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ABSTRACT

In this paper, we present several algorithms developed for
restoration of motion blurred images. We begin with a single-
image based deblurring approach in the case of linear con-
stant motion. This approach is a wavelet-based method with
a novel lp-norm regularization term. Due to the introduction
of the wavelet and regularization techniques, the approach
is rather robust against noise amplification during deconvo-
lution. Then, we further developed a general multi-image
based deblurring framework improved from recent works of
[1]. The proposed framework is able to effectively take ad-
vantage of information contained in the multiple input im-
ages, even when they are blurred in the same direction - a case
hard to be dealt with by traditional solutions. The proposed
methods are evaluated on both simulated and real data, and
the obtained experimental results indicate promising results.

1. INTRODUCTION

This paper includes two contributions. First, a single-image
based deblurring algorithm is proposed. The deblurring algo-
rithm can be considered an improved version of the so-called
Landweber method [2]. This improvement is achieved by in-
troducing two additional processes: denoising in the wavelet
domain and regularizing in the spatial domain. The wavelet
has been shown to be a very efficient tool for noise reduction,
while the regularization not only suppresses noise amplifica-
tion during deconvolution, but also reduces ringing artifacts.
In particular, the regularization method is based on a novel
lp-norm form of total variation, which is a revised version
of the regularization term recently introduced in [1]. As a
result of the revision, the proposed regularization method is
approximately equivalent to the standard total variation reg-
ularization when p = 1, while equivalent to the so-called
Tikhonov-Miller regularization when p = 2. Taking a p value
within (1, 2) leads to a regularization strength in between, and
this helps to avoid over-sharp or over-smooth results in some
cases.

∗The authors would like to thank Dr. Alex Rav-Acha for valuable com-
ments and unselfish suggestions on the proposed methods.

Secondly, some researchers have shown that when multi-
ple motion-blurred images are available, having different blur
directions, image restoration can be improved substantially.
Our further studies reveal that the performance improvement
could be extended to the case of multiple images blurred in
the same direction if an appropriate weighting mechanism is
introduced to combine the restoration results of these images.
This leads to a general multi-image deblurring framework.
The extension has an important sense in practical applica-
tions, for example, a sequence of images taken by a slightly
moving cell-phone camera are generally blurred in the same
or similar direction.

2. A WAVELET-BASED DEBLURRING METHOD
WITH LP -NORM REGULARIZATION

Consider an image, I , blurred due to a linear constant camera
motion. Assuming the imaging system is linear and shift-
invariant, the blurring process can be expressed as:

I(x, y) = (O ⊗ h)(x, y) + N(x, y) (1)

where O is the original image, h is the point spread func-
tion (PSF) characterized by the camera motion, N is additive
noise, and ⊗ denotes the convolution operator. Restoring O
from I and h involves a deconvolution process, which has led
to a large amount of works [2, 3]. The difficulties are due to
the existence of the additive noise and a cutoff frequency of
the PSF. The most straightforward solutions to the problem
are direct methods in the frequency domain such as the in-
verse filter and the Wiener filter. However, better results are
obtained usually with iterative methods in the spatial domain,
such as the Van Cittert, Landweber, and Richardson-Lucy
methods [2, 3]. In this work, the deblurring algorithms are de-
veloped under the Landweber iterative framework. However,
it is not difficult to see that they can be easily incorporated
into other iterative methods.

2.1. Regularizing in the spacial domain

A typical iteration in the Landweber method is

On+1 = On + β · h∗ ⊗ (I − On ⊗ h) (2)
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where h∗(x, y) = h(−x,−y), and On is the current estimate
of the desired original image.

When the noise term N is nonzero, regularization con-
straints are generally needed to avoid noise amplification and
reduce ringing artifacts during deconvolution. Two widely
used regularization terms are the so-called “Tikhonov-Miller”
(TM) [4] and “Total Variation”(TV) [5]. In an iteratively de-
blurring framework, the TM regularization term is

RTM (O) = ∆O =
∂2O

∂x2
+

∂2O

∂y2
, (3)

which attempts to minimize the l2-norm function,
∫

‖∇O‖2
2dxdy, where ∇ =

[
∂

∂x
,

∂

∂y

]
. (4)

The limitation of such a regularization is that it may regularize
too much, resulting smoothed edges. On the other hand, the
TV minimizes the function,

∫ |∇O(x, y)|dxdy. This leads to
a regularization term:

RTV (O) = ∇ ·
( ∇O

|∇O|
)

, (5)

For the convenience in computation, we can consider a re-
vised version of Eq.5,

R̂TV (O) = ∇ ·
( ∇O

|Ox| + |Oy|
)

, (6)

which optimizes the l1-norm function,
∫

‖∇O‖1dxdy =
∫

(|Ox| + |Oy|) dxdy, (7)

a slightly different measure for the TV [6].
The advantage of the TV regularization is that it regular-

izes the images while preserving the edges. However, the
method may lead to staircase effect and round corners. In
this work, we attempt to combine the advantages of the TM
and TV regularization methods, while avoid their respective
shortcomings. To this end, a new regularization term is intro-
duced here,

Rp(O) = ∇ ·
[

p · Ox

|Ox|2−p + |Oy|2−p
,

p · Oy

|Ox|2−p + |Oy|2−p

]
,

(8)
which targets at minimizing the lp-norm of a TV-like func-
tion,

∫
‖∇O‖p

pdxdy =
∫

(|Ox|p + |Oy|p)dxdy. (9)

Rp(O) can be considered a revised version of the regulariza-
tion term introduced recently by [1]. With the revision, it is
not difficult to see that the proposed regularization method is
equivalent to the revised total variation regularization (Eq.6)

when p = 1, while equivalent to the Tikhonov-Miller regular-
ization (Eq.3) when p = 2. Taking a p ∈ (1, 2) value leads to
a regularization strength in between, and this helps to avoid
over-sharp or over-smooth results in some cases.

Using Eq.8, we can obtain a new regularized Landweber
method. In the method, the current estimate of the original
image is updated by

On+1 = On+β ·(h∗ ⊗ (I − On ⊗ h) − η · Rp(On)) , (10)

where η is a parameter controlling the strength of regulariza-
tion.

2.2. Denoising in the wavelet domain

Provided that the input images have low signal-noise ratios,
the TV or TM regularization constraint may not be sufficient
to suppress noise. In these cases, an efficient tool that can be
used for further noise reduction is the wavelet. Compared to
the Fourier domain, the wavelet domain has many good prop-
erties that are of importance to image deblurring and denois-
ing [3]. For example, the wavelet coefficients are particularly
efficient in representing spatially localized features such as
singularities or edges, which extend over the entire Fourier
domain.

In general, redundant wavelet transforms such as the à
trous wavelet transform [7] are used for image restoration.
Using such transforms, the image O(x, y) can be decomposed
as:

O(x, y) = cJ(x, y) +
J∑

j=1

wj(x, y), (11)

where cJ(x, y) is the last smoothed band of O(x, y) and wj(x, y)
denotes the wavelet coefficients in the j-th scale. To suppress
noise, we regularize the wavelet coefficients wj(x, y) by soft
thresholding [8],

ŵj(x, y) = mj + sign (wj(x, y) − mj) ·
κ

(
|wj(x, y) − mj | −

√
2σ2

n

σ2
j

)
,

(12)

where σ2
n is the variance estimate of noise, (mj , σ

2
j ) are the

local mean and variance at the location (x, y), sign(·) is the
signum function, and κ(z) is a thresholding function with
κ(z) = z if z > 0, and κ(z) = 0 otherwise. The goal of using
(mj , σ

2
j ) is to adapt the regularization to local spatial proper-

ties. Also, to reduce ringing artifacts, we also regularize the
low frequency band, cJ(x, y) following the recommendation
of [9]. This can be done by employing a locally weighted
Wiener filter,

ĉJ (x, y) = mJ +
σ2

J

σ2
J + σ2

n

(cJ(x, y) − mJ). (13)

After the regularization, the image O(x, y) can be reconstructed
by an inverse wavelet transform using ĉJ(x, y) and ŵj(x, y).
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The computational complexity of the proposed method is
the major concern when it is applied to practical tasks. To
reduce the computational cost, denoising in the wavelet do-
main can be done only one time every n ≥ 1 iterations. If we
choose a relatively small n value (compared to the iteration
number), our experiments indicate that this may only degrade
the restoration performance slightly.

3. A GENERAL MULTI-IMAGE DEBLURRING
FRAMEWORK

Recently, some researchers such as [1] have shown that when
multiple motion-blurred images are available, having differ-
ent blur directions, image restoration can be improved sub-
stantially. Furthermore, we found that the performance im-
provement could be extended to the case of multiple images
blurred in the same direction, if an appropriate weighting mech-
anism is introduced to combine the restoration results of these
images. The premise behind is not difficult to see that the cut-
off frequencies of the PSFs characterized by different extents
of linear motions (even at the same direction) are different,
and thus different frequencies are lost with different PSFs.
Additional images blurred by even larger extents of motions
are able to offer complementary information regarding the
original image. Grouping them together essentially leads to
a better restoration performance. However, to avoid that the
impact of significant information is weakened by other rel-
atively inferior information, different images should be paid
with different attentions during the ensemble-based restora-
tion process. Therefore, the key issue here is to introduce an
appropriate weighting mechanism to combine the information
provided by different images.

Consider a set of input images, Im(x, y), m = 1, · · · , M ,
with each one being a blurred version of the same image
O(x, y) by a linear motion with magnitude lm and direction
θm. Take into account the M images together, the update rule
of the regularized Landweber method (Eq.10) is changed to

On+1 = On + β · (L̄ − η · Rp(On)), where (14)

L̄ =
M∑

m=1

ωm · (h∗
m ⊗ (Im − On ⊗ hm)), (15)

ωm = l−q
m∑M

m=1 l−q
m

are the weights involved in the combination,

q is a parameter to adjust the values of the weights, and hm

is the PSF characterized by the motion (lm, θm). It is not
difficult to see that the weights are inversely proportional to
the motion magnitudes. Such a weighting mechanism is in
agreement with the principle that the image with a smaller
blur should play a more important role during the ensemble-
based deblurring process.

Fig. 1. Left: a comparison of single-image based methods.
Right: a comparison of multi-image based methods. The 8
marked points on each curve correspond to the 8 input sets.

Fig. 2. An example of deblurring with single-image based
methods. (A) The blurred and noisy input image with l = 20,
θ = 0 and BSNR=20dB. (B) Restored by SLW. (C) Restored
by LW-lpReg. (D) Restored by WavLW-lpReg.

4. EXPERIMENTAL RESULTS

In the first experiment, we attempt to evaluate the effects of
the two components introduced in section 2: lp-norm reg-
ularizing and wavelet denoising. To this end, three meth-
ods, the standard Landweber method (SLW), the Landwe-
ber method with lp-norm regularization (LW-lpReg), and the
wavelet-based LW-lpReg method (WavLW-lpReg), are imple-
mented and compared here. A blurred image is constructed by
a simulated linear constant motion with l = 20 and θ = 0
using the Paint Shop Pro 7 software. The Gaussian noise
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with variance σ2
n is then added onto the blurred image. A

set of images are formed by changing the σ2
n values such that

the blurred signal-to-noise ratios (BSNRs) of these images
vary from 10dB to 30dB. An example with BSNR=20dB is
shown in Fig.2:A. The three evaluated methods are applied to
the set of blurred and noisy images, and the obtained rooted
mean-squared error (RMSE) as a function of BSNRs are de-
picted in Fig.1:Left. For the two regularized methods, we set
p = 1.25 when BSNR<25dB for a strong noise suppression,
and p = 1 otherwise. The noise variance σ2

n is estimated
by using the robust median estimator in the highest subband
of the wavelet transform of the input images [10]. It can be
seen from Fig.1:Left that the SLW fails when the input data
have a low BSNR. In contrast with this, both LW-lpReg and
WavLW-lpReg are rather robust against noise. Due to the in-
troduction of an additional wavelet-based denoising process,
the WavLW-lpReg performs better than the LW-lpReg, espe-
cially in the cases of low BSNRs. Furthermore, it can be ob-
served that the wavelet-based process may not be necessary
in the cases of BSNRs>25dB, where the lp-norm regulariza-
tion alone seems to be sufficient to suppress the noise. An
example that shows the deblurring performance of the three
methods is also illustrated in Fig.2.

The second experiment is designed to demonstrate the
effectiveness of the weighting mechanism introduced in the
proposed general multi-image deblurring framework. Of par-
ticular interest is to observe the restoration performance when
input images are blurred in the same motion direction. To
this end, a set of 8 blurred images with θ = 0 and l =
20, 23, 25, 27, 30, 32, 35, 40 are constructed in the same man-
ner in the first experiment. No noise is added onto these im-
ages. Let li denote the i-th image, i = 1, · · · , 8, sorted in
an increasing order of motion blur extent. We then further
form 8 sets, Li = {l1, · · · , li}, i = 1, · · · , 8. Thus the set
L1 = {l1} consists of only one image, while the set L8 con-
tains all the 8 images. Both the weighting and non-weighting
solutions are applied to these sets. For the former, we set
q = 2 in the weight function ωm(q, l). The obtained results
are depicted in Fig.1:Right, where the horizontal axis corre-
sponds to the motion extent of li (i.e. the most blurred image)
in the set Li. Clearly, it can be seen from the results that
both the weighting/non-weighting solutions are able to sig-
nificantly improve the restoration performance when multiple
blurred input images are available. However, more accurate
restoration results may be biased by those less accurate ones
if all the input images are treated with equal significance. It
can be seen at this point that the weighting solution is much
more efficient than the non-weighting one, especially when
the input ensemble includes larger motion blurred images.

5. CONCLUSIONS

In this paper, we proposed a regularized wavelet-based im-
age restoration method and a general multi-image deblurring

framework. It can be seen that these proposed methods are
general image restoration solutions, which only dependent on
the current guess of the original image On(x, y) or the motion
parameters (lm, θm). Therefore, in addition to the Landweber
method, they can be employed to work with other iterative
restoration methods, such as Richardson-Lucy. To further en-
hance the restoration performance, our future work will con-
centrate on developing an analytical method to estimate the
optimal values of the parameters p, q.

In addition to the simulated data, the proposed methods
are applied to motion blurred images in the real world. The
PSFs are estimated from the motion parameters acquired by
a gyro-based hardware system, which is designed by using
the latest Epson angular velocity gyro (model: XV-3500CB)
in the Epson Toronto research lab. The noise is not additive
and Gaussian any more, and the motion is not limited to be
linear constant. However, the obtained results indicate a high
consistence with those observed in the experiments reported
here.
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