
MOVIE-BASED MULTIMEDIA MATRIX LIBRARY

Dmitry Vazhenin and Alexander Vazhenin

Graduate School Department of Information Systems
The University of Aizu, Aizu-Wakamatsu, Fukushima, 965-8580, Japan

E-mail: {d8052102,vazhenin}@u-aizu.ac.jp

ABSTRACT

The paper describes a library supporting effective
programming and design of matrix algorithms and programs.
The important feature of proposed library is the visual
algorithm representation using a movie-based approach. The
user has a deal with special multimedia objects, each of
which can generate an executable code as well as produce
animation frames. These objects build an algorithmic
skeleton representing the steps of computation. In this paper,
we show the main features of movie-based programming as
well as describe the movie-based matrix library. Examples
of the library usage are also presented.

1. INTRODUCTION

Nowadays, visual programming has become a standard
environment, and many applications include a big variety of
attractive functions with icons, pictures, animations, sound
and other multimedia components [1]. This is because visual
applications provide to the user reliable understanding as
well as effective manipulating with the complex objects.
Some of them (Visual C++, VisualWorks, etc.) typically
consist of browsers for manipulating text, combined with a
GUI editor and a rudimentary application skeleton
generator. The Limnor system can be as an example of the
last development in this area [2].

The other directions are focused to offer substantially
higher expressiveness than conventional textual
programming by means of software visualization and a
visual programming language. The following examples
represent this approach. Tanimoto [3] states that “Data
Factory” indicates visual dataflow environment. In this
model, users can control icons prepared with mathematical
operations in the layout where mathematical methods are
connected to others like belt conveyers in the factory.
JAVAVIS was developed as a tool to support teaching
object-oriented programming concepts with Java [4]. This
tool monitors a running Java program and visualizes its
behavior with two types of UML diagrams, which are de-
facto standards for describing the dynamic aspects of a

program, namely object and sequence diagrams. We can
characterize most of the mentioned systems as very special.
They are mostly focused on solving specific problems.

A multimedia approach for interactive specifications of
applied algorithms and data representations is based upon a
collection of computational schemes represented in the
“film” format [5]. In [6], some modifications to this
approach, called the Movie-based Multimedia Environment
for Programming and Algorithm Design (MMEPAD), are
shown. The movie-based programming process is
manipulated with special movie-program objects (MP-
objects) that generate automatically a part of an executable
code as well as producing movie frames, which are adequate
for the code generated.

The matrix operations are often used in many scientific
and practical computations. That is why the visual
representations of matrix data and algorithms are very
important in order to choose a corresponding method as well
as design matrix algorithms. Traditionally, the matrix
software consists of well-maintained libraries available
commercially or electronically in the public-domain, other
libraries distributed with texts or other books, individual
subroutines tested, as well as individual or electronic sources
which may be hard to use or come without support. As
shown in [7], there is a need for tools to help users in
picking the best algorithm and implementation for their
numerical problems, as well as in getting expert advises on
how to tune them. Authors suggested for using special text-
based forms called templates. This approach can be
considered as a good idea to help in choosing the suitable
algorithm. Nevertheless, essential problems with
understanding computational schemes presented still exist.
This research is devoted to design the new the movie-based
matrix library including objects having mentioned-above
features.

This paper has the following structure. In section 2,
features are shown of movie-based programming
technology. In section 3, we discuss also main stages of the
movie/program design and debugging. Section 4 contains
description of movie-based matrix library. Some remarks
and examples of the movie-based library usage are shown in
section 5. Conclusion and future work are discussed in
section 6.

10691424403677/06/$20.00 ©2006 IEEE ICME 2006

2. MOVIE-BASED PROGRAMMING
ENVIRONMENT

The Movie-Based representations of computational
methods and algorithms consider a correspondence between
algorithmic movie frames and problem solution steps.
Accordingly, each frame should visualize/animate a
corresponding step of a program/algorithm execution. We
define such a frame as the Movie-Program Frame or MP-
frame. The Movie-based Programming is in manipulating
with special objects generating a part of an executable code
as well as producing MP-frames, which are adequate to the
code generated. The key point of this concept is based a
Movie-Program Skeleton or MP-skeleton including
components supporting these dualistic features (Figure 1).

MovieMovie--based based
ProgramProgramMovie

Generator
and
Player

Movie Movie
Generator Generator
and and
PlayerPlayer

Generator of
an Executable
Code

Generator of Generator of
an Executable an Executable
CodeCode

Final
Executable
Program

Final Final
Executable Executable
ProgramProgram

Program Executor,
Debugger and
Data Visualizer

Program Executor, Program Executor,
Debugger and Debugger and
Data Data VisualizerVisualizer

MovieMovie--based based
ProgramProgram

FILM 1FILM 1 FILM 2FILM 2 FILM kFILM k……
MPMP--skeletonskeleton

FILM 1FILM 1 FILM 2FILM 2 FILM kFILM k……

MP-skeleton EditorMPMP--skeleton Editorskeleton Editor

ManagerManagerManager
Create, Play,

Back Tracing,..

Set Breakpoints

Launch, Stop,…

O
p

en

In
se

rt

D
el

et
e

S
av

e,
…

Movie-
Based
Matrix
Library

MovieMovie--
Based Based
Matrix Matrix
LibraryLibrary

Figure 1. Movie-based Programming Environment

The Movie-based software architecture includes five
main program modules. The MP-skeleton Editor allows
users to manipulate with MP-components specifying movie-
program parameters. Movie Generator and Player is to
produce an algorithmic movie by generating a basic MP-
frames sequence. This sequence can be extended by
additional animations/sounds in order to improve movie
presentation. It is also possible to generate and play movie
fragments together with editing operations. The Generator
of an Executable Code is to create a program from the MP-
skeleton. There are two possible types of MP-programs. The
Final Executable Program is generated according to the
target machine requirements. The Movie-based Program can
be implemented and debugged under control of the Program
Executor, Debugger and Data Visualizer. The Manager
controls all system operations and data access procedures.
The movie-based matrix library is a collection MP-
components allowing the user to use complete components
for the program/algorithm design

3. MP-SKELETON DESIGN STAGES

Figure 2 depicts an example of an algorithmic movie
showing computations on matrices and containing 13 MP-
frames. Each MP-frame highlights and flashes some
elements of parameterized matrices. This means that
operations or formulas should be defined on corresponding
matrix elements and/or sub-structures like sub-matrix,
column, and rows. Different operations can be coded by
different colors/sounds/animations. Special Control Lines
I1, I2 and J1, J2 are used to simplify the computational
scheme understanding and for possible references.

Figure 2. Gaussian Elimination Movie Example

Usually, any MP-skeleton consists of a set of MP-films.
There exists one main MP-film. Other films can be activated
by using a special calling mechanism. Each MP-film consists
of a set of MP-stills each of which is a scene defining how to
generate MP-frames and program. The user should specify
parameters of this generation by manipulating with the MP-
still objects like MP-nodes, MP-structures, Control Lines
as well as MP-formulas defining operations on these
objects. As shown in Figure 2, a MP-skeleton for the
Gaussian Elimination Movie contains four MP-stills.

a). Gaussian Elimination Skeleton

b). Gaussian Elimination MP-formulas

Figure 3. Gaussian Elimination MP-Skeleton

1070

The algorithmic MP-skeleton design process includes
specifications of MP-objects like MP-stills, control lines,
structures (scalars, vectors and matrices) as well as
definitions of behaviors of these elements during transitions
of MP-frames. The process of MP-still creation/debugging
should be implemented as follows. Firstly, the user should
specify a set of structures (scalars, vectors, matrices, etc.)
needed to realize algorithm. Secondly, for each structure, it
is necessary to introduce control lines and define their
positions and behaviors by inputting special index
expressions called I-formulas according to the rules shown
in Figure 4. Finally, the user should specify nodes activities
by coloring corresponding domains and substructures. As
shown in Figure 2, the domain configuration in changing
according to the control lines positions.

Example

J1 = 1;

if (J1<J2)
then J1++;
else J1= J2;

if (J1 == J2)

Figure 4. I-formulas semantic rules

Computational formulas or C-formulas are necessary
to specify operations on colored MP-nodes. We define a C-
formula as a subprogram containing a sequence of
arithmetical and logical expressions to specify some local
nodes activities. Each C-formula includes the following
components: MP-expressions, Control structures, Regular
text. MP-expressions are to specify data access and
operations on MP-nodes. The C-formula notation is to the
conventional mathematical expressions (Figure 5.).

Figure 5. C-Formula Attachment Interface

As shown in Figure 5, we are enhancing C-formulas by
using special multimedia attributes like images, symbols and
tables in order to improve the formula perception. Control
structures are used to point branch conditions. Regular text
can be comments and/or a custom code, which extends
formula capabilities.

In most cases, film program consists of several stills and
structures. Each still contains a set of traversal schemes
specifying colored domains in corresponding structure. Each
schema has its own color and formula sequence attached to
this color. The same nesting scheme is always reflected in
the corresponding program source code. Each still produces
one or several static frames representing skeleton steps of
computation and hiding formulas.

4. MATRIX LIBRARY COMPONENTS AND USAGE

The efficiency and convenience of the most of programming
systems depends on variety of embedded packages and
libraries. Those tools can significantly reduce the software
design expenses as well as help in understanding of
computational methods. In this section we describe a
collection of movie-based matrix routines.

The library contains the matrix film set supporting basic
matrix-vector and matrix-matrix operations. It includes
matrix multiplication algorithms of different kind, matrix
transposition stills, etc. The other group of MP-stills and
episodes is oriented in creating solvers of systems of linear
algebraic equations (SLAE). It includes direct SLAE
solvers, for example, a set of the Gaussian Elimination and
LU-decomposition algorithms as well as iterative solvers.

Matrix Generators and Service Functions are a special
set of standardized MP-stills including movie-based
algorithms for obtaining matrices with given types and
features. These matrices are necessary in developing and
evaluating many matrix algorithms and. In other words, it is
a set of the movie-based matrix generators. This group
includes also some service functions like data dump,
visualization, print, etc. Table 1 contains several typical
examples of matrix generators and services as well as
corresponding C-formulas. The left table column shows the
matrix structure color representation implemented according
to control lines positions. The right column demonstrates C-
formulas, which can be implemented on the corresponding
matrix elements. We show also traditional mathematical
expressions to compare them with our representation. It is
possible to see that the usage of images can improve the
formula perception and understanding.

As shown in Figures 2 and 3, the first MP-still of the
Gaussian Elimination Algorithm is a matrix generator. The
last MP-still can be used, for example, for printing results. It
is necessary only to import them from the library. The user
can also extend the library content by including his/her own
stills and films.

CF_ID – Control Line Name

Transition Rule:
if (<condition>) then CF_ID = <expression>
 else CF_ID = <expression>

Episode Rule:
if (<condition>) then{Generate Next Frame};
 else {Finish Episode};

Initialization Rule:
CF_ID = <expression>

1071

Table 1. Examples of Matrix Generators

Frame image Description and C-formulas
Hilbert Matrix

1,,1,0, ;
1

1 −=
++

= Nji
ji

aij L

Row-Column Matrix

1,,1,0, ;
for 1

for 1
−=

⎩
⎨
⎧

≤+
>+

= Nji
jij

jii
aij L

Generate full
matrix

Print matrix as a table

Generate a band
matrix

Band Matrix defined by five Control
Diagonal Lines

Any movie-based library component can easily be
imported or inserted into the user’s application skeleton. To
import MP-films, the user can simply insert the selected MP-
film into his/her application and specify corresponding call-
still on order to bind formal and real film parameters.

Import operations on stills and episodes have some
specifics because of necessity in redefining variables and
structures names, sizes, etc (Figure 5).

Figure 5. Example of Mapping Imported Structure

The user should specify a mapping of imported entities
and real variables and structures defined in the user’s MP-
film. Importantly, all formulas will be transformed according
to the user’s film notations. If an inserted MP-still or episode
has an extended set of variables and structures, all
unspecified components will be added to the user’s film
component set.

5. CONCLUSION

The proposed movie-based library can significantly help
in designing and debugging matrix algorithms. It combines
an executable code generation with the visual representation
of algorithms and programs. It seems also very attractive to
use such environment for education purposes. The library is
open and allows adding/designing new matrix algorithms.
The programmer can easier understand relations between a
real application and algorithm used for it. Designing a
formula sequence the user should operate only with visual
objects specifying variable names and index expressions as
multimedia symbols. The results of testing confirm that the
presented system can be used not only as an algorithm
demonstration tool but also as a programming tool.

The system presented is realized on Java platform. It
generates C/C++ programs and can export movies in the
Macromedia Flash Animation format.

6. REFERENCES

[1] J. Stasko, J. Dominique, M. Brown, and B. Price, Software
Visualization: Programming As a Multimedia Experience, The
MIT Press, 1998.

[2] Limnor Tutorial. ©2003 Longflow Enterprises Ltd.
http://www.limnor.com/.

[3] S. Tanimoto, “Programming in a Data Factory,” Proc. of
Human Centric Computing Languages and Environments,
Auckland, pp. 100-107, 2003.

[4] R. Oechsle, and T. Schmitt, “JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the Java
Debug Interface (JDI),” LNCS, Springer-Verlag, Vol. 2269, pp. 1-
15, 2002.

[5] N. Mirenkov, A. Vazhenin, R. Yoshioka, Ts. Ebihara, at al.,
“Self-Explanatory Components: A New Programming Paradigm,”
Int. Jour. of Soft. Eng. and Knowledge Eng., vol. 11, no. 1, pp. 5-
36, 2001.

[6] D. Vazhenin, A. Vazhenin, and N. Mirenkov, “Movie-based
Multimedia Environment for Programming and Algorithms
Design,” LNCS, Springer-Verlag, Vol. 3333, Part III, pp. 533-541.

[7] Z. Bai, D. Day, J. Demmel, J. Dongarra, M. Gu, A. Ruhe, and
H. Vorst, “Templates for Linear Algebra Problems,” LNCS,
Springer-Verlag, Vol. 1000, Springer-Verlag, 1996.

1072

