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ABSTRACT 

In this paper, we present a robust text-independent 

speaker recognition system. The proposed system 

mainly includes an SNR-aware subspace-based 

enhancement technique and probabilistic support 

vector machines (SVMs). First, we construct a 

perceptual filterbank from psycho-acoustic model 

and incorporate it with the subspace-based 

enhancement approach. The prior SNR of each 
subband within the perceptual filterbank is taken to 

decide the estimator’s gain to effectively suppress 

environmental background noises. Next, this study 

uses probabilistic SVMs to identify the speaker from 

the enhanced speech. The superiority of the proposed 

system has been demonstrated by twenty speaker 

recognition from AURORA-2 database with in-car 

noises.  

1. Introduction 

A speaker recognition system attempts to 

identify a speaker in accordance with his speech 

utterances. However, the performance of a speaker 
recognition system is usually drastically degraded in 

a noisy environment. For lessening environment 

noise problem, this study presents a robust speaker 

recognition architecture, which comprises an SNR-

aware subspace-based enhancement technique and 

probabilistic support vector machines (SVMs). 

Among several strategies emerged for lessening 

environment noise problem, front-end enhancement 

undoubtedly is a powerful one. Ephraim� and� Van�
Trees� [1]� proposed� a� subspace-based� speech�
enhancement� which� it� seeks� for� an� optimal�
estimator� that� would� minimize� the� speech�
distortion� subject� to� the� constraint� that� the�
residual�noise�fell�below�a�preset�threshold.�In this 

paper, an SNR-aware subspace-based enhancement
technique is presented. First, the perceptual filterbank 

is obtained by adjusting the decomposition tree 

structure of the conventional wavelet packet 

transform in order to approximate the critical bands 
of the psycho-acoustic model as close as possible. 

The prior SNR of each subband within the perceptual 

filterbank is used to determine the corresponding 

attenuation factor, which provides the trade-off 

between speech distortion and residual noise. 

Considering the classifier design issue, modern 

speaker recognition systems applied statistical hidden 

Markov models (HMMs) and Gausian mixture 
models (GMMs) [2]. Widespread uses of HMMs and 

GMMs for speaker modeling arise from the efficient 
parameter estimation procedures that involve 
maximizing the likelihood of the model data. 
However, as a maximum likelihood (ML) derived 
decision surface is not optimal, the discriminative 
approaches are a key ingredient for creating robust 
and more accurate models [3]. Support vector 

machine, a discriminative approach, attracts 
significant attention recently because they 

discriminate between classes and can be used to train 

nonlinear decision boundaries in an efficient manner. 

This motivates us to present an SVM-based speaker 

recognition system. The proposed SVM classifier is 

based on probabilistic score decided by the distance 

ratio of the distance between test vector and optimal 

hyperplane to the margin distance.  

2. SNR-Aware Subspace-Based Speech 

Enhancement  

2.1. Subspace-Based Speech Enhancement 

The� speech� enhancement� problem� will� be�
described� as� a� clean� speech� signal� x ψbeing�
transmitted�through�a�distortionless�channel� that�
is� corrupted� by� additive� noise�n .� The� resulting�
noisy�speech�signal� y can�be�expressed�as�

nxy += ,                                    (1) 

where� x  = [x1, x2, . . . , xM]
H

, n = [n1, n2, . . . ,nM]
H

,

and y  = [y1 , y2 , . . , yM]
H

.� The� observation� period�
has� been� denoted� as� M.� Henceforth,� the� vectorsψ
x ↪ψ n ↪ψ y will� be� considered� as� part� of� complex 

space� MC .
The subspace decomposition can be achieved 

using KLT, i.e. eigenvector matrix. Let Rx and Ry

denote the covariance matrix of the x  and y ,

respectively. The eigen-decomposition is performed 

on the covariance matrix Rx and the following form 
is obtained 
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where 
1x

 is a K × K diagonal matrix with 

eigenvalues )1(xλ , )2(xλ , , )(Kxλ  as diagonal 

elements. The eigenvector matrix U has been 

partitioned into two sub-matrices, U1 and U2. The 

matrix U1 contains eigenvectors corresponding to 

non-zero eigenvalues. These eigenvectors form a 

11611­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006



basis for the signal subspace. Meanwhile, U2 contains 

the eigenvectors which span the noise subspace.  

Let I1 and I2 represent the identity matrices IKxK

and I(M-K)x(M-K), respectively. Similar to (2), the eigen-
decomposition of Ry is given by 
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where 
1y

 is a K × K diagonal matrix with 

eigenvalues )1(
y

λ , )2(
y

λ , , )(K
y

λ  as diagonal 

elements.  

As indicated by (3), the clean speech lies only 

within the signal subspace while the noise spans the 

entire space. Therefore, only the contents of the 

signal subspace are used to estimate the clean speech 

signal. 

The clean speech can be estimated using a linear 

estimator  

yx H=ˆ ,                                   (4) 

which H is a K×K matrix. The residual signal, e ,

can then be represented as 

nx eenxxxe +=+=−= HIH )-(ˆ ,          (5) 

where
xe  refers to the signal distortion while 

ne

denotes the residual noise. The energy of the signal 

distortion can be calculated from (5) 

})(){(tr}{tr2 H

x

H

xxx eeE IHRIH −−==ε .  (6) 

Similarly, the energy of the residual noise can be 

derived from (6) 

}{tr}{tr 22 H

n

H

nnn eeE HHσε ==  .           (7) 

The energy of the total error, ε  thus can be 

calculated as 
222

nx εεε +=                                (8) 

The time domain constrained estimator 

minimizes signal distortion while constraining the 

average residual noise power to be less than .2

nασ
Thus 

2minarg xopt ε
H

H =                                    

subject to: 221
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ασε ≤                       (9) 

where 10 ≤≤ α . The resulting filter from the TDC 

estimation has the form 
12 )( −+= IRRH nxxopt βσ .                   (10) 

Applying the eigen-decomposition (2) of Rx to (10), 
we can rewrite the optimal linear estimator as 
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Hence, the signal estimate yx
opt

H=ˆ  is obtained 

by applying the KLT to the noisy signal, 

appropriately modifying the components of the KLT 

U
H

y by a gain function, and by inverse KLT of the 

modified components. 

2.2. Perceptual Filterbank

The perceptual filterbank is obtained by 

adjusting the decomposition tree structure of the 

conventional wavelet packet transform in order to 

approximate the critical bands of the psycho-acoustic 
model as close as possible. The primary reason for 

embedding the psycho-acoustic model in the 

filterbank is that humans are capable of detecting the 

desired speech in a noisy environment without prior 

knowledge of the noise. One class of critical band 

scales is called Bark scale. The Bark scale z can be 

approximately expressed in terms of the linear 

frequency by 
244 )1033.1arctan(5.3)106.7arctan(13)( fffz −− ×+×= ,(13) 

where f is the linear frequency in Hertz. The 

corresponding critical bandwidth (CBW) of the 
center frequencies can be expressed by 

CBW( ) ( . ) .f fc c= + + × −25 75 1 14 10 6 2 0 69 ,   (14) 

where fc is the center frequency (unit: Hertz). 

Theoretically, the range of human auditory frequency 

spreads from 20 to 20000 Hz and covers 
approximately 25 Barks. In this paper, the underlying 

sampling rate was chosen to be 8 kHz, yielding a 

bandwidth of 4 kHz. Within this bandwidth, there are 

approximately 17 critical bands. 

The tree structure of the perceptual wavelet 

packet transform can be constructed as shown in Fig. 

1. It contains 16 decomposition cells with 5 

decomposition stages to approximate these 17 critical 
bands which are corresponding to wavelet packet 

coefficient sets mj
w

, , where j = 3, 4, 5, m = 1, …, 17. 

The resulting 17-band perceptual wavelet packet 

transform of the Bark scale and the CBW are plotted 

in Figs. 2 and 3, respectively. 

2.3. Prior Subband SNR-Aware Gain Estimation 

The perceptual filterbank is integrated with the 

subspace-based enhancement technique. For each 

subband within the perceptual filterbank, individual 

subspace analysis is applied. Therefore, the optimal 

linear estimator for i-th subband has the following 

form 
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The j-th diagonal element of (16) can be 

expressed by  
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In (17), iγ  is the attenuation factor for i-th 

subband. This factor corresponds to the term I
2

nβσ  in 

(12) and controls the trade-off between speech 

distortion and residual noise in i-th subband. A larger 

value of the attenuation factor will yield more speech 

distortion and less residual noise and vice versa. How 

to decide the attenuation factor thus plays an 

essential role for the enhancement process. 
Instead of applying the same attenuation value to 

the whole frequency span, deciding the attenuation 

degree of each subband within the perceptual 

filterbank respectively is a better solution. The 

attenuation factor in each subband is determined 

according to the prior SNR of the corresponding 

subband.  
The prior SNR of i-th subabnd is calculated in 

accordance with the noise power spectrum estimated 

by a pre-obtained noise segment and the speech 

power spectrum derived by subtracting noise power 

spectrum from noisy speech power spectrum. 

Assume the the maximum attenuation value is κ and 

the prior SNR of i-th subabnd is SNRi, the attenuation 

factor of i-th subband is decided by a monotonic 
decreasing function 

i

i
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3. Speaker Recognition 

3.1. Support Vector Machines  

The SVM theory is a new statistical technique 

and has drawn much attention on this topic in recent 

years. An SVM is a binary classifier that makes its 
decisions by constructing an optimal hyperplane that 

separates the two classes with the largest margin. It is 

based on the idea of structural risk minimization 

(SRM) induction principle [4] that aims at 

minimizing a bound on the generalization error, 

rather than minimizing the mean square error. For the 

optimal hyperplane 0=+⋅ bxw , NR∈w and Rb ∈ ,

the decision function of classifying a unknown point 

x  is defined as: 

)(sign)(sign)(
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α ,      (19) 

where NS is the support vector number,
ix  is the 

support vector, 
iα  is the Lagrange multiplier and 

}1,1{ +−∈im  describes which class x belongs to.  

In most cases, searching suitable hyperplane in 
input space is too restrictive to be of practical use. 

The solution to this situation is mapping the input 

space into a higher dimension feature space and 

searching the optimal hyperplane in this feature 

space. Let )(xz ϕ=  denote the corresponding feature 

space vector with a mapping ϕ  from NR to a feature 

space Z. It is not necessary to know about ϕ . We just 

provide a function ),( ∗∗K  called kernel which uses 

the points in input space to compute the dot product 

in feature space Z, that is 

),()()(
jijiji

K xxxxzz =⋅=⋅ ϕϕ .       (20) 

Finally, the decision function becomes 
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∑
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Functions that satisfy Mercer's theorem [5] can 

be used as kernels. Typical kernel functions include 

linear kernel, polynomial and radial basis kernel, etc. 

3.2. Speaker Recognition Using Probabilistic 

SVMs 

This subsection discusses our method to identify 

a speaker. For an enhanced utterance from unknown 

speaker, the waveform is segmented into separate 

frames first. The proposed method starts from a 2-

class SVM classifier. For a test utterance, this 

utterance is enhanced by our SNR-aware subspace-

based speech enhancement first. Passing through the 

procedure of feature extraction, each frame will be 
transformed into a feature vector. After sending these 

feature vectors to the SVM classifier, each frame will 

be given a probabilistic score. Finally, we calculate 

the sum of all probabilistic scores. If the sum of all 

probabilistic scores in an utterance is greater than 

zero, this utterance is classified to +1 speaker class. 

Otherwise, it is classified to -1 speaker class. 

The following describes how to compute the 
probabilistic scores. Assume a NF -frame utterance is 

to be classified into speaker class Cm, }1,1{ +−∈m

and 
jx , j = 1, …, NF is the corresponding feature 

vector. For speaker class Cm, the distance ratio of the 

distance between 
jx  and optimal hyperplane to the 

margin distance is defined by  

b
b

R j
j

j +=+= )(
)(

)( 1
)( xw

ww

xw
x .    (22) 

This study then converts the distance ratio to a 

value between 0 and +1 through a sigmoid function  

)(
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1
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e
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x
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= .            (23) 

This score denotes a kind of possibility that 
jx  is 

belonged to Cm.

A multi-class classification system can be 

obtained from the two-class SVM classifier. Assume 
there are M speaker classes, each pair of the classes 

are used to train a SVM classifier, i.e. there are 

totally M(M-1)/2 SVM models. For a test utterance, 

the pairwise comparison [6] strategy is adopted to 

identify its speaker.  
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4. Experimental Results 

First, an objective evaluation with SNR for the 

proposed SNR-aware subspace-based method was 

performed. The performance comparison with 
conventional subspace-based method and spectral 

subtraction method is listed in Table I. The proposed 

method significantly outperforms the spectral 

subtraction and conventional subspace methods. The 

average improvements are 7.3907 dB and 2.6763 dB, 

respectively. 

To evaluate the performance of the proposed 

robust speaker recognition system, twenty speakers, 
ten males and ten females, chosen from the 

AURORA-2 database were used in our experiments. 

For each speaker, their clean utterances were used for 

training the SVMs in a clean environment with 13-

dimension MFCCs as one feature vector. Another 

four utterances from each speaker were first 

degraded by in-car noise and then individually used 

for testing the system performance. The analysis 
frame used in this study had 256 samples, which was 

approximately 32 ms in length. The experimental 

results of the proposed robust speaker recognition 

system are listed in Table II. This experiment 

demonstrates the superiority of the proposed system.   

5. Conclusions 

This study has implemented a robust speaker 
recognition system. Our speaker recognition model is 

based on SVMs. This study uses distance ratios to 

generate the probabilistic scores of SVMs. To 

alleviate environment noise problem, an SNR-aware 

subspace-based enhancement technique is presented. 

In our experimental results, the proposed SNR-aware 

subspace-based enhancement significantly 

outperforms the conventional subspace-based and 
spectral subtraction methods in terms of SNR. With 

this enhancement as front-end process, the 

performance of our speaker recognition system under 

in-car noise environment is also notably improved. 
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Fig.1. Tree structure of the perceptual filterbank. 

Fig. 2. Bark scale as a function of center frequency. 

Fig. 3. Critical bandwidth as a function of center frequency. 

Table I. Performance comparison in SNR (dB) for utterances 

corrupted by different in-car noises 

Enhancement 

method 

Honda 

noise 

Toyota 

noise 

Opel 

noise 
Ave. 

No 

enhancement 
0.3261 -0.5933 -0.2285 -0.1652 

Spectral 

subtraction 
4.0408 3.9228 1.1338 3.0344 

Conventional 

subspace 
9.0472 5.8111 8.3881 7.7488 

Proposed 13.7227 7.8719 9.6808 10.4251 

Table II. Performance evaluation of the proposed speaker 

recognition system 

Testing 

speech type 
System Male Female Ave. 

Clean 

speech 
SVMs 90% 100% 95% 

Noisy 

speech 
SVMs 22.5% 20% 21.25% 

Noisy 

speech 

Enhancement 

plus SVMs 
50% 40% 45% 
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