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ABSTRACT

We propose a single figure-of-merit measure of resolution of a dig-

ital imaging system based on the work of Gabor in communication

theory. Gabor’s work was largely inspired by Heisenberg’s de-

velopments in quantum theory, most notably his uncertainty theo-

rem of quantum mechanics. Gabor’s results look simultaneously

at the frequency and spatial domain of a signal, making it ideal

for the measure of the modulation transfer function and point-

spread function of an imaging system. As opposed to the crude

“megapixel” measure which is bantered about in the marketplace,

we suggest a figure-of-merit which more accurately represents the

resolution of the system. Given that the resolution measure we pro-

pose is condensed into a single number rather than a function such

as the modulation transfer function or the point spread function, it

is our intent to propose this scientific evaluation as a means for typ-

ical consumers to fairly judge the resolution of a camera. Finally,

we use this measure to compare common digital SLR cameras with

varying lenses.

1. INTRODUCTION: DESCRIBING A CAMERA’S
RESOLUTION

An unfortunate development for typical consumers buying digital

cameras is the evaluation of a particular camera by its measure of

megapixels. Often consumers will prefer one camera over another

simply because the pixel count is higher. Most engineers and sci-

entists realize this measure is not entirely appropriate as a descrip-

tor. Among the host of reasons why this is true: megapixel counts

do not describe tonal response, they do not take into account the

complete imaging system (for example the point spread function

of the lens system), and often interpolated pixels are included in

the count. Alternatively, engineers, scientists, and learned users of

cameras prefer the data offered by the modulation transfer function

[1]. The calculation of the modulation transfer function will be

concisely explained in the following section. Those familiar with

the modulation transfer function will undoubtedly understand that

the function is a far superior measure than megapixels. However,

the downside of a graph of the function is that it is not intuitive.

An observer of a plot of the modulation transfer function of a cam-

era must approximate at which frequency the function begins to

decline, how long the function takes to decline, and the overall

rate of decline of the function. General consumers of cameras are

bolstered by the simplicity of megapixel counts in a society where

bigger means better. Furthermore, modulation transfer functions

are often plotted logarithmically, adding to the complexity of read-

ing the data.

It should be noted that in the previous era of film based cam-

eras, many professional grade films came with plots of the tonal re-

sponse of the film in the form of a set of response curves. Though

these plots were obviously only describing the response of the film

and not the imaging system, these plots were most often thrown

away. The common reason for throwing the information away

could easily be speculated; the information is presented in a format

too complicated for many users, and secondly, even with the infor-

mation, the user was not able to accurately use the information in

any meaningful way (with a few exceptions). We propose a system

of measuring a cameras response by means of a single figure-of-

merit of the modulation transfer function. This system results in a

single number which is appropriate as a measure of both the tonal

and spatial resolution of an imaging system.

After describing in detail our method of finding the figure-of-

merit of a given imaging system, we measure four imaging sys-

tems. Two Nikon digital SLR cameras, the D70 and the D2H,

with two lenses, an AF-S Nikkor 18-70mm 1:3.5-4.5G ED DX

lens and an AF Nikkor 70-300mm 1:4-5.6 D ED lens. Each sys-

tem was tested at the most open fstop (3.5 for the 18-70mm lens

4 for the 70-300mm lens). Similarly, the focal length of the two

lenses were set to their shortest setting, 18mm and 70mm respec-

tively. It should also be noted that the two cameras use different

imaging technology. The lower priced Nikon D70 camera uses a

6.1 megapixel CCD sensor whereas the professional grade D2H

uses a 4.1 megapixel “LBCast” JFET sensor developed by Nikon.

2. THE MODULATION TRANSFER FUNCTION

The sharpness of a photographic imaging system or of a compo-

nent of the system is characterized by a parameter called modu-

lation transfer function (MTF). This function is also termed the

spatial frequency response and is relatively easy to calculate using

a test chart. Several test charts are available, such as the USAF

1951 test chart. However, Norman Koren has developed a test

chart which is much easier to use and is free to download from his

website (www.normankoren.com). The basic pattern of the chart

is shown in figure 1. It is also common to see this test pattern as

Fig. 1: The basic MTF test pattern, a sine wave of increasing spatial frequency.
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black and white line pairs as opposed to the sine pattern shown

in figure 1 giving rise to the scale lp/mm (line pairs per millime-

ter). However, given that the pattern used in this paper is the sine

pattern, the measure cy/mm (cycles per millimeter) is more appro-

priate. One may easily recognize this pattern as a visual chirp, the

sensor response of which is the basis of our analysis.

Most often, the test chart is positioned at a distance from the

lens such that the lp/mm or cy/mm correspond to a millimeter of

the sensor array. This implies that one knows the size of the sensor

array. Even though this is relatively easy to find for most commer-

cially available cameras, using this measure in this regard is not

appropriate for the task for which we intend. A user of a digital

camera or imaging system usually just wants to know the resolu-

tion of the imaging system, regardless of how large the physical

sensor is. For this reason, we disregard the cycles per millimeter

and rather consider cycles per image height and cycles per image

width.

2.1. Calculating the MTF

Intuitively, the Modulation Transfer Function (MTF) may be de-

scribed in the following manner: once the test chart is properly po-

sitioned and a test image is taken, we analyse the resulting images.

At frequencies where the MTF of an imaging system is 100%, the

pattern is unattenuated and retains full contrast. At the frequency

where MTF is 50%, the contrast is half its original value. It should

also be noted that all calculations are done on RAW image files.

The non-linear range compression (described in detail in [2][3]

and [4]), will modify the shape of the resulting curves. Using a

linear response output, as is demonstrated in RAW image files,

is essential in computing MTFs and resulting resolution parame-

ters with consistency between cameras. It is well documented that

the range compression applied to raw data internally in imaging

system varies from camera manufacturer to camera manufacturer

and indeed camera model to camera model. In the case where raw

data is is not available from a given camera, the range compression

must first be expanded to accurately measure the response. Such a

technique is demonstrated in [3], where the resulting photoquanti-

metric values are light-linear, appropriate for the task. For added

accuracy, the data in this paper was calculated from the uninterpo-

lated Bayer pattern data.

Let Vb be the raw photoquantimetric value (pixel value from

the raw data) which is the minimum value observed in the test im-

age, likely observed in the low frequency region. Let Vw be the raw

photoquantimetric value which is the maximum value observed

in the test image, also likely to be observed in the low frequency

region. Let Vmin be the minimum luminance for a pattern near

spatial frequency f . Correspondingly, let Vmax be the maximum

luminance for a pattern near spatial frequency f . The necessary

definitions may then be stated as:

C(0) =
Vw − Vb

Vw + Vb
the low frequency (base) contrast

C(f) =
Vmax − Vmin

Vmax + Vmin
is the contrast at spatial frequencyf

MTF (f) =
C(f)

C(0)
(1)

C(0) is the highest contrast found in the image of the test

chart. The modulation transfer function at a frequency f(MTF (f))
is normalized by this contrast resulting in a measure in which the

highest value is 1.0 (perfect modulation transfer) and 0.0 (no mod-

ulation transfer). At any horizontal co-ordinate, the test chart and

resulting image represents a specific frequency f in cy/mm. For

vertical resolution testing, the test chart is rotated 90 degrees, and

consequently vertical co-ordinates represent a specific frequency.

2.2. Positioning the testchart

The test charts produced by Norman Koren are scaled such that the

scales indicated on the test chart correspond to the test chart being

2.5mm or 5mm in length. Rather than millimeters, we consider

cycles per image width (cy/iw). Then, if two contiguous lengths

of the test chart are imaged, 10mm of the test image have been

imaged in reference to the test chart scale. Thus, if the scale reads

2cy/mm this becomes 20cy/iw, 10cy/mm becomes 100cy/iw, etc.

The fact that the scale is now in image widths allows the measure

of resolution to be universal across sensors. To deal with different

resolutions in image height, the test image is also imaged in a ver-

tical position. A similar position is established for the camera to

test chart distance, yielding a test pattern which may be examined

in cy/ih (cycles per image height). When we conducted these tests

on the cameras, we positioned the camera such that a single test

chart was imaged so that the low frequency end started at the edge

of the image and ended in the center of the image. This was done

in both the vertical and horizontal cases. We chose to image the

test chart such that the high frequency signals were largely in the

centre of the frame to guard against any distortions (such as bar-

rel distortion from the lens) which tend to affect the outer edges

of the image more than the centre. Note that this will also result

in higher resolution test results than if the image was taken with

higher frequencies at the edge of the camera’s field of view.

2.3. Collecting accurate data

With most cameras, a Bayer pattern is used in collecting red, green,

and blue sensor values. Most commonly, these are alternating

lines of red, green, red, green, etc. and green, blue, green, blue,

etc. These values become interpolated in various manners to pro-

duce red, green, and blue pixel values at every pixel location, even

though only one pixel colour exists at a specific location. Us-

ing programs such as David Coffin’s free source program dcraw
(available at http://www.cybercom.net/∼dcoffin/dcraw/), or else

neftoppm (available at http://www.eyetap.org/∼corey/code.htm),

the raw linear 12-bit uninterpolated Bayer pattern data may be col-

lected. In the case of dcraw, the code must be modified so that no

Bayer interpolation takes place, this will leave the raw sensor val-

ues in each of their original locations. The resulting 12-bit portable

pixmap image (ppm) was then separated into three colour images

(red, green, and blue) with NaN in the locations where there is no

data.

Once the single ppm image was split into three colour images,

the relevant data was cropped out of each colour channel’s ppm.

The resulting data was averaged down columns in the case of the

horizontal test pattern, disregarding NaN values, and across rows

in the case of the vertical test pattern, also disregarding NaN val-

ues. One should note that in the case of the green channel, the

resolution will be higher than that of the blue and red channels due

to the number of sensors being equal to the total number of red and

blue sensors. From this data, the modulation transfer functions in

the vertical and horizontal directions were computed.
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Fig. 2: A visual representation of the process used to find the Heisenberg-Gabor
figure-of-merit. The initial image of the test pattern is taken such that one pattern
begins at one edge of the image and ends in the centre. The Bayer pattern data is then
extracted from the raw image file data and appropriately averaged excluding NaNs.
From this data the MTF is calculated followed by linearizing the x-axis and applying
equation 2. This yields a figure-of-merit for a single colour channel, which may then
be linearly combined with other colour channels, producing a single figure-of-merit
for a given imaging system.

3. PRODUCING A HEISENBERG-GABOR
FIGURE-OF-MERIT

Using Heisenberg’s uncertainty relation[5], Gabor proposes the

concept of “effective frequency width” ∆f and “the effective dura-
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Fig. 3: The modulation transfer function plotted for both the vertical and horizontal
test patterns. The Fourier transform of this measure is the point-spread function of the
camera. As expected, the 2-D modulation transfer function is close to being Gaussian,
and correspondingly, the point-spread function approaches being Gaussian.

tion” ∆t of a signal in his 1946 paper[6]. To measure the modula-

tion transfer function (and possibly the corresponding point-spread

function of the camera), we propose to use Gabor’s ∆f measure

to quantify the resolution of a given camera. As the modulation

transfer function may be viewed as a spatial frequency signal, we

consider its effective frequency.

3.1. Analytic Background

To find the values of ∆f , the simplest method uses the first and

second moments of the signal. Specifically we have,

∆f =
h
2π

`
f − f̄

´2
i 1

2
. (2)

Note that for ease of calculation, the use of the statistical identity`
f − f̄

´2
= f̄2 + (f̄)2 is utilized. Given any signal s(f) and its

corresponding quadrature signal σ(f) as in [6] we define a weight

function

ψ∗ψ =
ˆ
s(f)2

˜
+

ˆ
σ(f)2

˜
(3)

where the asterisk denotes the complex conjugate of the resulting

analytic signal. The weight function is therefore the square of the

absolute value of the signal. This can be considered the “power”

of the signal and will be referred to by this name in what follows.

Following the logic of Gabor, we do not consider the moments

themselves, but rather the moments divided by M0. For example,

in our case we have:

f̄ =

R
ψ∗fψdfR
ψ∗ψdf

f̄2 =

R
ψ∗f2ψdtR
ψ∗ψdf

. (4)

Finally, we note the fact that the spatial frequency signal (the mod-

ulation transfer function), and the point spread function are related

by a Fourier transform. This is what gives rise to the factor of 2π
in the definition of ∆t and ∆f . Also, the point spread function

may be found simply by taking the discrete Fourier transform of a

symmetric version of the modulation transfer function. The sym-

metric modulation transfer function is produced by assuming the

response of the imaging system will be identical for negative fre-

quencies as positive frequencies, therefore enabling us to mirror

the MTF around the y-axis.
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3.2. The ∆f measure of resolution

Using the information presented, one recognizes that in the spatial

frequency domain, an imaging system should maximize its fre-

quency response. Thus, we wish ∆f to be as large as possible.

On the contrary, the ideal point spread function is a delta function,

thus we wish to minimize the measure of ∆t. However, increasing

∆f will under most circumstances decrease ∆t. For this reason,

we propose ∆f as a reasonable measure of resolution in one axis.

We must also remember that the measure may be taken in multiple

directions and locations on the imaging system. We chose to mea-

sure the orthogonal vertical and horizontal directions, given the

typical pixel layouts on imaging sensors. The horizontal measure,

we choose to label ∆f hor and the vertical measure ∆f vert. Because

we wish to maximize both the vertical and horizontal components

of the ∆f measure, a final measure of sensor resolution in one

colour channel is proposed which is simply

∆fV H =∆f vert × ∆f hor
(5)

3.3. Simultaneously evaluating colour channels

The previous work in this paper shows how to to derive a sin-

gle figure-of-merit (∆fV H ) which may be applied to each of the

colour channels taken from the uninterpolated Bayer pattern. One

possibility is to only test and report the result for the green chan-

nel. This certainly makes sense from the perspective that the sen-

sor array is populated more densely with green sensors, and the eye

is most sensitive to light in the green range. Unfortunately, if the

camera suffered from distortions in the red and blue channels, such

a measure would be blind to this problem. In most digital cameras

and imaging systems, the green channel will have a higher reso-

lution which coincides with human perception. For this reason,

we are suggesting that a valid measure of the three channels is to

perform a YCbCr transformation on the values of the three chan-

nels, and take the Y component as a measure of the final sensor

resolution. We term this measure ∆fY , which may be calculated

as:

∆fY =0.299∆fV H(Red) + 0.586∆fV H(Green)+

0.114∆fV H(Blue) (6)

The base results for each colour channel using various camera bod-

ies and lens combinations are given in table 1, and the resulting

single number using equation 6 is shown in figure 2.

4. CONCLUSION

Given our method of combining colour channel resolution mea-

sures presented previously, the following final figures-of-merit are

shown in table 2. The results are largely as one may predict. The

Nikon D70 having a higher sample rate (it is a 6.1 megapixel cam-

era as opposed to the 4 megapixel D2h), does indeed outperform

the D2h in terms of the Heisenberg-Gabor rating. Also, chang-

ing the lens from the Nikkor 18-70mm to the Nikkor 70-300mm

also reduces the performance. We expect this as the increased fo-

cal length should increase the width of the associated point-spread

function, effectively convolving a larger blur kernel with the cap-

tured scene.

There are a few steps that may be taken to improve the accu-

racy of the measure. Specifically, aliasing artifacts are present in

the data, creating unwanted results in the MTF calculation. This

Green Channel
Imaging Horizontal Vertical Total

System Resolution Resolution Resolution

D70,18-70mm lens 1678.55 1491.82 2.504×106

D70, 70-300mm lens 1883.33 1313.77 2.474×106

D2h, 18-70mm lens 1368.39 1316.65 1.802 ×106

D2h, 70-300mm lens 1432.25 1183.37 1.695×106

Blue Channel
D70, 18-70mm lens 1628.89 1308.38 2.130×106

D70, 70-300mm lens 1336.92 1513.33 2.023×106

D2h, 18-70mm lens 1531.6 1776.53 2.721×106

D2h, 70-300mm lens 1386.02 1371.71 1.901×106

Red Channel
D70, 18-70mm lens 1532.44 1307.57 2.004×106

D70, 70-300mm lens 1451.63 1473.52 2.138×106

D2h, 18-70mm lens 1329.64 1496.46 1.990×106

D2h, 70-300mm lens 1530.34 1312.43 2.009×106

Table 1: Heisenberg-Gabor (∆f ) results for various combinations of Nikon D70 and
Nikon D2h camera bodies with Nikkor 18-70mm and 70-300mm lenses.

Imaging System Figure-of-merit (∆fY )
Nikon D70, 18-70mm lens 2.309×106

Nikon D70, 70-300mm lens 2.280×106

Nikon D2h, 18-70mm lens 1.961×106

Nikon D2h, 70-300mm lens 1.811×106

Table 2: Resulting figures of merit for Nikon D70 and D2h camera bodies with
Nikkor 18-70mm and 70-300mm lenses.

is particularly a problem when calculating the second moments of

the MTF where small artifacts in high frequencies result in large

perturbations from results which should be around 0. This could be

overcome by averaging results where each image was taken with

small pans (for the horizontal tests) or small tilts (for the vertical

tests), and is the topic of ongoing research.
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