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ABSTRACT

A good speech model is essential for speech enhancement, but it is
very difficult to build because of huge intra- and extra-speaker vari-
ation. We present a new speech model for speech enhancement,
which is based on statistical models of magnitude-normalized com-
plex spectra of speech signals. Most popular speech enhancement
techniques work in the spectrum space, but the large variation
of speech strength, even from the same speaker, makes accurate
speech modeling very difficult because the magnitude is correlated
across all frequency bins. By performing magnitude normalization
for each speech frame, we are able to get rid of the magnitude vari-
ation and to build a much better speech model with only a small
number of Gaussian components. This new speech model is ap-
plied to speech enhancement for our previously developed micro-
phone headsets that combine a conventional air microphone with
a bone sensor. Much improved results have been obtained.

1. INTRODUCTION

Speech enhancement in a noisy environment has many applica-
tions including communications and speech recognition. Despite
more than three decades of research, it remains unsolved. The dif-
ficulty is due to non-stationarity of speech and noise, huge intra-
and extra-speaker variability, often unpredictable environmental
conditions (noise and reverberation). An efficient speech enhance-
ment technique requires explicit and accurate statistical models for
the speech signal and noise process.

Quatieri [1] provides a description of various speech enhance-
ment techniques. Although, the above algorithms have had success
in dealing with stationary noise types, they fail in the presence
of non-stationary noise. Further, some of these techniques often
assume, implicitly or explicitly, a single Gaussian distribution on
speech signals which is a poor model as a result of the large vari-
ation in speech. Drucker [2] proposed a system using five states
representing fricative, stop, vowel, glide, and nasal speech sounds.
The system, however, was simulated by hand-switching between
the speech states. Attempts have also been made to model state
changes over time: Lim and Oppenheim [3] model the short-term
speech and noise signals as an autoregressive process. Ephraim [4]
models the long-term speech and noise signals as a hidden Markov
process. While autoregressive and hidden Markov models have
proved extremely useful in coding and recognition, they were not
found to be sufficiently refined for speech enhancement [5].

As mentioned earlier, while we have seen many successes in
dealing with stationary noise types, enhancement in the presence
of non-stationary background noise (such as interfering speech)
is still an open problem. To tackle this problem, we have devel-
oped a novel hardware solution [6, 7] that makes use of an in-
expensive bone-conductive microphone in addition to the regular

1-4244-0367-7/06/$20.00 ©2006 IEEE 1157

air-conductive microphone. The bone sensor captures the sounds
uttered by the speaker but transmitted via the bone and tissues in
the speaker’s head and is thus relatively noise-free. High frequency
components (> 3Khz) are absent in the bone sensor signal. Thus,
the challenge here is to enhance the signal in the air-channel by
fusing the two streams of information. For a detailed discussion
about the bone sensor the reader is refered to [7].

In [6], we proposed an algorithm based on the SPLICE tech-
nique for speech enhancement. In the same work, a speech de-
tector based on the energy in the bone channel was proposed. In
[8], we proposed an algorithm called direct filtering (DF) based on
learning mappings in a maximum likelihood framework. However,
one drawback with the DF algorithm is the absence of a strong
speech model, which can lead to distortion in the enhanced signal.
In [9], we extended the DF algorithm to deal with the environmen-
tal noise leakage into the bone sensor, and the teethclack problem.
The success of all the above algorithms, requires accurate speech
activity detection to estimate noise and speech statistics. Making
use of the energy in the bone sensor [6] for this task leads to two
problems: A) some classes of phones (e.g., fricatives) have low
energy in the bone sensor causing false negatives; and B) leakage
in the bone sensor can lead to false positives. Further, by using just
the bone sensor for speech detection, we are not leveraging the two
channels of information provided by the multisensory headset. For
a detailed decription of our previous work, the reader is refered to
[11].

To address some of the above problems, in [10] we proposed
an algorithm that takes into account the correlation between the
two channels for speech detection and also incorporates a speech
model thereby introducing robustness into the system. However,
the proposed algorithm had two shortcomings: a) speech was mod-
eled using a single Gaussian and b) the system was static, i.e., there
was no information transfer across frames. In this paper, we de-
scribe some of our efforts to overcome the above problems.

2. MAGNITUDE-NORMALIZED COMPLEX
SPECTRUM-BASED SPEECH MODEL

In Bayesian statistics, prior information plays a crucial role in in-
ference. A speech model lends itself into such a role by providing
a prior on clean speech that is hidden given noisy speech. How-
ever, building accurate speech models is extremely hard on accout
of the large variability of human speech due to a number of factors
such as speaker change, changes due to loudness, intonation and
stress. One way to deal with issues related to changes in loudness
and recording device gains is to work in the mel-cepstral domain,
where they only effect the first cepstral coefficient which may be
neglected. However, such models have the disadvantage that they
do not encode any phase information.
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2.1. Model Definition

We work in the complex spectral domain as we are interested in
estimating both the magnitude and phase of the clean speech sig-
nal. However, in the complex spectral domain, the variations due
to loudness cannot be easily handled. Thus, we propose the use of
magnitude-normalized complex spectra as features for the speech
model. In order to build such a speech model, the frames of the
speech signal are normalized with their energy, i.e.,

Xt

X
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Thus all X’s are unit vectors and distribute on a unit hyper-sphere.
It can be easily seen that the above step has a variance reducing
effect because instead of attempting to capture the variations in an
n-dimensional space, we are modeling a region on a unit hyper-
sphere. However, as a result of the above normalization, the model
now requires a gain term g,,. We discuss an iterative approach
to estimating the gain in section 4. Further, to add robustness to
the model, we neglect the DC and Nyquist terms while building
the model. Gain normalization has been studied in the past (for
example in [13]). One important distinction between the work in
[13] and the current algorithm is that here we are normalizing the
clean speech signal rather than the noise.

2.2. Training

In order to train the speech model, we collected data from a large
number of speakers in a clean environment. The speech frames
were then extracted using a simple energy based speech detector.
The resulting speech frames were then energy normalized as ex-
plained in the previous subsection. We trained a mixture of Gaus-
sians to model the normalized speech frames using the k-means
algorithm with random initialization. Since it is well known that
human are perceptually more sensitive to log magnitude, we used
d(Xi, X;) = ||(log | X:| — log | X )| as the distance measure for
clustering the frames, where log X denotes that the log operation
is applied to each element of X. It should be noted here that al-
though the above distance measure is in the log-spectral domain,
the means and variances for the speech model were obtained in the
normalized-complex-spectral domain.

2.3. Experimental Results

In order to test the model robustness, we built two speech mod-
els using a single Gaussian, one using energy normalized spectra
(w1) and the other using original spectra (w2) in the complex spec-
tral domain. The above models were then used to compute the
likelihoods for an utterance outside the training set but recorded
using a device with similar gain setting as the training set. The ag-
gregated likelihoods (across all frequency components) are shown
in figure 1. It can be seen that the likelihoods resulting from wy
are always greater than the likelihoods resulting from ws, suggest-
ing that the magnitude-normalized speech model can better explain
speech signals. Further, the above experiment is the best case sce-
nario for we. Note that the above does not imply that a speech
frame will be classified as speech in a practical setting, as this
would also depend on the competing model.

Figure 2 shows the spectrogram of four clusters obtained as a
result of the clustering algorithm described above. It can be seen
that one cluster models fricatives, and the others model various
kinds of vowels.
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Fig. 1. Comparison of likelihoods with (solid, red lines) and with-
out (dotted, blue lines) magnitude normalization. The second fig-
ure depicts the spectrogram.
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Fig. 2. Clustering results

3. MODEL FOR SPEECH ENHANCEMENT

We are now applying the speech model proposed in the last sec-
tion to speech enhancement in an air- and bone-conductive inte-
grated microphone headset [6, 7]. Due to space limitation, we
only present a consice version of the inference math; for a detailed
derivation, the reader is refered to [11]. Since we work in the com-
plex spectral domain, we transform the time domain signals from
the air microphone and the bone sensor into complex spectra by
applying the fast-Fourier transform (FFT) to the hamming win-
dowed version of the signal samples. The physical process may be
modeled as shown in Figure 3.

In the above model, S; is a discrete random variable repre-
senting the state (speech / silent) of the frame at time ¢, M; is a
discrete random variable acting as an index into the mixture of the
speech model, X; represents the scaled version of clean speech
signal, X represents the clean speech signal that needs to be es-
timated, g, scales X; to match the clean speech X; from the air
conductive microphone, Y; is the signal captured by the air mi-
crophone, B; is the signal captured by the bone sensor, V; is the
background noise, H is the optimal linear mapping between clean
speech and bone signal, G models the background noise that leaks
into the bone sensor. The variables Xy, X¢, Y:, Vi, B; are all in
the complex spectral domain and have % — 1 dimensions, where
N is the FFT length. For mathematical tractability we assume that
the different components of the above variables (except for S; and
M) are all independent. .S; and M, are global for a given frame.

We make the following assumptions in the model: Background
noise is modeled as p(V;) ~ N(0, 02); Sensor noise in the air mi-



Fig. 3. The graphical model incorporating the proposed speech
model.

crophone channel is modeled using p(U;) ~ N(0,52); Sensor
noise in the bone channel is modeled with p(W;) ~ N(0,02);
Speech is modeled using a mixture of Gaussians (MG),
~ 1\/[ ~
p(Xi|Si) = D P(Me = m|S:)p(X:|Si, My),
m=1

N (fsm, 0om) )

We assume that S; = {0, 1}, where 0 and 1 indicate silence and
speech respectively. We model silence using a single Gaussian,
and thus P(M; = 1|S; = 0) = Land p(X,|S; = 0)
In the case of speech we use a MG with M = 4. For simplicity
we assume that all the Gaussians in the mixture are equally likely
and thus, P(M; = 4[S; = 1) = -~ fori = 1,..., M and thus,
p(Xe|Se = 1) ~ & M_ N(tsm,02y). For mathematical
tractability we assume p(Xt‘Xt) ~ 0(Xq, gztf(t), a delta func-
tion with parameter g, .

As X, and X, are related by a delta distribution, given g.,,
estimating either one of these variables is equivalent to estimating
the other. Thus, we are interested in estimating p()?t|Yt, B) =
ZS mp(f(t, Si = s, My = m|Yy, By). Let us first consider

with p(Xt|St, Mt) ~

XtvyvtyBuSt—S ML: ):
///p(m,BuXt,Vt,St,Mt,Ut,Wt) dUdW,dV,  (3)
Vid U Wy
After some algebra we get

p(Xi,szhSi = 37Mt = m) ~ N(Xt;Al,B1)
N (By; Az, B2)N (Yy; g, ftsm, 01 )p(Me| St)p(St) — (4)

where
2 2 2 * 2 2
A Tsm (Ul (qu,usm'i_gwt, Yf)+gﬂ"t Hm(Biqu_Gain))
1= 2 2 2 52 42 2 )
0103 + gltgsmauv‘Hm|
2 2 2 2
B1 o 010smOuuv 0,2 0_ + |G| U 01/
- 2 2 2 2 2’71 = Pw 2 ’
01 02 + gzt Usmo-uv|Hm‘ Juv
2 2
A quusm + gIt O'sml/t Go'vl/t Oy
2 = Jxy Hm 2 2
02 Ouv qu
2 2
20smOuv 2 2 2
BZ 70’1 +gzt|Hm| s O :U1L+UU7
o3
2 2 2 2
Hm =H - G: 02 = Oyy +gzto-sm‘ (5)
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It is not difficult to show that the posterior of X, p(X;|Y:, B:, S; =
1, My =m) o< N(X¢; A1, B1). Inasimilar vein, p(X¢|Y:, B, St =
0, M; = 0) may be obtained by replacing ¢2,,, by o2;; in the above
equation.

3.1. Posteriors of S; and M,

To calculate the posteriors of S; and M;, we first compute the
following joint distribution:

p()ft,Bt,St,Mt) = /_ p(Xt,Y:S,BmSt:S,Mt:m)dXt
Xt

~ N(Bi; Az, B2)N (Y4; gay fsm, Uf)p(Mt|St)p(St) (6)

Further, it can be seen that p(M,
7:7 Mt = m) andp(Si = Z‘th, Bt) X Zmp(m,Bt, St = 7:, Mt =
m). As explained previously, both S; and M, are defined over
each frame across all frequency bins. Therefore, we should ag-
gregate the likelihoods due to individual components to obtain a
single most likely estimate for .S; and M;. Thus the above equa-
tion may be rewritten as

p(Y, B ,St, M) ~ L{ L{ p(M:|St)p(St) )

with L{ = N(BL; AL, B), L = N(Y/ s gau i, (63)7), where
the exponent f represents the f*" frequency component. Finally,
the likelihoods for a state are given by

L(My; = ml|Y:, By, St = i) =

p(Se = i)p(My =m|S; =) [] L{ L] . ®)
all f

4. ESTIMATING THE GAIN g,

As can be noticed, gain g, is involved in the above derivations.
Since we are unable to come up with a closed-form solution, we re-

sort to the EM algorithm to estimate g..,. Let q(f) = p(X{, Y/,

Btf ,St, M) which is given by equation (4), and let the overall
joint log likelihood be F' = log[],,, f a(f) = X slog q(f)-
The E-step essentially consists in estimating the most-likely value
= E(p(X:|Y:, By,

s, )), Where E(.) is the expectation operator and p(X¢|Yz, Bt, g, )
was obtained in the previous section. The M-step involves maxi-
mizing the objective function F' w.r.t. g,, which yields

of X + given the current estimate of g, , i.e., X +

. D ! [(Yt*Xt + YtXL*)Ui + Cag] ©)
9o =5 [KeP2o 1 [H — Gl2[ X 202]

where C = (B;—GY})" (H—G) X+ (B:—GY:)(H-G)" X{. It
should be noted here that we do not estimate g, for the Gaussian
that models silence, and g, is set to 1. Indeed, we do not normal-
ize the magnitude in modeling the silence because the energy of
a silence frame is in essence zero (or close to it) and this is true
irrespective of device gains or changes in loudness.

5. EXPERIMENTAL RESULTS

5.1. Setups

We recorded utterances from a number of speakers using the air-
and-bone conductive microphone in various environments includ-
ing cafeteria (ambient noise level 85 dBc) and office with an in-
terfering speaker in the background. It is important to note that
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Table 1. MOS Evaluation Criteria.
Impairment

(Excellent) Imperceptible
(Good) (Just) Perceptible but not Annoying
(Fair) (Perceptible and) Slightly Annoying
(Poor) Annoying (but not Objectionable)
(Bad) Very Annoying (Objectionable)

Score

—| D9 W & W

Table 2. MOS Results.
SG MG (€21)

3.0361 3.7583

Original
2.5833

MG (£22)
3.6194

the utterances are corrupted by real-world noise. Each of the ut-
terances were processed using the above framework to obtain an
estimate of the clean speech signals. The transfer functions H and
G were estimated as explained in [9]. An estimate of the vari-
ances was obtained by using the speech detector proposed in [10].
Teethclacks in the bone channel were removed using the algorithm
proposed in [9].

5.2. Propagating the prior of S;

The enhancement process starts off with both S; = {0, 1} being
equally likely. In order to enforce smoothness in the state estimates
we use the following state dynamics:

054 p(Si—1 =1|Yi—1,Bi1)
N 2

p(Se=1) , (10
and p(S; = 0) = 1 — p(S¢ = 1). This introduces a bias towards
the previous value of the state variable thereby making frame-to-

frame transitions smoother.

5.3. Results

For our applications, we are more interested in perceptual quality
than speech recognition. To measure the quality, we conducted
mean opinion score (MOS) [12] comparative evaluations. Table 1
shows the score criteria.

In order to gauge the sensitivity of the speech model to speak-
ers, we trained two models. The first (€21) was trained on clean
speech from a single speaker and the second model (£22) was trained
on clean speech utterances from six different speakers (three male
and three female). The speaker in €2; is one of the male speak-
ers in {22. The testing set consisted of ten noisy utterances (both
cafeteria and office environments) recorded using speaker in €2;.

Each noisy utterance in the test set was processed in 3 different
ways: a) SG: the algorithm described in [10] (single Gaussian for
the speech model), b) MG (£21): the proposed model trained with
one speaker and ¢) MG (£22): the proposed model trained with fif-
teen different speakers. This resulted in 3 processed utterances for
each corrupted utterance. There were a total of 12 participants in
the MOS evaluations. The evaluators were presented utterances in
a random intra and inter set ordering. Further, the evaluators were
blind to the relationship between the utterances and the processing
algorithm. Table 2 shows the results of the MOS tests.

It can be seen that all the processed utterances outperform
the original noisy ones. In addition, the proposed speech model
outperforms our previously proposed algorithm, and it is not sur-
prising that the model built using the same (single) speaker in
both training and testing sets performs the best. However, the
multi-speaker model 22 only performs slightly worse than the sin-
gle speaker model. This suggests that our proposed magnitude-
normalized speech model is able to generalize fairly well.
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6. CONCLUSION AND FUTURE WORK

In this paper we have proposed a mixture Gaussian speech model
built from magnitude-normalized complex spectra for speech en-
hancement. We have also shown how the proposed mixture Gaussian
model can be used in the context of speech enhancement with
an air-and-bone conductive microphone. Substantial improvement
have been observed in the MOS evaluation over the best of our pre-
viously developed techniques. Comparison between single-speaker
trained and multi-speaker trained models suggests that the pro-
posed magnitude-normalized speech model is able to generalize
fairly well.

For our future work, we plan to collect a large amount of data
with more speakers in order to build better speech models. In ad-
dition, we plan on learning the dynamics on the state variable. We
also plan to introduce dynamics on other variables such as X; and
X which may lead to better estimates of the clean speech signal.
Finally, we are working on a system where the noise can be esti-
mated recursively.
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