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ABSTRACT 

This paper considers optimal cross-layer rate control, 
scheduling design and power control for multi-hop wireless 
networks. The problem of optimal rate control, link 
scheduling, and link transmission power for all active time 
slot is formulated as a network utility maximization 
problem. In wireless multi-hop networks, the link capacity 
is a function of link scheduling and transmission power 
with time-varying and nonlinear properties. Those 
characteristic poses much challenge in joint design. To 
solve the non-convex and non-separable nonlinear program 
problem, a two time-scale distributed optimization 
approach is presented. By dual decomposition and gradient 
method, the NUM problem naturally decomposes into three 
subproblems: congestion control, scheduling design and 
power control. They interact through congestion price. The 
global convergence of this algorithm is proven. This paper 
presents a step towards a systematic approach to jointly 
design TCP congestion control algorithms, scheduling 
design and power control. 

1. INTRODUCTION 

Cross-layer design is becoming increasingly important for 
improving the performance of multihop wireless networks 
(see, e.g. [1], [2], [3] and cited reference therein). By 
simultaneously optimizing the control across multiple 
layers of the network, cross-layer design can substantially 
increase the end-to-end throughput and link capacity, 
reduce interference and power consumption. In this paper, 
we focus on the interaction of rate control at the transport 
layer, link scheduling and power control. Our goal is to 
present a systematic approach to jointly design TCP 
congestion control algorithms, random link access 

probabilities and transmission powers, not only to improve 
performance, but more importantly, to make their 
interaction more transparent. 

The need for joint design across these three layers is 
motivated by the following three observations. First, a 
wireless network uses a shared medium, with interference 
across the logic links. If contentions among transmissions 
on different links are not appropriately controlled, a large 
number of collisions may occur, resulting in waste of 
resources such as bandwidth and energy, as well as loss of 
system efficiency and degradation of resource sharing 
fairness. Thus, in ad hoc wireless networks, the contention 
relations between link-layer flows provide fundamental 
constraints for resource allocation. Second, the attainable 
link active rates in a time slot on wireless links depend on 
the interference levels, which in turn depend on the power 
control policy [4]. Therefore, the link capacity is a 
combinatorial function for link scheduling and 
transmission power with time-varying and nonlinear 
properties. Third, TCP congestion control algorithms can 
be interpreted as distributed primal-dual algorithms over 
the Internet to maximize the aggregate utility. This series of 
work implicitly assumes a wired network where link 
capacities are fixed and shared by flows that traverse 
common links. A natural formulation for the joint design of 
congestion control, link scheduling and power control is 
then the utility maximization framework with new 
constraints that arise from channel contention and physical 
interference. In this paper, we extend the work in [5] to 
joint design across end-to-end rate control, random access 
protocol and power control. Because the link capacities 
constraints are non-convex and non-separable, the optimal 
solution is separated by two steps. The first step is to 
optimal rate control design with a fixed link capacity. The 
subproblem is reduced to classical TCP congestion control. 
The second step is based on gradient method to update the 
link access and power control protocol.  
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2. SYSTEM MODELING AND NOTATION 

A multihop wireless network can be represented as a 
directed graph ),( LVG = . Here V  represents the set of 

nodes in the network and L  the set of directed edges (links) 
in the network. The nodes communicate with each other via 
wireless links. Each node can communicate directly with a 
subset of other nodes. Assume the network is shared by a 
set S  of source indexed by s . A sequence of connected 
links )(sLl ∈  forms a route originating from source s , and 

lf  be the link attainable capacity. Since wireless links use a 

shared medium, they may interfere with each other if they 
transmit data at the same time. If the interference level 
between two links is too high, transmissions from those two 
links will collide, resulting in a failure of the transmission. 
In the following, we present the detailed contention relation 
based on the link layer model. In general, the link capacity 

lf  can be represented as the function of power 

consumption and link access probability in a random access 
network. If the link interference can be restrained in link 
scheduling, the active rate lc  in a time slot with an 

Additive White Gaussian Noise (AWGN) channel is 
( ),1log 02 WNPWc ll +=                            (1) 

where W  is the channel bandwidth, 0N  the noise spectrum 

density and lP  transmission power. In the following, we 

present the random access protocol with neighborhood link 
conflict information. We define ( )vLout  as a set of outgoing 

links from node v , ( )vLin  as a set of incoming links to 

node v , lt  as the transmitter node of link l , and lr  as the 

receiver node of link l . We also define ( )lN I
to  as the set of 

nodes whose transmission cause interference to the receiver 
of link l , excluding the transmitter node of link l  and 

( )vLI
from  as the set of links whose transmission get 

interfered from the transmission of node v , excluding 

outgoing links form node v . These two sets, ( )lN I
to  and 

( )vLI
from , can be obtained through the bipartite graph. Each 

node v  transmits data with a probability vℑ . When it 

determines to transmit data, it choose one of its outgoing 
links with probability vlq ℑ , ( )vLl out∈∀  such that 

( ) 1=ℑ∑ ∈ vLl vl
out

q  and transmits data only on the chosen 

link. Hence there is no collision among links that have the 
same transmitter node. Link l , ( )vLl out∈ , transmits data 

with the persistence probability lq  such that 

( ) vq vvLl l
out

∀ℑ=∑ ∈
, . The link attainable capacity is 

( ) ( )( ) .1∏ ∈
ℑ−=

lNk klll I
to

qcf Pq,                  (2) 

3. TWO-TIME SCALE DISTRIBUTED 
OPTIMIZATION APPROACH (TTSDOA) 

The network utility maximization (NUM) problem with 
"elastic" link capacities can be formulated as 

P1: 
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The first and second sets of constraints ensure that the total 
source rates of traffic in a link cannot exceed the attainable 
rate of the link. The objective of this problem is to obtain 
the optimal persistence probabilities q , transmit powers P

on links and access probabilities ℑ  for nodes that 
maximize the network utility. The rate control question 
therefore represents a joint optimization problem, which 
couples the link persistent probabilities at link layer, 
transmit powers at the physical layer with the source rates 
at the transport layer. Note that the NUM problem (3) is 
non-convex and non-separable. The major challenges are 
the global dependent between the source rates x  and link 
capacities f and the nonlinear couple among link capacities 
f , link persistent probabilities q  and link transmit powers 

P . Our primary goal in this paper is to distributively find 

the joint and globally optimal solution ( )*** ,, Pqx  to 

problem P1 by breaking down the global dependent and 
nonlinear couple limitation. In the following, we will 
present a two-time scale distributed optimization approach 
based on dual theory. We now outline the overall strategy to 
obtain the optimum solution for nonlinear program problem 
P1. Given fixed f , the problem P1 can be reduced to the 

following problem P2 

( ) ( ) ( )
⎭
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⎫

⎩
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fxlfxxf
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The optimum solution for problem P2 is parameterized by 
link capacities f . We also can define function 

( ) ( )( )PqPq ,ˆ,ˆ fψψ =  for the link capacities. Let 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧= ∑ (3)in conditionsconstraintlogmax,

s
ss xωψ Pq ,

 Hence ( ) { }0P1q0PqPq fpp ,),(~max, ψψ = . Then the local 

optimum solution for problem P1 can be obtained by the 
following steps: 

(1). For problem P2, we introduce the Lagrangian 

( ) ( )
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Consider the dual problem to the primal problem P2 
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The above congestion control problem is already simplicity 
solved by the TCP congestion problem, such as the TCP 
Vegas. With the TCP Vegas, the congestion control 
problem (6) admits a unique maximizer in time slot t
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(2) In each time slot t , each link computes the 

gradient direction ),( Pqqψ∇ and ),( PqPψ∇  at )(λsx  as 

follows 
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Therefore, the link persistent probabilities and transmission 
powers can be updated in the gradient direction 
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Note that each link and its transmitter node only need to 
know the set of nodes whose transmission cause 
interference to the receiver of link and links that are 
interfered by its transmitter node in the link persistent 
probabilities update algorithm (9) and transmission powers 
update algorithm (10). There is no need for any additional 
information or message passing. Hence, it is local and 
distributed. 

4. CONVERGENCE ANALYSIS 

In this section, we prove the convergence property of the 
two time-scales distributed optimization Algorithm. 
Intuitively, the slow system (8)-(10) updates the link 

persistent probabilities and transmission power in the 
gradient direction. Therefore we can state the following 
local convergence property. 

Theorem 1 The iterative algorithm with TTSDOA 
converges to the local optimum point of problem P1 when 
the step sizeα , γ  is small enough.

We further show that, although nonlinear program 
problem P1 appears to be non-convex, its KKT points are 
globally optimum pomts by a bridge between the KKT 
points of problem P1 and that of a converted convex 
program with log transformation. First, the non-convex 
optimization problem can be easily converted into a convex 
optimization problem after the log transformation. The 
following Lemma states that the weighted proportionally 
fair rate control can be obtained by solving a convex 
optimization problem. 

Lemma 1 The end-to-end proportionally fair rate 
control problem in a multihop random access network, as 
given by (3), is equivalent to the following convex 
programming problem Q: 
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where sy  is the weighted logarithm of the source rate sx . 

   It is worth noting that we should not solve the either 
problem Q or P1 directly. Using the similar idea in [5], we 
present the optimization solution property between the 
problem P1 and problem Q by the following Lemma.  

Lemma 2 If ,,,,1, **
ls qSsx L=  and LlPl ∈,*  satisfy the 

first order necessary condition for optimality for nonlinear 

program in (3), then ( ) ,,,,1,log ***
lss qSsxy L== and

LlPl ∈,*  will be the global optimum points for the convex 

program in (11). Conversely, if ,,,,1, **
ls qSsy L=  and 

LlPl ∈,*  satisfy the first order necessary condition for 

optimality for the convex program in (11), then 

,,,,1, **
l

y
s qSsex s

L== and LlPl ∈,*  will satisfy the first 

order necessary condition for optimality for nonlinear 
program in (3).
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For the nonlinear program in (11), we take 
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,, ** qy  and *P satisfy the KKT condition for the nonlinear 

convex problem in (14). Using the same line of analysis we 
can prove the converse result. The proof is completed. 

Note that the optimization problem in (11) is a convex 
program problem and hence its KKT point is globally 
optimum. Therefore, we can conclude that the KKT point 
in P1 is actually globally optimum based on the Lemma 1 
and Lemma 2. The following theorem states the main result. 

Theorem 2 Let ,, ** qx and *P  denote the limit point of 

the iterative algorithm with TTSDOA. Then there exists 
+ℜ∈**,γα  such that the step size *αα < and *γγ < , the 

limit point of ** ,qx , and *P  is the global optimum solution 

to the problem P1. 

5. CONCLUSIONS 

We have presented a model for the joint design of rate 
control, scheduling and power control for multihop wireless 
networks with random access by extending the framework 
of NUM. We formulate the resource allocation in the 
network as a utility maximization problem with random 
scheduling constraints and power control arising from 
contention for the wireless channel. By dual decomposition, 
we derive a gradient algorithm with two timescales merit 
that is not only distributed spatially, but more interestingly, 
decomposes the system problem vertically into three 
protocol layers to solve the NUM problem. 
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