
GPCD:Grid-based Predictive Collision Detection for Large-scale Environments
in Computer Games

Zhiwen Yu
Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong
yuzhiwen@cs.cityu.edu.hk

Hau-san Wong
Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

cshswong@cityu.edu.hk

Abstract

Given a time horizon parameter h and an object set
O, predictive collision detection finds all the object pairs
< oi, oj , ti > which will collide in the future time inter-
val [t, t + h] (where 1 ≤ i, j ≤ n, ti ∈ [t, t + h]). Al-
though there are a number of state-of-the-art approaches to
solve collision detection problems, predictive collision de-
tection is addressed for the first time. In this paper, we pro-
pose a grid-based predictive collision detection algorithm
(GPCD), which is a general technique for the efficient de-
tection of the collision of object pairs in a future time inter-
val. GPCD first determines a candidate list which stores the
object pairs having a non-zero probability to collide in a fu-
ture time. Then, GPCD achieves low running time based on
two pruning strategies: (i) space intersection test and (ii)
time intersection test. These two pruning strategies elim-
inate most of the false collision cases in an initial filter-
ing phase. In the refinement phase, a bounding-volume tree
is applied to refine the detection results. Our experiments
show that GPCD works well for the purpose of predictive
collision detection.

1. Introduction
Collision detection is a fundamental problem in robotics, com-

puter graphics, computational geometry, computer animation and
physics based modeling ([1], [2], [3], [4], [5], [6], [7], [8], [10],
[11]). The collision detection problem is divided into two sub-
problems from the perspective of the number of objects consid-
ered: (i) two objects collision detection and (ii) n objects colli-
sion detection. Predictive collision detection belongs to the lat-
ter which is addressed for the first time. The objective of predic-
tive collision detection is to avoid future collision, which represent
a major difference from traditional collision detection. There are
many applications for predictive collision detection, such as simu-
lating a group of random walking robots, ships going in or out of
the harbor, cars driving in or out of a car park, and so on.

The motivation of predictive collision detection comes from
predictive queries in the database area([9]). Predictive query re-
trieves the objects which satisfy some conditions in the future
time, such as ”Which bus is expected to reach the bus station
in the next 5 minutes”, ”Which ship is close to the dock in the
next 10 minutes”, and so on. There are three kinds of predictive
queries: (i) predictive window query, (ii) predictive nearest neigh-
bor query, (iii) predictive spatial join query. The query that re-
trieves all the object pairs < oi, oj , ti > which will collide in the
future time interval [t, t+h] is a novel type of query which belongs
to the class of predictive spatial join queries (where 1 ≤ i, j ≤ n,
ti ∈ [t, t + h]).

In this paper, we propose a grid-based predictive collision de-
tection (GPCD) algorithm to retrieve all the object pairs which will
collide in the future time interval [t, t + h]. The objects which are
bounded by a minimum bounding box(MBB) are indexed by the
grid G. GPCD first determines a candidate list for the object o.
Then, GPCD achieves high efficiency by two pruning strategies:
(i) a space intersection test which eliminates the false candidates
by checking the overlapping of the projected interval, (ii)a time in-
tersection test which removes the false candidates through exam-
ining the overlapping of the time intervals. Finally, GPCD com-
putes the exact time of the intersection for the object pairs which
are not pruned. Here we only focus on retrieving collision pairs.
To keep track of collision pairs and dynamically maintain the sys-
tem will be the topics of our future work.

The contribution of this paper are threefold. First, we address
predictive condition detection for the first time. Second, we pro-
pose a grid-based predictive collision detection (GPCD) algorithm
to retrieve all the object pairs which will collide in future. Third,
we provide a space intersection test and a time intersection test to
reduce the computational cost.

The rest of the paper is organized as follows. Section 2 surveys
the related work on predictive query and collision detection. Sec-
tion 3 describes the grid-based predictive collision detection algo-
rithm. Section 4 evaluates GPCD experimentally. Section 5 is con-
clusion and future work.

2. Related work
For an n object collision detection problem, we need to per-

form O(n2) pairwise interference checks, which is computation-

10251424403677/06/$20.00 ©2006 IEEE ICME 2006

ally intensive, especially when n is large. In order to eliminate
useless pairwise checks, several techniques are proposed ([2], [3],
[8]). The most related work to us is the sorting-based sweep and
prune algorithm([8]).

3. Grid-based predictive collision detec-
tion algorithm

3.1. The overview of the algorithm

Grid-based predictive collision detection algorithm (GPCD) is
proposed to detect all the object pairs < oi, oj , ti > which have a
non-zero probability to collide in the future time interval [t, t + h]
,where 1 ≤ i, j ≤ n, ti ∈ [t, t + h]. We first consider the case
where the object moves non-linearly in space. The motion func-
tion of the object is

o(ti) = o(t) + v · (ti − t) +
F

2m
· (ti − t)2 (ti ∈ [t, t + h]) (1)

where o(ti) and o(t) are the position vectors of the object o at time
ti and the current time t, v is the current velocity of the object, F
is the force vector, m is the mass of the object o, and h is a time
horizon.

An overview of GPCD is provided in figure 1 and figure 2.
GPCD first computes the displacement for all the objects in the ob-
ject set. In order to avoid picking up an object pair twice, GPCD
only considers an object pair (o(t), oi(t)) with oi(t).x ≤ o(t).x
for every object o (oi(t).x and o(t).x are the x coordinates of the
center point of the object o). Then, GPCD determines the candi-
date list for the object o. In the third step, the space intersection test
and the time intersection test are applied to eliminate the false can-
didates. Finally, GPCD returns the object pairs which will collide
in the future time interval [t, t + h]. The size of the arrow in fig-
ure 1 reflects the size of the candidate list.

The object

set

Grid

� � � � � � � � � 	 �
 �

� � � �

� � � �� � � � � � � � � � � �� � � �

� � � � ! � "# $ � !
% & ' � �� � � � � � � � � � � �� � � �

() * � + , !

Figure 1. The overview of the system

3.2. Determination of the candidate list

GPCD first selects
- d

i=1 ci · Īi as the grid cell size(where d
is the number of dimensions, Īi is the average projected intervals
of the objects and their trajectories in the ith dimension, and ci

is a constant parameter. Note that, in order to save computational
cost, the bounding box is applied to bound the object and its trajec-
tory. Then, the algorithm calculates the intersection of the grid cell
with the bounding rectangle. If the grid cell intersects the bound-
ing rectangle, (i)the grid cell stores the object id and (ii) the ob-
ject adds the grid cell id. The candidate list of the object o con-
sists of all the objects whose bounding boxes share the same grid
cell with that of the object o.

Algorithm GPCD(object set O)
1. Initialize a collision pair list;
2. compute the trajectories for all the objects;
3. Project the objects and their trajectories into all the dimensions;
4. Calculate average projected interval (Īi) in all the dimensions;
5. Choose the grid cell size . d

i=1 ci · Īi;
6. Hashes all the objects and their trajectories into the grid;
7. The grid cell stores the id of the objects intersected;
8. The object stores the id of the grid cell intersected;
9. For each object o
10. Add all the objects in the grid cells which contain the object o

into the candidate list;
11. For each candidate oi in the candidate list
12. If (! projection overlap condition)
13. the candidate oi is pruned;
14. If (center point test);
15. add < o, oi > into collision pair list; continue;
16. If (! Time interval condition)
17. the candidate oi is pruned;
18. If (! trajectory intersection test)
19. the candidate oi is pruned;
20. Compute exact time of intersection;
21. add < o, oi > into collision pair list;
22. Refi nement by bounding volume tree;
23. If the collision pair list is not empty
24. Take measures to avoid collision;

Figure 2. Grid-based predictive collision de-
tection algorithm

3.3. Space intersection test

After the algorithm obtains the candidate list of the object o,
space intersection test is applied to eliminate the false candidates.
Space intersection test includes two phases: projection overlap test
and trajectory intersection test.

During the process of projection overlap test, the trajectories
of the object o and its candidates are projected to all the dimen-
sions. If the projected interval of the candidate does not intersect
that of the object o in one of the dimensions, the candidate will be
removed from the candidate set. As a result, the candidates oi re-
tained in the candidate list should satisfy the following projection
overlap condition:

[o.Ij(min), o.Ij(max)] / [oi.Ij(min), oi.Ij(max)] �= ∅ (2)

where o.Ij(min), o.Ij(max), oi.Ij(min), oi.Ij(max) are the
minimum and maximum coordinates of the projected interval of
object o and the candidate oi in the jth dimension. j is the dimen-
sion (1 ≤ j ≤ d, d is the total number of the dimensions).

There are four outcomes of the trajectory intersection test:
(i)the center of the object and that of the candidate intersect; (ii)
The trajectory of the object and that of the candidate intersect ;
(iii) The MBR of the object and that of the candidate intersects ;
(iv) The object does not intersect with the candidate.

3.4. Time intersection test

For the time intersection test, the algorithm considers the can-
didates one by one. Time intersection test consists of three stages:
(i) center point test, (ii) time interval test, (iii) exact time compu-
tation.

1026

The algorithm first computes the time ti at which the center of
the object o and that of the candidate oi intersects by solving the
following quadratic equations:�

o(t)j + o.vj(ti − t) +
o.Fj

2o.m
(ti − t)2

= oi(t)j + oi.vj(ti − t) +
oi.Fj

2oi.m
(ti − t)2

(3)

where o(t)j and oi(t)j are the coordinates of the positions of the
center of the object and the candidate in the jth dimension at time
t respectively. vj , Fj are the corresponding component of the ve-
locity and the force. t and ti are the current time and the future
time, and j is the dimension (1 ≤ j ≤ d, where d is the total num-
ber of dimensions).

If ti ∈ [t, t + h], the object o and the candidate oi is a colli-
sion pair. Otherwise, the time interval test and exact time test are
performed. If the candidate does not satisfy the time interval test
or the exact time test, the candidate is pruned.

During the time interval test, the algorithm calculates the times
t1 and t2(t1, t2 ∈ [t, t + h]) of which the object o enters and
leaves the trajectory of the candidate oi, as shown in Figure 3(a),
by solving the quadratic equations which links the trajectory func-
tions of the vertices of the bounding boxes. The times t3 and t4
(t3, t4 ∈ [t, t + h]) at which the candidate intersects the trajec-
tory of the object o (Figure 3(b)) are obtained in a similar way.
The candidate oi is pruned if it does not satisfy the time interval
intersection condition:

[t1, t2] � [t3, t4] �= ∅ (4)

Finally, the algorithm computes the exact time of intersection
for the remaining candidates.

o

o �

x

y

o

o �t �
t �

t

t + h

o

o
t

t + h

� � �
 � � � �
 � � �
 �
 � �
 � �
 � �

o
x

y

o

o �t �
t �o �

t

t + h

o �
t

t + h

� � � ! " � $ % " ') *) +) , �

(a) (b)

Figure 3. Time intersection test in 2D

3.5. Collision Avoidance

If the candidate oi is not pruned, the collision pair < o, oi >
is added to the collision pair list. All the object pairs in the col-
lision pair list are refined by a bounding volume tree(BVT). Fi-
nally, if the collision pair list is not empty, the algorithm considers
other measures to avoid collision. These measures include acceler-
ation, deceleration or diverting the direction of movement. Accel-
eration and deceleration allow the object to break the time inter-
section condition, while diverting the direction of movement helps
the object to break the space intersection condition.

4. Experiment

4.1. Experimental Setting and Data Set

All the experiments presented are executed with a Pentium 2.8
GHz CPU with 1 GByte memory. Our data simulate a battle in
a computer game which includes a group of random running sol-
diers based on information from 3D computer animation. We only
consider the movement of random running soldiers in a 3D scene
with size [10000 × 10000 × 50]. In our experiments, every sol-
dier is bounded by a minimum bounding box. The distribution of
the soldiers in different regions are shown in Figure 4.

(a) Uniform (b) Zipf (c) City

Figure 4. dataset

Table 1 summarizes the parameters along with their default val-
ues and the ranges. In the following experiments, we vary the value
of one parameter, while setting the values of other parameters as
default values. The parameters of the grid size in GPCD algorithm
are c1 = 1 , c2 = 1 and c3 = 1 in 3D. We compare the colli-
sion detection performance based on the grid structure with that of
a TPR-tree using the self-intersection join algorithm(SIJ-TPR).

Parameter Default Range
Horizontal parameter(h) 3 1, 2, 3, 4, 5

Maximum velocity (vmax) 3 1, 2, 3, 4, 5

Maximum accelerate (amax) 0.5 0, 0.5, 1, 1.5, 2

Object population(n) 2k 1k, 2k, 3k, 4k, 5k

Object distribution uniform uniform, zipf, City
Algorithms GLOBAL GPCD, SIJ-TPR
Motion function linear linear, non-linear

Table 1. Parameters

4.2. The influence of the parameters

According to the parameters in Table 1, we process the queries
that find all the collision pairs by the algorithms, and measure the
running time and collision object pairs by varying one of the para-
meters.

Figure 5(a) illustrates the running time with respect to the time
horizon h. As a whole, the running time increases when h be-
comes larger. The running time of GPCD first decreases, then in-
creases. When h is small, the corresponding average projected in-
terval is small as well. This in turn leads to a small grid size and
a large number of grid cells which degenerate the performance
of GPCD. Figure 5(b) shows the number of collision pairs corre-
sponding to the time horizon parameter h. The number of collision
pairs increase quickly with h.

1027

0

0.2

0.4

0.6

1 2 3 4 5
Horizontal parameter(h)

C
P
U

ti
m

e(
s)

GLOBAL SIJ-TPR*GPCD

Time horizon parameter (h)

71
217

426

670

1010

0

200

400

600

800

1000

1200

1 2 3 4 5
Horizontal parameter(h)

C
ol

lis
io

n
pa

ir
s

Time horizon parameter (h)

(a) Running time (b) Collision pairs

Figure 5. Effect of time horizon parameter h

Figure 6(a) shows the running time as a function of the maxi-
mum velocity. GPCD is rather insensitive to the maximum veloc-
ity, since the performance of GPCD is mainly related to the aver-
age velocity, not the maximum velocity. Figure 6(b) measures the
effect of the maximum velocity on the number of collision pairs.

0

0.2

0.4

0.6

1 2 3 4 5
Maximum velocity(v)

C
P
U

ti
m

e(
s)

GLOBAL SIJ-TPR*GPCD

63
211

426

685

1056

0

200

400

600

800

1000

1200

1 2 3 4 5
Maximum velocity(v)

C
ol

lis
io

n
pa

ir
s

(a) Running time (b) Collision pairs

Figure 6. Effect of maximum velocity

Figure 7(a) compares the performance of the algorithms versus
the number of objects. It is reasonable that all the algorithms are
sensitive to the number of objects. With an increased number of
objects, the algorithms process more pairwise interference checks,
and the corresponding collision pairs increase as well, as shown in
Figure 7(b).

0

0.2

0.4

0.6

0.8

1

1k 2k 3k 4k 5k
number of objects

C
P
U

ti
m

e(
s)

GLOBAL SIJ-TPR*GPCD

122
426

958

1752

2642

0

500

1000

1500

2000

2500

3000

1k 2k 3k 4k 5k
number of objects

C
ol

lis
io

n
pa

ir
s

(a) Running time (b) Collision pairs

Figure 7. Effect of n

The prune power of the pruning strategies is defined by the fol-
lowing equation:

prunepower(%) =
Nbeforeprune − Nafterprune

Nbeforeprune
· 100% (5)

where Nbeforeprune and Nafterprune denote the cardinality of the
candidate list before pruning and after pruning. Figure 8(a) com-
pares the prune power of space intersection test and time intersec-
tion test. Figure 8(b) illustrates the prune power of the different
strategies.

Prune power

space intersection
test

time intersection
test

53.59%

46.41%

Pruning power
Prune power

24.14%

6.65%

7.16%

7.75%

10.46% 45.84%

Project overlap test

Center point test

Filter strategy

Time interval test

Trajectory intersection

Exact time computation

Pruning power

(a) Prune strategies (b) Concrete strategies

Figure 8. Prune power

5. Conclusion and future work
The paper investigates the problem of predictive collision detection.

Given an object set and a time horizon parameter, the query retrieves all
the object pairs which will collide in future. Although there are a num-
ber of collision detection approaches, predictive collision detection is ad-
dressed for the fi rst time. The objective of prediction is to avoid collision.
Our major contribution is the introduction of a grid-based predictive colli-
sion detection algorithm(GPCD) to predict the collision in future. GPCD
is divided into three main steps: (i) determination of the candidate list, (ii)
space intersection test, (iii) time intersection test. We compare GPCD with
SIJ-TPR in the experiments which show that GPCD outperforms SIJ-TPR.

There are still a lot of interesting work to be done in the future. First,
it will be promising to establish an integrated predictive collision detec-
tion system and to maintain the system dynamically. Second, handling up-
dates is a challenge in the predictive system. Third, we plan to apply this
approach to explore the motions of robots.

Acknowledgments
The work described in this paper was partially supported by a grant

from City University of Hong Kong [Project No. 7001965].

References
[1] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus Tam-

storf, Russell Gayle, Ming C. Lin, Dinesh Manocha,Interactive Collision De-
tection between Deformable Models using Chromatic Decomposition, ACM
SIGGRAPH, 2005

[2] Stefan Gottschalk, Ming C. Lin, Dinesh Manocha. OBB-Tree: A Hierarchical
Structure for Rapid Interference Detection. Proc. ACM SIGGRAPH, 1996.

[3] JAMES, D. L., AND PAI, D. K. BD-Tree: Output-sensitive collision detection
for reduced deformable models. Proc. of ACM SIGGRAPH.2004.

[4] BRIDSON, R., FEDKIW, R., AND ANDERSON, J. Robust treament for
collisions, contact and friction for cloth animation. Proc. of ACM SIG-
GRAPH.2002.

[5] Sung-Eui Yoon, Brian Salomon, Ming C. Lin, Dinesh Manocha. Fast Colli-
sion Detection between Massive Models using Dynamic Simplifi cation. Proc.
of Symposium on Geometry Processing, 2004

[6] Stephane Redon, Ming C. Lin, Dinesh Manocha, Young J. Kim. Fast Contin-
uous Collision Detection for Articulated Models. Proceedings of ACM Sym-
posium on Solid Modeling and Applications, 2004.

[7] Naga K. Govindaraju, Ming C. Lin, Dinesh Manocha. Fast and Reliable Col-
lision Culling using Graphics Processors. IEEE Transactions on Visualization
and Computer Graphics , 2005

[8] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, Madhav Ponamgi. I-
COLLIDE: An Interactive and Exact Collision Detection System for Large-
Scaled Environments. Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha,
Madhav Ponamgi Proc. ACM Symposium on Interactive 3D Graphics, pp.
189-196, 1995.

[9] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M. Indexing the Positions of
Continuously Moving Objects. SIGMOD, 2000.

[10] Vincent Hayward,Stphane Aubry, Andr Foisy, Yasmine Ghallab. Effi cient col-
lision prediction among many moving objects. International Journal of Robot-
ics Research archive Volume 14 , Issue 2 (April 1995), Pages: 129 - 143.

[11] Kim, B. and Rossignac, J. Collision Prediction for Polyhedra under Screw Mo-
tions. Proc. of the ACM SM’03. pp 4-10. Seatle, Washington. ISBN:1-58113-
706-0. June, 2003.

1028

