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ABSTRACT 

Dynamic Bayesian Networks (DBNs) have been widely 

studied in multi-modal speech recognition applications. 

Here, we introduce DBNs into an acoustically-driven talking 

face synthesis system. Three prototypes of DBNs, namely 

independent, coupled, and product HMMs were studied. 

Results showed that the DBN methods were more effective 

in this study than a multilinear regression baseline. Coupled 

and product HMMs performed similarly better than 

independent HMMs in terms of motion trajectory accuracy. 

Audio and visual speech asynchronies were represented 

differently for coupled HMMs versus product HMMs.  

1. INTRODUCTION 

Highly-intelligible talking face synthesis systems could 

facilitate speech comprehension in noise and enhance 

human-machine interactions. Acoustically-driven talking 

face synthesis systems would be advantageous in low 

bandwidth applications such as wireless communications 

and internet video conferencing. In recent years, dynamic 

Bayesian networks (DBNs) have emerged as a powerful and 

flexible theoretical framework for multi-modal stochastic 

processes [1]. Different DBN configurations have been 

applied to audio-visual speech recognition ([2], [3], [4], [5]), 

and audio-visual speaker identification [6], etc. To the best 

of the authors’ knowledge, this is the first study to compare 

different DBN configurations systematically for 

acoustically-driven talking face synthesis. 

Among various configurations of DBNs, three were 

chosen for this study: independent HMMs (I-HMMs), 

coupled HMMs (C-HMMs), and product HMMs (P-

HMMs). I-HMMs and P-HMMs represent the two extreme 

cases of state transition integration: complete independence 

and complete dependence, respectively. C-HMMs correlate 

the audio and visual speech models using conditionally 

independent audio-visual hidden state transitions. The three 

DBN configurations were implemented and evaluated in an 

acoustically-driven talking face synthesis context. Basic 

model selection parameters were studied under the synthesis 

framework with quantitative and qualitative evaluations of 

the synthesized talking face.  

The paper is organized as follows. Section 2 describes 

the synthesis system. Section 3 describes the three DBN 

prototypes. The experimental setup and results are presented 

in Section 4. Discussion and conclusions are in Section 5. 

2. TALKING FACE SYNTHESIS SYSTEM 

The talking face synthesis system comprised four major 

components: feature extraction, acoustic-to-optical mapping, 

optical feature inversion, and deformation (see Fig. 1). The 

performance of the synthesizer was evaluated objectively 

using a set of measurements. 
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Figure 1. Acoustically-driven talking face synthesis system. 

A represents the transition probability parameters, and B

represents the observation probability parameters. 

2.1. Feature extraction 

Two representations of speech acoustics were used: Linear 

Predictive Cepstral Coefficients (LPCCs, ALPCC) for backend 

modeling and Line Spectral Pairs (LSPs, ALSP) for optical 

feature transformation (see Eq. 1). A previous study [7] 

showed that LSPs resulted in better linear estimation of 

optical features than LPCCs. Our pilot studies confirmed 

that the combination of the two acoustic feature 

representations was better than either of the single 

representations in the synthesis framework.  

Optical data (details in Sec. 4.1) were pre-processed in 

five steps: compensation for missing data, eye-brow motion, 

and head motion, noise removal, and head-size 

normalization.  

Optical feature extraction comprised three steps. Let 

VDisp be the normalized displacement features relative to a 

neutral facial gesture and obtained from the preprocessed 

optical data V. Let WLMS be the matrix for a global 

transformation from ALSP to VDisp. Firstly, WLMS was 

estimated via least-mean square (LMS) estimation [7]. Then 

the residual optical signal VR was obtained as follows: 

LMSLSPDispR
WAVV .                                                         (1) 

Finally, principal component analysis (PCA) was applied to 

VR for data dimension reduction. Reduced optical features 

VRPC were used for back-end modeling, and the 
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corresponding inverse principle component transformation 

WIPCA were used for visual feature inversion.  

2.2. Acoustic-to-optical mapping 

The mappings from the acoustical feature vectors ALPCC to 

the optical feature vectors VRPC were modeled using the 

three DBN setups: I-HMMs, P-HMMs, and C-HMMs. For 

all configurations, context-independent phoneme models 

were trained through the typical HMM training procedures 

of Viterbi initialization, isolated model re-estimation, and 

embedded model re-estimation using the modified 

expectation maximization (EM) algorithm. The acoustical 

and optical models were trained separately on phoneme 

units for I-HMMs, but jointly for C-HMMs and P-HMMs. 

In synthesis, the trained acoustic-to-optical mapping models 

were applied to ALPCC for Viterbi forced alignment, using 

incomplete feature inference of DBNs (details in Section 3). 

2.3. Optical feature inversion 

In this operation, residual optical feature vectors were 

converted back to optical position feature vectors. The 

Gaussian means of the optical features were placed in the 

middle of the corresponding inferred hidden visual states. 

Cubic polynomial interpolations were followed to generate 

continuous residual optical features 
RPC

V̂ . Then the 

normalized displacement features were estimated as follows: 

IPCARPCLMSLSPDisp
WVWAV ˆˆ .                                                 (2) 

Finally, the position trajectories were recovered by adding 

the neutral marker positions to the displacement trajectories. 

2.4. Deformation 

Radial basis functions [8] were modified for the position 

mapping from M key points (see Sec. 4.1 for details) to 3D 

face model vertices as follows: 
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where k refers to the k-th dimension of the 3-D position 

data, pj(t) is the position of vertex j, vm(t) is the position of 

key point m at time t, t of 0 corresponds to the neutral facial 

gesture, )(twk

m
 are the key-point weights for the k-th

dimension obtained from the linear equations: 
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and m(t) is obtained by solving the equation: 
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where  is a threshold determined empirically. 

2.5 Evaluation measurements 

Synthesized optical data were compared to the original 

recordings using several measurements to objectively 

evaluate the synthesizers. The measurements were 

normalized Manhattan and Euclidean distance (N-M and N-

E), Kullback-Leibler distance (K-L), and Pearson-r 

correlation (Corr). The first three measurements represent 

the deviation from the original data, while the last 

measurement corresponds to the goodness of fit to the 

original data. 

3. DBNS FOR INCOMPLETE DATA INFERENCE 

Acoustic Observation 

Acoustic State 

Optical State 

Optical Observation 
(a) I-HMM (b) C-HMM (c) P-HMM 

Figure 2. Three configurations of DBNs [1].

3.1. Dynamic Bayesian networks 

Dynamic Bayesian networks are directional graphical 

models. They are also a generalized form of the traditional 

hidden Markov models (HMMs) in the sense that DBNs 

allow multiple hidden state Markov chains. The physical 

concept of multi-modal speech processing can be more 

easily represented by the DBNs than in single-chain HMMs, 

as shown in Fig. 2.  

The state transition probabilities are integrated 

differently across the three DBN configurations for I-HMMs 

in Eq. 6, C-HMMs in Eq. 7, and P-HMMs in Eq. 8 [1]: 
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and

)()( 1 jqiqji ttPa ,                                                     (8) 

where i and j are the current and previous hidden state 

vectors, respectively, and s is the index of a hidden Markov 

chain that corresponds to the acoustic or optical feature 

space.

Definitions for P-HMMs were found to be different in 

previous studies ([1], [2], [3]). In this study, for the purpose 

of comparing different levels of hidden state transition 

integration, the observation probabilities for the acoustic and 

optical feature spaces of each speech unit were all integrated 

independently in the three DBN configurations, as in [3]: 
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where )(
s

s

t
ib is the observation probability of state is in 

chain s, and s

t
O  is the observation at time t in chain s.

For the three methods, given the maximum inter-chain 

state asynchrony (MICSA) and the number of hidden states 

for each model, the joint state transition probability matrices 

follow the same non-zero structures. However, in addition to 

the transition probability constraint, relationships among the 

elements are different for each prototype. In I-HMMs, 
va

AAA ,                                                                  (10) 
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where A is the DBN transition matrix, A
a and A

v are the 

HMM transition matrices trained independently from the 

acoustic and optical feature spaces of a speech unit, and 

“ ” represents the Kronecker product.  In C-HMMs, 
v
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where Na and Nv are the number of hidden states for the two 

Markov chains. In the P-HMMs, no other relationships exist 

among the elements in A.

The EM algorithms [1] were adapted into a single chain 

HMM implementation with state observation binding for 

both C-HMMs and P-HMMs and joint-state transition 

constraint for C-HMMs. Both C-HMMs and P-HMMs 

should yield better training accuracy than I-HMMs, because 

of the inherent state dependencies and the integrated training 

procedures. Given sufficient training data, P-HMMs should 

yield the best training accuracy. However, P-HMMs require 

the most training data for reliable parameter estimation. 

3.2. DBNs for incomplete feature inference 

In the synthesis system, complete features (acoustic and 

optic) were used in training. However, incomplete features 

(acoustic only) were used in inference. In this study, the 

Viterbi algorithm was modified for the incomplete feature 

inference as follows: 
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where j(t) represents the partial forward probability error 

).()(
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The incomplete feature inference error 

)()(~ tqtq  cannot be represented by an analytical function 

with regards to transition matrix A. Physical interpretation 

of state transition integrations implies that C-HMMs have 

less cross-model dependency between the audio and visual 

models, potentially providing less inference error than P-

HMMs when training accuracies of the two methods are 

identical. The competition between C-HMMs and P-HMMs 

in the present application is related to the tradeoff between 

training accuracy and incomplete feature inference error. 

Given limited training data, C-HMMs have the potential of 

performing as well as P-HMMs. 

4. EXPERIMENTS 

4.1. Database and experiment setups 

The database comprised 320 sentences by a single talker 

using an audio-visual recording setup [9]. The optical data 

were obtained from simultaneously recorded 3D positions of 

20 markers (see Fig. 3). The sampling rates of the optical 

and the clean acoustic data were 120 Hz and 44.1 KHz, 

respectively. Manual phoneme segmentations were obtained 

using the acoustic signal. The edited 3D polygon face 

meshes (originated from www.digimation.com) had 1915 

vertices.

Figure 3. Recorded marker positions (left) and deformed 

face model and key-points (right). 

The frame rate for acoustic feature extraction was 120 

Hz. The dimensions of acoustic feature vectors ALPCC and 

ALSP were 15 and 17, respectively. The nose-ridge marker 

was removed after head-motion compensation. Optical 

feature vectors ODisp had 57 elements. The dimension of 

ORPC was reduced to 20, accounting for 99% of the variance. 

WLSP was a 17x57 matrix estimated from 2 minutes of 

training data. WIPCA was a 20x57 matrix obtained using the 

entire optical training data. 

In each DBN configuration, 41 context-independent 

phoneme DBN models were trained. The same numbers of 

hidden states were used in the two Markov chains. The 

maximum intra-chain state asynchrony was one. Model 

selection parameters, [Na, Nv] and maximum inter-chain 

state asynchrony (MICSA) were studied. 

4.2. Baseline

The baseline was obtained using a multilinear regression 

method [7]. The acoustic and optical feature vectors were 

ALSP (17 elements) and ODisp (57 elements), respectively. For 

each set of training and test data used in DBNs, the same 

training sentences were used to train acoustic-to-optical 

regression models for each phoneme using the manual 

segmentation, and then these regressors were applied to the 

corresponding phonemes in the test sentences.  

4.3. Results 

Due to limited data, a resampling procedure was applied to 

protect against bias in the acoustic-to-optical mapping. That 

is, one set was left out for testing and the remaining sets 

were used for training; a rotation was then performed to 

guarantee that each utterance was tested once. The results 

were averaged from the 320 utterances. Results from four 

measurements were consistent in the relationship among 

different methods as shown in Table 1. In the remainder of 

the section, the correlations are used for performance 

evaluation. Paired t-tests (df = 319) with Bonferroni 

correction for multiple comparisons (p < 0.05) were applied 

on the correlation vectors of all the methods or conditions. 

All the DBN methods performed significantly better than 

the baseline (p < 0.05). C-HMMs and P-HMMs performed 

similarly better than I-HMMs (p < 0.05). Context-

independent modeling limited the overall performances. 

C-HMMs generated the highest state path entropy (see 

Table 2). The state path distribution resulting from C-
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HMMs showed a higher percentage of paths corresponding 

to facial motion events beginning before and ending after 

acoustic events than to paths where acoustic events preceded 

facial ones (36% of VCA vs. 5% of APV3).  

Table 3 shows the correlation results of the three DBN 

approaches with different numbers of joint states, which are 

a function of [Na, Nv] and MICSA. The latter parameter had 

a significant effect on the results (p < 0.05). As the 

complexity of the model increased, results with C-HMMs 

approached those with P-HMMs. As the joint states reached 

16, the results of C-HMMs and P-HMMs degraded due to 

insufficient training data. In some resampling trials, P-

HMMs failed in training for the same reason. These 

observations confirmed the theoretical comparison between 

the two DBN configurations as in Sec. 3.2. 

Figure 4 shows the motion trajectories of a synthesized 

sentence. Results during connected speech were better than 

during acoustic silence due to the temporal differences. 

Animation demos are available at www.icsl.ucla.edu/~jxue.

Table 1. Quantitative evaluations using [Na, Nv] of [3, 3] 

and MICSA of 2 using training-to-testing ratio of 1.875:1. 

 N-M N-E K-L    Corr 

Baseline .324 .058 .274 .179 

I-HMM .280 .049 .231 .440 

C-HMM .254 .044 .201 .549 

P-HMM .251 .044 .193 .559 

Table 2. Average state path entropies with [Na, Nv] of [3, 3], 

and MICSA of 1. The upper bound of the entropy is 3.459 

bits. DP refers to the most frequent state paths. APV3 refers 

to acoustic events (state transitions) ahead of facial events in 

mode 3. VCA refers to facial events starting before and 

ending after acoustic events. 

 I-HMM C-HMM P-HMM 

Entropy (bits) 1.354 2.985 2.592 

DP (appearance%) APV3 (70%) VCA (36%) APV3 (29%)

Table 3. Pearson-r correlation as a function of the number 

of joint states using training-to-testing ratio of 7:1. 

[Na, Nv] [3,3] [4,4] 

MICSA  1 2 1 2 3 

#JointState 7 9 10 14 16 

I-HMM .427 .448 .464 .419 .422

C-HMM .524 .543 .534 .562 .561

P-HMM .548 .558 .536 .569 .563
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Figure 4. An example of the synthesized sentence “Dull 

stories make her laugh.” The plots are the trajectories of lip 

spreading width (top) and lip opening height (bottom) in 

millimeters.

5. DISCUSSION AND CONCLUSIONS 

The three tested DBN methods were superior to the 

multilinear regression method. C-HMMs and P-HMMs 

generated similarly better results than I-HMMs, suggesting 

the effectiveness of the state dependency structure in the 

first two methods. C-HMMs generated higher state 

transition path entropy and captured more state asynchrony 

between the audio and visual models than P-HMMs. 

Maximum inter-chain state asynchrony had a greater effect 

on synthesis accuracy than the numbers of hidden states in 

the two Markov chains.  This study demonstrated the 

potential for DBNs in acoustically-driven talking face 

synthesis. Formal perception tests are in preparation for 

visual intelligibility evaluation of the synthesis system. In 

future work, combining DBN methods and visual feature re-

estimation and optimization methods with context-

dependent modeling will be pursued to improve system 

performance. 
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