log N)

messages where N is the number of members in the group.
Moreover, SIKAS decouples the frequency of rekeying from

the size and membership dynamics of the group based upon

period-based rekeying. In Pre-processing phase, SIKAS can

reduce the rekeying load by preprocessing the joining

members to form a temporary tree during the idle rekeying

period. In Tree-merge phase, SIKAS adds the temporary

tree to the shallowest node which is the root of subtree to be

removed, which can keep DOFT as balanced as possible and
reduce rekeying operations. As a result, SIKAS can

significantly reduce the computation and communication

costs of maintaining the group key in the presence of

frequent membership change events.

In Table 1, we compare the analysis results of our

proposed scheme (SIKAS) with those of other distributed

key management schemes, such as SOT, DISEC, and

TGDH. From the comparison, we can find that all the above
schemes can support many-to-many secure group

communication, but only the SIKAS scheme can provide

scalability and rekeying efficiency while preserving both

distributed and collaborative properties.

Table 1. Comparison with Other Distributed Key

Management Schemes

SIKAS SOT DISEC TGDH

Group control distributed distributed distributed distributed

Single point of

failure
No Yes No No

Vulnerable to

collusions
No No No No

Collaborative

establishment of

group key

Yes No Yes Yes

No. of keys in the

group
O(N) O(N) O(N) O(N)

No. of keys at a

member
O(log N) O(1) O(log N) O(log N)

Scalability High High low low

4. CONCLUSION

We propose a scalable distributed key management scheme

using a distributed one-way function tree named SIKAS

which can significantly reduce the computation and

communication costs of maintaining the group key based

upon period-based group rekeying. Our approach provides

scalability and rekeying efficiency while preserving both

distributed and collaborative properties.

5. REFERENCES

[1] Yacine Challal, Hamida Seba, “Group Key Management

Protocols: A Novel Taxonomy”, International Journal of
Information Technology, 2(1), 2005, pp.105-118.

[2] C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group
Communication Using Key Graphs”, IEEE/ACM Transactions on
Networking, 8(1), 2000, pp.16-30.

[3] D.A. McGrew, A.T. Sherman. “Key Establishment in Large
Dynamic Groups Using One-Way Function Trees”, IEEE
Transactions on Software Engineering, 29(5), 2003, pp.444-458.

[4] W. P. Ken Yiu, S.H. Gary Chan, “SOT: Secure Overlay Tree
for Application Layer Multicast”, IEEE International Conference
on Communications, Paris, 2004, pp.1451-1455.

[5] L. R. Dondeti, S. Mukherjee, “DISEC: A Distributed
Framework for Scalable Secure Many-to-many Communication”,
IEEE Symposium on Computers and Communications, 2000,
pp.693-698.

[6] Y.Kim, A. Perrig, and G.Tsudik, “Tree-based Group Key
Agreement”, ACM Trans. on Information and System Security,
7(1), 2004, pp.60-96.

1208

