
 A PATTERN-SEARCH METHOD FOR H.264/AVC CAVLC DECODING

Shau-Yin Tseng Tien-Wei Hsieh

SoC Technology Center
Industrial Technology Research Institute

Hsinchu, Taiwan 310, R.O.C.
{Tseng, TWHsieh }@itri.org.tw

ABSTRACT

In this paper, a new implementation method is proposed for
Context-Adaptive Variable Length Coding (CAVLC) used
in H.264 Baseline Profile. We analyze the correlation
between bit patterns and 4x4 (or 2x2) blocks and have an
idea of a pattern-search method before CAVLC decoding. If
a pattern is matched in our look-up table, we can skip the
standard CAVLD procedure and reconstruct a block
directly. However, if there is not any pattern matched in the
table, we have to reconstruct a block by CAVLD. Our look-
up tables are built up according to our statistics and
analysis. The experimental results show that the
performance can be improved 10% compared with the
standard CAVLD procedure.

1. INTRODUCTION

H.264/AVC is a novel video coding standard, which is
developed by Joint Video Team (JVT) of ISO/IEC Motion
Picture Experts Group (MPEG) and ITU-T Video Coding
Experts Group [1] [2]. It has a number of features and
functionalities which provide a considerable improvement
over the previous coding standards.

In order to make the implementation flexible and cost
effective over a variety of products and product generations,
it is interesting in developing multimedia application
software running on a programmable CPU or DSP.
However, the complexity of H.264/AVC is more than
previous standards. A software-based real-time decoder
requires more powerful processors and faster algorithms [3]
[4]. According to computational complexity, we know that
motion compensation with pixel interpolation, entropy
decoding with CAVLD and de-block filter consume more
time.

The essential behavior of CAVLD is similar with VLD
of previous standards. There are several works for VLD
software implementation [5] [6]. Those fall into two classes:
bit-serial methods and bit-parallel methods. Bit-serial

methods are not very suitable for high-performance real-
time application software because of the long time period
needed for decoding a long codeword. On the contrary, bit-
parallel methods can reduce memory access and increase
performance. The easiest implementation is to use a table
look-up; input bits address a table which contains the
decoded symbol and the length of the code. The length of
the code determines at which point of the bit-stream is
advanced. The look-up table must be addressed by the
maximum size of codes. However, it is wasteful because the
shorter codes have many repeated entries in the table. One
approach is to use multi-pass look-ups. First, a few bits of
the bit-stream is looked up in a table. If there is not any
code matched in the table, the second look-up into another
table then is executed. Although this method saves memory,
it consumes more processing time.

Besides, there are several works for CAVLC decoding
[7] - [11]. Most of them are implemented in hardware and
adopt table look-ups. Three interesting ideas can be
observed among them. First, they use various methods to
partition VLD tables to save memory space. Second, it is
inefficient to look up Run_before tables, so arithmetic
operation is adopted to replace them. Third, building multi-
symbol VLD tables, CAVLD can decode consecutive

10731­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

multiple symbols once.
According to the statistics of [12], it tells us that only

60% of 4x4 blocks are decoded within 15 bits. With this
characteristic, we propose an efficient algorithm for
CAVLD in this paper. Based on the statistics of frequencies
of bit patterns, we propose a pattern-search method which
reconstructs 4x4 (or 2x2) blocks directly if patterns are
matched in look-up tables. In addition, this efficient
pattern-search method also reduces memory access.

 The rest of this paper is organized as follows. In
Section 2, we analyze the correlation between bit patterns
and 4x4 (or 2x2) blocks, and propose a pattern-search
method before CAVLD. Experimental results are presented
in Section 3. Finally, Section 4 gives a conclusion.

2. THE PROPOSED PATTERN-SEARCH METHOD

The essential behavior of CAVLD is similar with VLD of
previous standards. However, it uses several extensive
dedicated code tables, and those tables are chosen by the
context of previous blocks or symbols. There are six
decoding steps of CAVLD, and each step uses different
tables. Fig. 1 shows the CAVLD flow.

1. Coeff_token: The total number of non-zero
coefficients (TC) and the number of trailing �1
values (T1s) are decoded. TC is ranged from 0 to 16,
and T1s is ranged 0 to 3. The choice of look-up
tables depends on nC, which is an average of
numbers of non-zero coefficients in upper and left-
hand decoded blocks.

2. Sign of T1: According to T1s, a number of single
bits are decoded.

3. Level: According to TC, a number of non-zero
coefficients are decoded. The choice of look-up
tables depends on the previous decoded Level value.

4. Total_zeros: The total number of zeros preceding
non-zero coefficients is decoded. The choice of look-
up tables depends on TC.

5. Run_before: The number of zeros preceding each
non-zero coefficient is decoded. The choice of look-
up tables depends on the number of zeros left.

6. Reconstruct a 4x4 (or 2x2) block according to a
number of Signs, Levels and Run_befores.

For example, 16 zig-zag ordered coefficients (2, 0, -1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) are reconstructed from the
bit pattern (0001 0011 1100), as shown in Fig. 2. In other
words, if the bit pattern (0001 0011 1100) is matched, then
zig-zag ordered coefficients of a 4x4 block (2, 0, -1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is obtained, assumed that nC is 0.
This is the basic concept of our proposed pattern-search
method.

2.1. Analysis of correlation between patterns and blocks

Although [12] has gathered statistics of frequencies of 4x4
blocks, it did not distinguish those blocks with nC values.
The same 4x4 blocks can be encoded as different bit
patterns due to different nC values. For example, while nC
is 0, the 4x4 block (2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0) is encoded as the bit pattern (0001 0011 1100). However,
while nC is 2, the 4x4 block (2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0) is encoded as the bit pattern (0011 1111 100).
Our patterns come from the combination of blocks and nCs.
We analyze seven test sequences, Mobile, Foreman,
Carphone, Silent, News, Highway and Claire. The format
of each sequence is 4:2:0 QCIF and 100 frames (IPPPP).
Top 10 frequent patterns and the corresponding zig-zag
ordered coefficients are shown in Table I. Bit lengths of
these patterns are within 6 bits.

We sample 4,000 frequent patterns and arrange them
according to their frequencies. In our statistics, sum of
frequencies of top 4,000 patterns occupies 67.63% of
number of decoded block, as shown in Fig. 3. Besides, sum
of frequencies of top 500 patterns occupies 64.85%. It is
shown that patterns rarely appear except top 500 patterns.
Among these 500 patterns, there are 38.11% of patterns
belonging to nC = 0 or 1; the maximum size of these
patterns is 16 bits, as shown in Fig. 4.

1074

 The 4,000 patterns which we sample have a variety of
bit length from 1 to 77. We re-arrange the order of these
4,000 patterns according to their bit lengths, as shown in
Fig. 5. There are 81.07% of patterns represented within 8
bits and 96.93% of patterns represented within 12 bits.

2.2. A pattern-search method before CAVLD

The pattern-search algorithm is shown in Fig. 6. We use a
two-pass table look-up pattern-search method to reconstruct
4x4 (or 2x2) blocks directly. The first pass is reading 8 bits,
and the second pass is reading 4 bits. If there is not any
pattern matched in our look-up table, we have to
reconstruct blocks by CAVLD.

According to our statistics, there are many patterns, but
most of them only appear once. From this, our method only
supports frequent patterns. The maximum size of our
patterns is 12 bits because there are most of frequent
patterns represented within 12 bits. However, a single 12-
bit pattern look-up table is wasteful. The two-pass table
look-up method is adopted to save memory space; we read 8
bits in the first pass and 4 bits in the second pass. It is
efficient to reconstruct most of block one time only.

There are four 8-bit pattern look-up tables and twenty-
one 4-bit pattern look-up tables we build up. In the
beginning of CAVLD, we choose 8-bit pattern look-up
tables according to nC. Then, we use 8 bits to address the
look-up table; the entry of the table has 32 bits which can
tell us what is the length of the pattern, what block is
reconstructed, how many non-zero coefficients are in the
block, and what 4-bit pattern look-up table is chosen. If a
pattern is matched in 8-bit pattern look-up table, we will
decide to read 4 bits further or reconstruct a block directly.
If there is not any pattern matched in the table, we have to
use CAVLD to reconstruct a block. The 4-bit pattern look-
up table is chosen by the entry of the 8-bit pattern look-up
table. If a pattern is matched in 4-bit pattern look-up table
again, a block is then reconstructed. Otherwise, we have to
use CAVLD eventually; that is the worst case. Note that we
do not build up a look-up table for nC � 8 because the
pattern-search method will be not more efficient than
original procedure; we just use one pass for chroma DC
because it is enough to cover most of frequent 2x2 blocks.

3. EXPERIMENTAL RESULTS

Because of our application target, we use ARMulator
(ARM920T) to estimate our algorithm performance in an

1075

ARM-based embedded system. There are seven test
sequences, Mobile, Foreman, Carphone, Silent, News,
Highway and Claire. All of them are 4:2:0 QCIF and 100
frames (IPPPP).

There are 41,675 blocks CAVLD needs to decode in
Highway, and our pattern-search method can directly
reconstruct 33,872 blocks, as shown in table II. The hit rate
of Highway is 81.28%. The hit rate of Mobile is 53.16%
because Mobile is a critical sequence, which has a variety of
patterns. Since our algorithm can reduce memory access, it
improves 14.86% performance in terms of processing
cycles in Highway and 6.12% in Mobile, as shown table III.

4. CONCLUSION

We propose a pattern-search method before CAVLD. It can
reconstruct a 4x4 (or 2x2) block directly without going
through CAVLD. Number of table look-ups is less than two;
thus, our pattern-search method can reduce memory access
and speed up about 10% performance against the standard
CAVLD procedure.

Moreover, we observe that behaviors of inverse
transformation and inverse quantization are regular and
confined to coefficients of the 4x4 block. Therefore, we can
build new pattern-search tables to reconstruct inverse
transformed 4x4 blocks to skip CAVLD and IT/IQ.

5. REFERENCES

[1] Joint Video team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
“Information Technology � Coding of Audio-visual Objects �
Part 10: Advanced Video Coding”, ISO/IEC 14496-10, ISO/IEC,
Switzerland, Dec. 2003.

[2] Iain E. G. Richardson, H.264 and MPEG-4 Video
Compression, John Wiley & Sons, England, Sept. 2003.

[3] M. Horowitz, A. Joch, F. Kossentini, and A.
Hallapuro, ”H.264/AVC Baseline Profile Decoder Complexity
Analysis”, IEEE Transactions on Circuits and Systems for Video
Technology, IEEE, vol. 13, pp. 704-716, July 2003

[4] X. Quan, L. Jilin, W. Shijie, and Z. Jiandong, “H.264/AVC
baseline profile decoder optimization on independent platform”,

Proceedings of International Conference on Wireless
Communications, Networking and Mobile Computing, IEEE, vol.
2, pp. 1253-1256, Sep. 2005.

[5] S. Sriram and C. Y. Hung, “MPEG-2 Video Decoding on the
TMS320C6X DSP Architecture”, Conference Record of the
Thirty-Second Asilomar Conference on Signals, Systems &
Computers, IEEE, Pacific Grove, CA, vol. 2, pp. 1735-1739, Nov.
1998.

[6] D. Ishii, M. Ikekawa, and I. Kuroda, “Parallel variable length
decoding with inverse quantization for software MPEG-2
decoders”, IEEE Workshop on Signal Processing Systems, IEEE,
Leicester, pp. 500-509, Nov. 1997.

[7] S. Kato, K. Sugimoto, S. Adachi, and M. Etoh, “Structured
"Truncated Golomb Code" for Context-Based Adaptive VLC”,
Proceedings of the 3rd International Symposium on Image and
Signal Processing and Analysis, IEEE, vol. 1, pp. 323-326, Sept.
2003.

[8] W. Di, G. Wen, H. Mingzeng, and J. Zhenzhou, “A VLSI
Architecture Design of CAVLC Decoder”, Proceedings of 5th
International Conference on ASIC, IEEE, vol. 2, pp. 922-925, Oct.
2003.

[9] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai,
and L. G. Chen, “Architecture Design of H.264/AVC Decoder
with Hybrid Task Pipelining for High Definition Videos”,
International Symposium on Circuits and Systems, IEEE, vol. 3,
pp. 2931-2934, May 2005.

[10] H. C. Chang, C. C. Lin, and J. I. Guo, “A Novel Low-cost
High-performance VLSI Architecture for MPEG-4 AVC/H.264
CAVLC Decoding”, International Symposium on Circuits and
Systems, IEEE, vol. 6, pp. 6110-6113, May 2005.

[11] Y. H. Moon, G. Y. Kim, and J. H. Kim, “An Efficient
Decoding of CAVLC in H.264/AVC Video Coding Standard”,
IEEE Transactions on Consumer Electronics, IEEE, vol. 51, pp.
933-938, Aug. 2005.

[12] S. Y. Tseng and J. G. Hsu, “The Profile of H.264”, SoC
Technical Journal, STC/ITRI, Taiwan, vol. 3, pp. 111-119, Nov.
2005.

1076

